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Entropy Evolution in Consensus 
Networks
Shuangshuang Fu1, Guodong Shi2, Ian R. Petersen2 & Matthew R. James2

We investigate the evolution of the network entropy for consensus dynamics in classical and quantum 
networks. We show that in the classical case, the network differential entropy is monotonically non-
increasing if the node initial values are continuous random variables. While for quantum consensus 
dynamics, the network’s von Neumann entropy is in contrast non-decreasing. In light of this 
inconsistency, we compare several distributed algorithms with random or deterministic coefficients for 
classical or quantum networks, and show that quantum algorithms with deterministic coefficients are 
physically related to classical algorithms with random coefficients.

How agreement emerging among a group of agents interacting each other is an intriguing subject in various 
research disciplines1–5. The fundamental idea lies in that, cooperative decisions can lead to consensus in node states 
throughout a network even each node can only interact with a few neighboring nodes. Inspired by this, consensus 
control over networks has been systematically studied in the past decade6, 7, becoming one of the foundational 
blocks for engineering solutions to distributed coordination problems in multi-agent systems8. Recent work9, 10, 
further developed consensus dynamics for quantum networks, where each node corresponds to a qubit11. The 
concepts regarding the network density matrix as statistical ensembles of pure quantum states, reaching a quan-
tum consensus were systematically developed9, and it has been shown that a quantum consensus can be reached 
with the help of quantum swapping operators for both continuous-time and discrete-time dynamics9, 12. In fact, 
the two categories of dynamics over classical and quantum networks can be put together into a group-theoretic 
framework10, and quantum consensus dynamics can in fact be equivalently mapped into certain parallel classical 
dynamics over disjoint subsets of the entries of the network density matrix12. This line of research on consensus 
dynamics is related to the work on quantum walks over complex networks13, 14, where associated with the network 
Laplacian there is a Hermitian operator defining the evolution of the network state in a quantum space.

Despite of their algorithmic consistency from a high level between classical and quantum consensus dynam-
ics10, 12, it is worth investigating the two categories of physical processes from an information perspective. Classical 
consensus dynamics is realized by nodes observing their neighbors’ states (or, their relative states) and then taking 
real-time feedback. On the other hand, such precise state observation among different components in a quantum 
network is proven to be impossible11, and quantum consensus dynamics is realized via nodes interacting not directly, 
but with the help of local environments which by themselves are quantum subsystems. Tracing out these local envi-
ronments, the state evolution of the quantum network follows a master equation with the same attraction nature12.

To this end, we investigate the evolution of the network entropy for consensus dynamics in classical and quan-
tum networks. We show that in classical consensus dynamics, the network network differential entropy is mono-
tonically non-increasing if the node initial values are continuous random variables with proper density functions. 
While for quantum consensus dynamics, the network’s von Neumann entropy is in contrast non-decreasing. 
These observations suggest that the two types of consensus schemes have different physical footings. Then, we 
compare several gossiping algorithms with random or deterministic coefficients for classical or quantum net-
works and present novel convergence conditions for gossiping algorithms with random coefficients. The result 
shows that quantum gossiping algorithms with deterministic coefficients are physically consistent with classical 
gossiping algorithms with random coefficients.

Results
Consider a network with N nodes. The nodes are indexed in the set V = {1, …, N}, and their interconnections are 
described by a connected undirected graph G = (V, E), where each element in E is an unordered pair of nodes in 
V. The graph G is an abstraction to the components (given by V) and the structure (given by E) of the information 
flow among the components.
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Classical Networks.  In classical scenarios, each node i ∈ V holds a real-valued state at time t, denoted Xi(t), 
representing opinions of a peer in social networks, or signals measured at a sensor in engineering networks. The 
network state is represented by the vector = …X t X t X t( ) ( ( ) ( ))N1

T. The Laplacian of the graph G is an N × N 
matrix defined by LG = DG − AG, where AG is the adjacency matrix of G with [AG]ij = 1 if {i, j} ∈ E and [AG]ij = 0 
otherwise, and DG is a diagonal matrix with the i th diagonal entry given by the degree of node i, = ∑d A[ ]i j ijG . In 
continuous-time settings, DeGroot’s type of node interactions lead to a time evolution of X(t) described by the 
following differential equation (7)

= − .
d
dt

X t L X t( ) ( ) (1)G

The initial time is set to be 0 and each node i holds an initial value Xi(0). During (1) the nodes’ states are mixed 
in such a way that at each time t, the direction of the movement of Xi(t) always points to the interior of the convex 
combination of its neighbors’ current states. In the end an average consensus is reached in the sense that (7)

∞ = =
→∞

X X t X N11( ) : lim ( ) (0)/
t

T

where 1 is the N × 1 vector with all entries being 1.
The Shannon entropy is a fundamental measure of uncertainty of a random variable15. The entropy H(Z), of a 

discrete random variable Z with alphabet   is defined as = − ∑ .∈H Z p z p z( ) : ( )log ( )z   Here log is to the base 2 
and p(·) is the probability mass function. The differential entropy h(Z) of a continuous random variable Z with 
density f(z) is defined as 

∫= −h Z f z f z dz( ) : ( )log ( ) , where   is the support of Z. Then the following result holds.

Theorem 1 Let the Xi(0) be continuous random variables. Then ≥h X t h X s( ( )) ( ( )) for all ≤ ≤t s0  along the sys-
tem (1).

When the Xi(0) are independent and identically distributed (i.i.d.) discrete random variables, the Shannon 
entropy of X(t), H X t( ( )), is invariant for all ≥t 0 along the system (1) since there is a one-to-one mapping 
between ε+X t( ) and X(t) for any t > 0 and ε > 0 from the proof of Theorem 1. We also note that the entropy at 
individual nodes, either h X t( ( ))i  or H X t( ( ))i , can certainly admit non-monotone trajectories. Particularly, if the 
Xi(0) are i.i.d. Gaussian with mean μ and variance σ2, we know

π σ π σ= ∞ =h X e h X e N( (0)) 1
2

[log(2 )], ( ( )) 1
2

log(2 / )i i
2 2

since ∞X ( )i  is also a Gaussian random variable but with mean μ and variance σ N/2 . On the other hand, if the 
Xi(0) are i.i.d. Bernoulli random variables with mean ∈p (0, 1), ∞NX ( )i  obeys binomial distribution and 
therefore

π= + − − ∞ − +






.− −

H X N p p p p H X eNp p O
N

( (0)) [ log (1 )log(1 ) ], ( ( )) 1
2

log(2 (1 )) 11 1

Quantum Networks.  In a simple quantum network, each node ∈i V represents a qubit (quantum bit). The 
state space associated with any isolated quantum system is a complex vector space with inner product, i.e., a 
Hilbert space . The system is completely described by its state vector, which is a unit vector in the system’s state 
space and often denoted by ψ ∈  (known as the Dirac notion). The state space of a composite quantum system 
is the tensor product of the state space of each component system. Two quantum systems with state spaces A and 

B , respectively, form a composite system with state space  ⊗A B, where ⊗ stands for tensor product. If the 
two quantum systems are isolated respectively with states ψ ∈A A and ψ ∈B B, the composite system admits 
a state ψ ψ⊗A B . Quantum states can also be described by a positive (i.e., positive semi-definite) Hermitian 
density operator ρ over the Hilbert space. A quantum state ψ ∈ , induces a linear operator, denoted ψ ψ , by 
ψ ψ ψ ψ=x x( ) ( )  where ψ x  is the inner product equipped by the Hilbert space  with 〈ψ| being the 
dual vector of |ψ〉. In this way the operator ρ ψ ψ=  describes the quantum system at state |ψ〉. Density opera-
tors provide a convenient description of mixed states as ensembles of pure states: A quantum system in state |ψi〉 
with probability pi can be described by ρ ψ ψ= ∑ pi i i i . Any positive and Hermitian operator with trace one 
defines a proper density operator describing certain quantum state, and vice versa.

The state of each qubit is represented by a density operator over the two-dimensional Hilbert space , and the 
network state corresponds to a density operator over ⊗N , the N’th tensor product of . Let ρ t( ) be the network 
density operator at time t . The swapping operator between qubits i and j, denoted as Uij, is defined by 

⊗ … ⊗ ⊗ … ⊗ ⊗ … ⊗ = ⊗ … ⊗ ⊗ … ⊗ ⊗ … ⊗U q q q q q q q q( )ij i j n j i n1 1  for all ∈ = …q i n, 1, ,i . In 
other words, the swapping operator Uij switches the information held on qubits i and j without changing the states 
of other qubits. Continuous-time quantum consensus process can be specified by a master equation11

∑ρ ρ ρ= − .
∈

d
dt

t U t U t( ) ( ( ) ( ))
(2)j k

jk jk
{ , } E

For the system (2), there holds9, 12,
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∑ρ ρ ρ∞ = =
π

π π
→∞ ∈

†

P

t
N

U U( ) : lim ( ) 1
!

(0)
t

where P is the permutation group over V, and Uπ represents the quantum permutation operator induced by 
π ∈ P satisfying ⊗ … ⊗ = ⊗ … ⊗π π πU q q q q( )n n1 (1) ( ) for all ∈qi  with = …i n1, , .

As a natural generalization of the Shannon entropy, for a quantum-mechanical system described by a density 
matrix ρ, the von Neumann entropy is defined as ref. 11 ρ ρ ρ= −S( ) tr( log ), where ⋅tr( ) is the trace operator. 
The following result holds.

Theorem 2 For the system (2), S(ρ(t) is a non-decreasing function over ∞[0, ).

Example. Let G be a complete graph with 4 nodes. For the classical case, we take the Xi(0) as an i.i.d. standard 
Gaussian random variable. For the quantum case, we take the initial density matrix as ρ = + − + − .(0) 01 01  
The evolution of the differential entropy and the von Neumann entropy with the classical and quantum consensus 
dynamics is plotted, respectively, in Figs 1 and 2.

Algorithmic and Physical Equivalence.  The above results reveal that, the network entropy in general 
decreases with classical consensus dynamics, but increases with quantum consensus dynamics. This appears to 
be surprising noticing their consistencies pointed out in refs 9 and 12. However, although the systems (1) and (2) 
can be formally united from an algorithmic point of view (cf. ref. 12), X(t) represents a random variable in the 
classical world, while ρ(t) is a probability mass function by its definition. We now provide a physical perspective to 
explain the observations in Theorem 1 and Theorem 2 by investigating a serial of classical or quantum gossiping 
algorithms with random or deterministic coefficients.

Figure 1.  The evolution of network entropy for classical network dynamics.

Figure 2.  The evolution of network entropy for quantum network dynamics.
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A random gossiping process is defined as follows. Consider N nodes in the set V with an underlying interac-
tion graph G which is undirected and connected. Time is sequenced by = …k 0, 1, . At time k, a node i is first 
drawn with probability 1/N, and then node i selects another node j who shares a link with node i in the graph G 
with probability i1/deg( ). Here ideg( ) is the degree of node i in the graph V. In this way, a random pair i j{ , } is 
selected. Additionally, let = …b k, 0, 1,k  be a sequence of i.i.d. Bernoulli random variables with mean 1/2, which 
are also independent of any other possible randomness.

•	 In the classical case, each node i holds a real-valued state ∈X k R( )i  at time k. Their initial states, 
…X X(0), , (0)N1 , are assumed to be N (not necessarily independent, continuous or discrete) random variables 

over a common underlying probability space. The marginal probability (mass or density) distribution of node 
X k( )i  is denoted as ⋅p ( )k

i . When the pair i j{ , } is selected at time k, only the two selected nodes update their 
values and we consider the following algorithms.
[A1] (Classical Gossiping with Deterministic Coefficients16) Node i and j update their values as

+ = + = + .X k X k X k X k( 1) ( 1) 1
2

( ) 1
2

( ) (3)i j i j

[A2] (Classical Gossiping with Random Swapping17) Node i and j update their values as

+ = + − + = − + .X k b X k b X k X k b X k b X k( 1) ( ) (1 ) ( ); ( 1) (1 ) ( ) ( ) (4)i k i k j j k i k j

•	 In the quantum case, each node i represents a qubit and ρ k( ) is the network density matrix at time k. When the 
qubit pair i j{ , } is selected at time k, we correspondingly consider the following algorithms.

[AQ1] (Quantum Gossiping with Deterministic Coefficients9) The quantum network updates its density matrix as

ρ ρ ρ+ = + .†k k U k U( 1) 1
2

( ) 1
2

( ) (5)ij ij

[AQ2] (Quantum Gossiping with Random Swapping10) Node i and j update their values as

ρ ρ ρ+ = + − .†k b k b U k U( 1) ( ) (1 ) ( ) (6)k k ij ij

We state a few immediate facts for the algorithms [A1], [A2], [AQ1], and [AQ2].

	 (i)	 The evolution of X kE{ ( )} is exactly the same along with the algorithms [A1] and [A2]. Similar conclusion 
holds also for the algorithms [AQ1] and [AQ2].

	(ii)	 Algorithms [A1] and [AQ1] are algorithmically equivalent, in the sense that [AQ1] can be divided into a set 
of parallel algorithms in the form of [A1] over disjoint entries of ρ t( ) (see ref. 12 for a thorough treatment 
via vectorizing ρ t( )). Similarly, the algorithms [A2] and [AQ2] are algorithmically equivalent.

	(iii)	 Algorithms [A2] and [AQ1] are physically equivalent, in the sense that for a sequence of underlying 
random variables X k( ) evolving along [A2], their joint probability mass/density function, denoted 

…f x x( , , )k N1  (which is exactly the physical interpretation of the density matrix ρ k( )) will evolve in the 
form of [AQ1] (cf., ref. 10):

… = … … … + … … …+f x x f x x x x f x x x x( , , ) 1
2

( , , , , , , ) 1
2

( , , , , , , ) (7)k N k i j N k j i N1 1 1 1

if the pair i j{ , } is selected at time k.
Recall that a Markov chain is irreducible if there exists a positive probability that the chain transits from one 

state to another in some finite steps between any pair of states; aperiodic if the greatest common divisor of the 
minimal steps admitting a positive probability from any state to itself is exactly one; ergodic if it is both aperiodic 
and irreducible18. We present the following result establishing the limiting behaviors of the algorithm [A2], which 
is consistent with the observations of the entropy evolution in Theorems 1 and 2 as well as the point (iii) above.

Theorem 3 For the algorithm [A2], the following statements hold. (i) =
∞X k{ ( )}k 0 forms an ergodic Markov chain given 

X(0); (ii) ⋅ = ∑ ⋅→∞ =p p Nlim ( ) ( )/k k
i

i
N i

1 0 , where the convergence is exponentially fast under the distance induced 
by 1 (for X(0) given by discrete random variables) or 1 (for continuous X(0) norms; (iii) the network entropy 
(continuous or discrete) is non-decreasing.

Note that Theorem 1 indeed shows that the network entropy along the algorithm [A1] is non-increasing in the 
limit for certain classes of initial distributions. It is reasonable to believe that such non-increasing entropy holds 
in general for the algorithm [A1], although establishing a rigorous proof would be challenging. In the algorithms 
[A1] and [A2], the randomness of X(k) comes from three resources: initial random draws X(0), random pair 
selections, and external randomness in the updates (the Bernoulli random variables bk). It is clear that we can 
assume a deterministic pair sequence in their updates, all the above conclusions in Theorems 1 and 3 continue to 
hold as long as this deterministic sequence visits each pair in the graph sufficiently often. It now becomes clear 
that it is the external randomness in [A2] driven by {bk} that causes the increasing of network entropy.
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One can also consider the case in a gossiping process when two selected node i and j update their values by 
(Classical Gossiping with Random Coefficients)


 ′ + = + = + − .A X k X k b X k b X k1 ( 1) ( 1) ( ) (1 ) ( ) (8)i j k i k j

From the second Borel-Cantelli Lemma (e.g., Theorem 2.3.6. in ref. 18), that almost surely, Xi(k) reaches a 
common value for all ∈i V in finite time along the algorithm [A1′]. Interestingly, it is easy to see that the evolu-
tion of the ⋅p ( )k

i  is the same along the algorithms [A1′] and [A2].
The scheme of the algorithms [A2] was briefly discussed in Section 6.2 of ref. 10, which is also a form of gossip-

ing algorithms with unreliable but perfectly dependent link communications studied in ref. 17 with mixing coeffi-
cient one. Here Theorem 3 advances the previous understandings by showing that the algorithm [A2] defines an 
ergodic Markov chain for any given initial condition as well as presenting the detailed convergence properties of the 
marginal distribution functions for both discrete and continuous X(0). Moreover, we assume that the mean of the 
bk is 1/2 just for the ease of presentation. It is clear from the proof that Theorem 3 holds for arbitrary ∈bE{ } (0,1)k . 
The ergodicity plays an essential role in the convergence of the marginal distributions: the case with =bE{ } 0k  fails 
because X(k) is no longer aperiodic; the case with =bE{ } 1k  fails because X(k) is no longer irreducible.

Methods
This section provides the proofs of Theorems 1, 2 and 3.

Proof of Theorem 1
The solution X(t) of the system (1) is = −X t e X( ) (0)tLG . We take ε > 0 and compare ε+h X t( ( )) with h X t( ( )). 

From

ε+ = ε−X t e X t( ) ( ),LG

we know (Themrem 8.6.415)

ε+ = + .ε−h X t h X t det e( ( )) ( ( )) log ( )LG

Since LG is the Laplacian of a connected undirected graph G, LG has a unique zero eigenvalue, and all non-zero 
eigenvalues of LG are positive8. Consequently, all eigenvalues of ε−e LG are positive and no larger than one, which 
yields that ≤ .ε−det e( ) 1LG  This proves ε+ ≤h X t h X t( ( )) ( ( )). Since ε is chosen arbitrarily, Theorem 1 holds.  □

Proof of Theorem 2
Fix ≥s 0. Define a set ρ πΣ = ∈π π

† PU s Uco( ( ) : ),s  where co(·)stands for the convex hull. It is straightforward 
to see that ρ ∈ Σ†U Ujk jk s if ρ ∈ Σs. As a result, Σs is an invariant set of the system (2) in the sense that ρ ∈ Σt( ) s for 
all ≥t 0 as long as ρ ∈ Σ(0) s. Therefore, for the system (2) and for any ε > 0, there exist ε π≥ ∈π Pm ( ) 0,  with 

ε∑ =π π∈Pm ( ) 1 such that

∑ρ ε ε ρ+ = .
π

π π π
∈

†

P

s m U s U( ) ( ) ( )
(9)

Recalling that the von Neumann entropy S(ρ) is a concave function of ρ, and that ρ ρ= †S S U U( ) ( ) for any 
unitary operator U, we conclude that

∑ ∑ρ ε ε ρ ε ρ ρ+ = ≥ =
π

π π π
π

π π π
∈ ∈

† †

P P

S s S m U s U m S U s U S s( ( )) ( ( ) ( ) ) ( ) ( ( ) ) ( ( ))
(10)

for any ε > 0 and ≥s 0 in light of the fact that Uπ is unitary for all π ∈ P. This proves that ρS t( ( )) is a 
non-decreasing function and Theorem 2 holds.	 □

Proof of Theorem 3

	 (i)	 First of all it is clear that =
∞X k{ ( )}k 0 is Markovian from its definition. Recall that P is the N’th permutation 

group. We denote the permutation matrix associated with π ∈ P as πM . In particular, the permutation 
matrix associated with the swapping between i and j is denoted as πM

ij
. The state transition of =

∞X k{ ( )}k 0 
along the algorithm A2 can be written as | = +πM X k X k i j NP( ( ) ( )) (1/deg( ) 1/deg( ))/

ij
 for ∈i j{ , } E. Since 

the graph G is connected, the swapping permutations defined along the edges of G form a generating set of 
the permutation group P. Consequently, given X(0), the set π ∈π PM X{ (0), } is the state space of X k( ), 
which contains at most N! elements. Finally it is straightforward to verify that for any given X(0), X(k) is 
irreducible (due to the fact that any two states in the above state space can reach each other by a finite 
number of swapping permutations along the edges of G) and aperiodic (due to the fact that there is a 
positive probability that = +X k X k( ) ( 1) when =b 1k ), and therefore forms an ergodic Markov chain.

	(ii)	 The statement is in fact a direct consequence from the ergodicity of X(k). We however need to be a bit more 
careful since we assume that X(0) takes value from an arbitrary (not necessarily discrete) probability space 
and the X(0) are not necessarily independent. We denote the state transition matrix for X(k) as ∈ ×P RN N . 
We calculate ⋅p ( )k

i  from basic probability equality = ∑ =A A CP P( ) ( )s
m

i1  under ∑ == CP( ) 1i
N

i1  and 
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∩ =C CP( ) 0i j , and then immediately obtain ⋅ = ∑ ⋅=p e P e p( ) ( )k
i

s
N

s
T k

i
s

1 0 , where ei is the unit vector with the 
i’th entry being one. It is clear that the above calculation does not rely on X(0) being discrete or continuous, 
and ⋅p ( )k

i  represents probability mass or density function wherever appropriate. From the definition of the 
algorithm A2, P is a symmetric matrix and the ergodicity of X(k) leads to =→∞P N11lim /k

k T  at an 
exponential rate.

	(iii)	 This observation follows directly from (7) and the concavity of (continuous or discrete) entropy.

The desired conclusion thus follows.

Conclusions
We have investigated the evolution of the network entropy for consensus dynamics in classical or quantum net-
works. In the classical case, the network differential entropy is monotonically non-increasing with continuous 
initial random values. For quantum consensus dynamics, the network’s von Neumann entropy is on the contrary 
non-decreasing. This observation can be easily generalized to balanced directed graphs19. In light of this incon-
sistency, we also compared several gossiping algorithms with random or deterministic coefficients for classical or 
quantum networks, and showed that quantum gossiping algorithms with deterministic coefficients are physically 
consistent with classical gossiping algorithms with random coefficients.
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