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Early measurement of IL-10 
predicts the outcomes of patients 
with acute respiratory distress 
syndrome receiving extracorporeal 
membrane oxygenation
Chia-Hsiung Liu1,2, Shuenn-Wen Kuo2, Wen-Je Ko2, Pi-Ru Tsai2, Shu-Wei Wu2, Chien-Heng 
Lai2, Chih-Hsien Wang2, Yih-Sharng Chen2, Pei-Lung Chen1,3,4, Tze-Tze Liu5, Shu-Chien Huang2 
& Tzuu-Shuh Jou1

Patients diagnosed with acute respiratory distress syndrome are generally severely distressed and 
associated with high morbidity and mortality despite aggressive treatments such as extracorporeal 
membrane oxygenation (ECMO) support. To identify potential biomarker of predicting value for 
appropriate use of this intensive care resource, plasma interleukin-10 along with relevant inflammatory 
cytokines and immune cell populations were examined during the early and subsequent disease 
courses of 51 critically ill patients who received ECMO support. High interleukin-10 levels at the time 
of ECMO installation and during the first 6 hours after ECMO support of these patients stand as a 
promising biomarker associated with grave prognosis. The initial interleukin-10 level is correlated to 
other conventional risk evaluation scores as a predictive factor for survival, and furthermore, elevated 
interleukin-10 levels are also related to a delayed recovery of certain immune cell populations such 
as CD14+CD16+, CD14+TLR4+ monocytes, and T regulator cells. Genetically, high interleukin-10 is 
associated to two polymorphic nucleotides (−592 C and −819 C) at the interleukin-10 gene promoter 
area. Our finding provides prognostic and mechanistic information on the outcome of severely 
respiratory distressed patients, and potentially paves the strategy to develop new therapeutic modality 
based on the principles of precision medicine.

Acute respiratory distress syndrome (ARDS) is characterized by immense inflammatory lung injury, which is 
associated with high morbidity and mortality in intensive care unit (ICU)1, 2. Extracorporeal membrane oxygena-
tion (ECMO) is an option for treating ARDS associated hypoxemia that is refractory to conventional ventilation3, 4;  
however, the beneficial role of ECMO in ARDS remain highly controversial5, 6. Therefore, identification of prog-
nostic factors is a pivotal issue for appropriate use of this intensive care resource.

Given that the main causes of death in ARDS patients are multiple organ failure (MOF) and sepsis, pre-
sumably resulting from a systemic inflammatory response syndrome (SIRS), inflammatory cytokines interleukin 
(IL)-6, IL-8, IL-10, and immune cells such as T regulatory cell (Treg) have been hypothesized to predict the 
outcomes in ARDS patients7–9. However, their prognostic roles are completely unknown in more severe patients 
who need ECMO support. We have reported that plasma IL-10 possesses a predictive value for outcomes in 
patients with cardiogenic shock after ECMO intervention10. A continuous study with a larger cohort showed 
that cytokine storm is a hallmark in the non-survivors11, and the plasma IL-10 at 24 h after ECMO support can 
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distinguish cardiogenic shock patients who succumbed from those who eventually survived to hospital discharge 
(Supplementary Figure S1).

IL-10 is a key immune-regulator during SIRS or infection with a variety of pathogens12, 13, which ameliorates 
possibly exaggerated pro-inflammatory responses. As delicately orchestrated immune response is crucial for a 
smooth resolution through SIRS, unbalanced pro- and anti-inflammation tilts the outcome toward mortality, 
either through outraged inflammatory responses or failure to protect against infectious organisms. The latter is 
caused by the persistence of a marked compensatory anti-inflammatory response syndrome (CARS) which is 
characterized by IL-10 over-production that suppresses tumor necrosis factor expression, decreases human leu-
kocyte antigen molecules on monocytes, and reduces lymphocytes by means of apoptosis14–16. We thus hypoth-
esize that IL-10 may have prognostic value in ARDS patients with ECMO treatment. To test this hypothesis, 
plasma IL-10, several inflammatory cytokines, and relevant immune cell populations were assessed in severe 
ARDS patients receiving ECMO support.

Results
Demographics and clinical characteristics of the patients. Fifty-one ARDS patients receiving ECMO 
support were prospectively enrolled in this study. Twenty of 21 ICU survivors survived to hospital discharge. 
Thirty patients died in ICU, and 24 of them could not be weaned from ECMO support. The baseline character-
istics of these patients were shown in Table 1. Older age, lower BMI, and immunocompromised status were risk 
factors for ICU mortality. Conversely, patients afflicted with viral pneumonia had a more favorable outcome. 
Traditional evaluation systems, such as comorbidity index expressed as Charlson score, sequential organ failure 
assessment (SOFA), and acute physiology and chronic health evaluation (APACHE) II scores, all differentiated 
the death from the survival group. There were no significant differences in ventilator settings and rescue therapies 
between these two groups.

Early elevation of IL-10 predicts clinical outcomes. Plasma cytokines were prominently higher in the 
death group at day 0 compared to the survival patients, especially for IL-8 and IL-10. The difference in these 
interleukin levels between survival and death groups diminished by day 3 after ECMO support (Fig. 1a,b and c). 
Although both the IL-8 and IL-10 concentrations were remarkably higher in the non-survivors than in survivors 
within one day after implementation of ECMO support, the best predictive ability for ICU mortality was tested 
in IL-10 level at day 0 with the area under the ROC curve (AUC) = 0.816 (Fig. 1d,e and f). Plasma IL-10 levels 
correlated well to both the Charlson comorbidity and APACHE scores (Fig. 2a and b). Similarly, the positive cor-
relation between IL-10 level on day 0 and SOFA score on day 1 (Fig. 2c) denotes the instrumental role of plasma 
IL-10 in the development of multiple organ dysfunctions. Indeed, high plasma IL-10 levels correlated with the 
presence of respiratory and renal failures in our cohort (Fig. 2d and e). Furthermore, early IL-10 level can distin-
guish well between patients who died despite ECMO support and those who could be eventually weaned from 
this advanced life support (Fig. 2f).

Tregs, CD14+CD16+, and CD14+TLR4+ cell populations were higher in survivors than 
non-survivors on day 3. As cellular immune response is intimately involved in the regulations of cytokine 
production targeted against infection or inflammation, we also investigated the evolution of various lymphocyte 
and monocyte subpopulations during the early stage of ECMO support. CD3+, CD3+CD4+, CD3+CD8+ and 
CD19+ cells present in either total lymphocyte or WBC were not significantly different between survivors and 
non-survivors (Supplementary Figure S2). The percentages of some IL-10-producing immune cells differed sub-
stantially between survivors and non-survivors on day 3 after ECMO support. Among them, Treg percentages in 
CD4+ and total lymphocytes (Fig. 3a and b) were significantly lower in non-survivors than survivors on day 3. 
Although CD14+CD16+ cell percentages in monocyte were not different between these two groups (Fig. 3c), the 
CD14+CD16+ cell proportion of total white blood cells increased to a notably higher level in the survival than the 
death group on day 3 (Fig. 3d). Considerably higher CD14+TLR4+ proportions in monocyte (Fig. 3e) and total 
white blood cells (Fig. 3f) were also observed in the survivors than non-survivors on day 3.

IL-10 level is an independent risk factor for ICU mortality. Those factors found significantly related 
to ICU mortality by univariate analysis (p < 0.05) were subjected to a logistic regression analysis. The result of 
multivariate logistic analysis indicated that initial plasma IL-10 level, age, and viral pneumonia are independently 
associated with ICU mortality (Table 2). Autoimmune disease was not introduced into the multivariate analysis 
because the patients with this etiology overlapped those with immunocompromised status. Furthermore, when 
those 7 patients with autoimmune disease were excluded from our analysis, the results of ROC analysis for IL-10 
did not change significantly (AUC = 0.807, p < 0.001). IL-10 is implicated in the regulation of a diverse cell types 
involved in innate and adaptive immune response. To elucidate the potential pathogenic role of IL-10 expressions 
in their ICU mortality, ARDS patients were categorized by their initial IL-10 levels according to the cutoff value 
noted in Fig. 1. The dynamic changes in the percentages of Treg, CD14+CD16+, and CD14+TLR4+ cells in the 
study subjects during the ECMO support period were examined (Supplementary Figure S3). Intriguingly, the 
dynamic profiles of these immune cells between the subjects categorized as survival and non-survival groups 
(Fig. 3) were very similar to those categorized according to initial IL-10 levels (Supplementary Figure S3). This 
result implies that IL-10 plays a pivotal role in modulating the differentiation of specific immune cells in ARDS 
patients and significantly contributes to the outcomes of ARDS patients after ECMO intervention.

Predictive accuracies of IL-10 level compared to other risk scoring systems for ICU mortality 
for this study cohort. The initial IL-10 level predicted ICU mortality well with specificity and positive pre-
dictive value of 90.5% and 91.7%, respectively (Supplementary Table S1). This attribute makes IL-10 a legiti-
mate biomarker of predictive power comparable to other conventional ICU scoring systems, such as SOFA and 
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APACHE scores. RESP score is a recently developed evaluation system to predict the prognosis of ARDS patients 
after ECMO support. Compared to RESP system, which combines twelve clinical and laboratorial assessments, 
initial IL-10 value apparently possessed a non-inferior predictive power. Early IL-10 assessment presented a 
better specificity (90.5 vs 76.7%), positive predictive value (91.7 vs 82.1%), and negative predictive value (70.4 
vs 69.6%), while RESP system was better than single IL-10 measurement in term of sensitivity (76.2 vs 73.3%) 
(Supplementary Table S1). Furthermore, Kaplan-Meier analysis demonstrated that patients with initial IL-10 
levels higher than the optimal cut-off point of 88.9 pg/mL had a significantly higher hospital mortality rate 
(P < 0.001, Fig. 4a). The RESP score was in conformity with mortality prediction with those patients of RESP 
score less than 0, an optimal cut-off value set after AUC analysis (Supplementary Table S1), having a higher ICU 
mortality (P < 0.001, Fig. 4b).

IL-10 promotor variants are associated with the initial IL-10 levels and clinical outcomes. Given 
the apparent difference present in the plasma IL-10 levels between survivors and non-survivors, we hypothesized 

Parameter Survival (n = 21) Death (n = 30) P value

Age (years) 46.4 ± 14.3 59.5 ± 12.2 0.001

Male, n (%) 14 (66.7) 20 (66.7) 1.0

Body mass index (kg/m2) 26.8 (23.9~32.8) 24.3 (21.0~27.8) 0.043

Initial VA-ECMO, n (%) 3 (14.3) 5 (16.7) 1.0

ARDS diagnosis, n (%)

 Viral pneumonia 9 (42.9) 3 (10.0) 0.016

 Bacteria pneumonia 3 (14.3) 7 (23.3) 0.495

 Trauma 1 (4.8) 1 (3.3) 1.0

 Aspiration pneumonitis 0 (0.0) 2 (6.7) 0.506

 Extra-pulmonary sepsis 1 (4.8) 2 (6.7) 1.0

 Autoimmune diseases 0 (0.0) 7 (23.3) 0.033

 Postoperative 1 (4.8) 1 (3.3) 1.0

 Other acute pneumonia 6 (28.6) 7 (23.3) 0.673

Ventilator setting

 PEEP (cmH2O) 13.6 ± 4.8 12.5 ± 3.8 0.346

 MAP (mmHg) 21.4 ± 4.6 19.5 ± 5.3 0.183

 Tidal volume (mL/kg) 5.5 (3.0~6.6) 6.3 (4.5~7.7) 0.064

 PIP (cmH2O) 32.0 ± 7.0 31.0 ± 4.8 0.536

 PaO2/FiO2 66.8 (52.0~74.9) 60.8 (52.6~89.1) 0.853

 Duration of ventilation (days) 1.3 (0.3~2.0) 2.0 (0.9~7.9) 0.044

Rescue therapy, n (%)

 Bicarbonate 9 (42.9) 13 (43.3) 0.973

 Nitric oxide 6 (28.6) 11 (36.7) 0.546

 Neuromuscular blocker 16 (76.2) 20 (66.7) 0.463

 Steroid 2 (9.5) 8 (26.7) 0.167

Pre-ECMO condition, n (%)

 Hypertension 9 (42.9) 10 (33.3) 0.489

 Diabetes mellitus 6 (28.6) 8 (26.7) 0.881

 Renal dialysis 3 (14.3) 7 (23.3) 0.495

 Immunocompromiseda 3 (14.3) 13 (43.3) 0.035

Charlson score 2 (1~4) 4 (3~8) 0.007

SOFA score 9 ± 3 14 ± 5 <0.001

APACHE II score 13 ± 5 22 ± 9 <0.001

RESP score 2 (1~4) −1 (−3~0) <0.001

Table 1. Comparison of baseline characteristics before implementation with extracorporeal membrane 
oxygenation of the study subjects according to their survival status at ICU discharge. Continuous data values 
are shown as medians with inter-quartile ranges for variables with non-normally distributed characteristic, or 
means ± standard deviation for variables following normal distribution pattern. The number of patients with 
frequency (percentage, %) is shown for categorical data. The listed P values of statistical tests were calculated 
using Mann–Whitney U or Student’s t test for continuous data and the χ2 or Fisher’s exact test for categorical 
data. aImmunocompromised is defined as hematological malignancies, solid tumor, solid organ transplantation 
and/or cirrhosis. VA-ECMO, venous-arterial extracorporeal membrane oxygenation; ARDS, acute respiratory 
distress syndrome; PEEP, positive end-expiratory pressure; MAP, mean airway pressure; PIP, peak inspiratory 
pressure; PaO2, partial pressure of oxygen; FiO2, fraction of inspired oxygen; SOFA, sequential organ failure 
assessment; APACHE, acute physiology and chronic health evaluation; RESP, respiratory extracorporeal 
membrane oxygenation survival prediction.
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that genetic variation may influence the extent of IL-10 production and secretion during the early phase of ARDS 
evolution. Three single nucleotide polymorphisms (SNPs) in the IL-10 promotor: A-1082G (rs1800896), T-819C 
(rs1800871), and A-592C (rs1800872) have been reported to be associated with an increased or decreased of IL-10 
production17, 18. Indeed, genetic association study revealed that the −819 C and −592 C alleles were observed with 
significantly higher frequencies in the patients with initial plasma IL-10 level ≥ 88.9 pg/mL (Table 3). In contrast, 
the TT and AA homozygotes frequencies of the −819 and −592 SNPs respectively, were increased in patients 
with lower initial plasma IL-10 levels. There was no difference in allele or genotype frequencies at the −1082 
locus. Not only correlated to the IL-10 levels, the variants at IL-10 promoter were noted to be associated with the 
eventual possibility of weaning successfulness from ECMO in the study group (Supplementary Table S2). Those 
C allele carriers at −819 and −592 positions (the alleles at these two genomic loci are linked as discussed later) 
were associated with higher IL-10 level (Fig. 5a) and higher 90-day mortality (Fig. 5b) than the patients carrying 
non-C allele. Taken together, these results signify the biological basis of the pathogenic effect of IL-10 on the 
clinical outcome of ARDS victims undergoing severe inflammatory distress.

Figure 1. Initial plasma interleukin-10 level was a better prognostic biomarker than interleukins 6 and 8 
in ARDS patients receiving ECMO support. Plasma interleukin-6 (a), interleukin-8 (b), interleukin-10 (c) 
concentrations were assessed in survivors (n = 21, open circles) and non-survivors (n = 30, solid triangles) at 0, 1, 
and 3 days after receiving ECMO support. Receiver-operating characteristic (ROC) analysis showed dissimilar 
predictive capabilities among initial cytokine values for ICU mortality. (d) Interleukin-6 levels at neither day 0 
nor day 1 after ECMO support could differentiate the survivors from the non-survivors. Both Interleukin-8 (e) 
and interleukin-10 (f) predicted the outcome well by analysis using the ROC curve at day 0 and 1. However, the 
best predictive ability was tested in interleukin-10 level at day 0, with the optimal cutoff value at 88.9 pg/mL. The 
data represented the means and standard errors of each group. Values were logarithmically transformed before 
bivariate comparisons. **, and *** stand for P < 0.01, and P < 0.001, respectively, between death and survival 
groups.
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Discussion
We discovered that plasma IL-10 levels in ARDS patients were correlated with severity of illness during ECMO 
institution. The early increased IL-10 predicted unsuccessful ECMO weaning in the ensuing period of ICU stay 
and eventual mortality. This characteristic of IL-10 endured even after adjusting for various confounding factors 
such as age, etiology of ARDS, immunocompetence, BMI, and duration of mechanical ventilation before ECMO 
institution (Table 2). The initial IL-10 levels were linked to the genetic variations in the gene promotor region of 
this cytokine.

IL-10 can be produced by many different myeloid and lymphoid cells, including CD14+ CD16+ cells and Tregs 
respectively19–22. TLR4, together with its co-receptor CD14, plays a central role in innate immunity by initiating 
a signaling cascade for inflammation after engagement with lipopolysaccharide (LPS) or tissue damage associ-
ated molecule patterns (DAMPs)23–25. Patients with lower TLR4/CD14 expression on their monocytes have been 
shown to more likely succumb to sepsis26, 27. The persistently fewer CD14+CD16+ and CD14+TLR4+ monocytes 
in the non-survivors of ARDS could be caused by intensive endocytosis of CD14/TLR4 due to rampant DAMPs. 
The recovery of these receptors on cellular surface may depend not only on the clearances of these pathogens or 
danger molecules, but also on the initial plasma IL-10 level which stimulates endocytic activity of monocytes28. 
Furthermore, there are evidences for a reciprocally regulatory relationship between IL-10-producing cells and 
IL-1012, 29, 30. Thus, higher plasma IL-10 in the non-survivors of ARDS indicates that an immunoparalysis status 

Figure 2. Initial plasma interleukin-10 levels were associated with higher chances of organ failures and 
mortality in ARDS patients during ECMO support. Plasma interleukin-10 level at day 0 was associated with 
the severity of illness as evaluated one day after receiving ECMO by comorbidity index Charlson (a), acute 
physiology and chronic health evaluation (APACHE) II (b), and combining sequential organ failure assessment 
(SOFA) score (c). Furthermore, Interleukin-10 level at day 0 predicted respiratory (d) and renal (e) failures in 
the death group, and served as an excellent predictive value for mortality during ECMO support (f), with an 
area under the receiver operating characteristic curve equaled 0.855.
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exists in these cases. This might explain why excessive IL-10 production could relate to higher SOFA score, and 
lead to malfunction of multiple organs and poor outcomes.

Although a number of prognostic algorithms have been recently advocated for ARDS patients requiring 
ECMO31–34, these evaluation modalities generally incorporate numerous factors that construct a universally 
applicable risk-prediction system. Whereas, limited use or absent registration of one or more factors related to 

Figure 3. Comparisons of immune cell profiles between survivors and non-survivors in ARDS patients who 
received ECMO support. T regulator cell percentage in CD4+ lymphocytes (a), in total lymphocytes (b), 
CD14+CD16+ cell percentage in monocytes (c), in total white blood cells (d), CD14+TLR4+ cell percentage 
in monocyte (e), and in total white blood cells (f) were analyzed at day 0, 1 and 3 during ECMO support and 
compared between the survival and death groups. The data represented the means and standard errors of each 
group. Values were logarithmically transformed before bivariate comparisons. *Represents P < 0.05 between 
death and survival groups.

Variables

Univariate Multivariate

OR P OR 95% CI P

IL-10 ≥ 88.9 pg/mL 26.125 <0.001 51.531 2.798~948.940 0.008

Age ≥ 59.5 years 8.500 0.002 22.234 1.760~280.831 0.017

Viral pneumonia 0.148 0.011 0.024 0.001~0.568 0.021

Immunocompromiseda 4.588 0.035 4.332 0.297~63.221 0.284

Body mass index, kg/m2 0.898 0.053 1.052 0.875~1.265 0.588

Pre-ECMO ventilator days 1.240 0.050 1.538 0.935~2.531 0.090

Table 2. Univariate and multivariate logistic regression analyses for independent predictors of ICU mortality in 
the patients of this study. OR, odds ratio; CI, confidence interval. aDefined as hematological malignancies, solid 
tumor, solid organ transplantation and/or cirrhosis.
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outcome makes the application of these scoring systems restrained in some centers, and the predictive perfor-
mances may be nullified by those determinants due to a wide spectrum of patient sources35–37. Thus, simple 
criteria that can be followed conveniently would be more bedside practical. Recently, Roch et al. reported that 
age, influenza pneumonia, and SOFA score are independent factors significantly related to hospital mortality in a 
cohort of 85 ARDS patients equipped with ECMO, and a simple scoring system based on these three factors was 
constructed32. Their finding is quite similar to ours taking into account that the initial plasma IL-10 level is highly 
correlated to SOFA score in our patients. However, it is worth noting that the optimal age derived from ROC anal-
ysis to differentiate the outcome is different between these two cohorts (45 vs. 59.5). This may be due to different 
patient sources and indications for implementing ECMO, highlighting the unstable nature of single factor in 
outcome prediction. Accordingly, the optimal IL-10 level to distinguish ICU mortality may vary in other centers.

Our finding that two high IL-10 producing genetic variants (−819C and −592C) is associated with poor 
outcome in severe ARDS cases receiving ECMO is contradictive to an earlier report which demonstrates that 
the high IL-10 producing −1082GG genotype is protective against mortality and organ failure in ARDS38. It 
is unknown at present why there exists such a discrepancy, but racial difference could be one of the reasons. In 
contrast to other western ethnic groups, who have a more variable allelic distribution at the −1082 locus of IL-10 
gene38, 39, there is a biased higher frequency of “A” alleles (97 out of 102 in total 51 study subjects, Table 3) in our 
patients. Another point worth mentioning is that there is a haplotype linkage between the −819 “T” allele to the 

Figure 4. Kaplan–Meier analysis for 90-day survival probability in ARDS patients receiving ECMO support 
according to initial IL-10 levels and RESP scores. ARDS patients with higher plasma IL-10 levels at day 0 (a) and 
lower RESP scores (b) before ECMO implementation were associated with significantly worse survival.

Allele/genotype Low IL-10 (n = 27) High IL-10 (n = 24) P value OR (95% CI)

Allele, n (%)

 −1082 A 53 (98.1) 44 (91.7) 0.185 N.S.

 −1082 G 1 (1.9) 4 (8.3) N.S.

 −819 T 47 (87.0) 28 (58.3) 0.001 0.209 (0.078~0.555)

 −819 C 7 (13.0) 20 (41.7) 4.796 (1.801~12.774)

 −592 A 47 (87.0) 28 (58.3) 0.001 0.209 (0.078~0.555)

 −592 C 7 (13.0) 20 (41.7) 4.796 (1.801~12.774)

Genotype, n (%)

 −1082AA 26 (96.3) 21 (87.5) 0.429 N.S.

 −1082AG 1 (3.7) 2 (8.3) N.S.

 −1082GG 0 (0.0) 1 (4.2) N.S.

 −819TT 20 (74.1) 9 (37.5) 0.008 0.210 (0.064~0.693)

 −819TC 7 (25.9) 10 (41.7) N.S.

 −819CC 0 (0.0) 5 (20.8) N.S.

 −592AA 20 (74.1) 9 (37.5) 0.008 0.210 (0.064~0.693)

 −592AC 7 (25.9) 10 (41.7) N.S.

 −592CC 0 (0.0) 5 (20.8) N.S.

Table 3. Allele frequency and genotype distribution of the IL-10 promotor variants in the study subjects 
according to their plasma IL-10 levels at day 0. All the P values represent χ2 or Fisher’s exact test results. OR, 
odds ratio; CI, confidence interval. N.S., non-significant.
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−592 “A” allele and −819 “C” allele to the −592 “C” allele, respectively, in our study subjects (Table 3). The higher 
frequency of −1082A and the genetic linkage of −819 and −592 alleles have been observed in many studies 
which recruit ethnic groups similar to ours40–42. ARDS is a complex and heterogeneous syndrome that involves 
multiple pathogenic pathways and affects a diverse spectrum of patients who often have comorbid illnesses43, 
hence it is difficult to ascertain the influence of genetic heterogeneity on clinical outcomes in ARDS. Considerably 
additional researches are necessary to understand the impact of the IL-10 gene variants contributing to alterations 
in ARDS outcomes.

Methods
Study population and data collection. Adult ARDS patients admitted to the ICU of National Taiwan 
University Hospital for ECMO support were prospectively enrolled between October 2011 and April 2016. 
The indication of venovenous-ECMO is a ratio of partial arterial pressure of oxygen/fraction of inspired oxy-
gen (PaO2/FiO2) <80 mmHg under positive end-expiratory pressure of at least 5 cmH2O. Venoarterial-ECMO 
is indicated if significant pulmonary hypertension, cardiac dysfunction associated with sepsis, and arrhythmia 
became apparent. Blood samples were withdrawn from patients before ECMO installation (0 h), 2, 6, 24, and 
72 h after oxygenation for cytokines and flow cytometric analysis. There were fifteen study subjects whose spec-
imens could not be timely collected before ECMO installation. For these cases, the first samples collected either 
at 2 h (n = 8) or 6 h (n = 7) would be processed instead with the result of assays performed on samples collected 
at 0~6 h defined as day 0 data in our subsequent analyses. The primary outcome of this study was death in ICU, 
and other outcomes including death during ECMO support and specific organ failure associated with mortality 
were also recorded. The protocol for blood sampling was approved by the Institutional Review Board (IRB) (IRB 
number 201103056RB), and it was performed according to the principles of the Declaration of Helsinki. Written 
informed consents were obtained from the closest relatives of every recruited patient. Vital demographics and 
clinical variables for each patient were also collected according to another approved study protocol (IRB number 
201002034 R), by which the informed consents were waived.

Cytokine and chemokine analysis. Blood from the recruited patients was withdrawn into ethylenedi-
aminetetraacetic acid (EDTA) containing tubes (Vacutainer, Becton–Dickinson, San Jose, CA), kept on ice, and 
centrifuged at 2000g for 20 min at 4 °C to separate plasma, which were aliquoted and stored at −80 °C until anal-
ysis. Interleukin (IL)-6, IL-8, and IL-10 levels were measured by the commercial enzyme-linked immunosorbent 
assay (ELISA) kits (BD Biosciences) according to the manufacturer’s instructions.

Flow Cytometric analysis. One hundred microliters of EDTA anticoagulated whole blood was mixed with 
the combination of the following mouse anti-human antibodies (BD Biosciences, San Jose, CA) in three separate 
tubes. (1) 10 μL of peridinin chlorophyll (PerCP) conjugated anti-CD3, 10 μL of fluorescein isothiocyanate (FITC) 
conjugated anti-CD4, 10 μL of phycoerythrin (PE) conjugated anti-CD8, and 10 μL of allophycocyanin (APC) 
conjugated anti-CD19. (2) 12 μL of APC conjugated anti-CD25, 10 μL of PerCP conjugated anti-CD3, 10 μL of 
FITC conjugated anti-CD4, and 2 μL of PE conjugated anti-CD127. (3) 10 μL of PE conjugated anti-CD14, 10 μL 
of FITC conjugated anti-CD16, and 12 μL of biotinylated anti-toll like receptor 4 (TLR4) antibodies. After incu-
bation for 20 min at room temperature in the dark, red blood cells were lysed by 1.5 mL of BD lysing buffer, and 
white blood cells were washed twice with 1.5 mL of PBS containing 1% fetal bovine serum and 0.1% sodium 
azide (washing buffer). After centrifugation, the cells in tube (1) and (2) were fixed in 0.5 mL of PBS with 0.25% 
paraformaldehyde (fixation buffer) and kept on 4 °C until analysis. The cells in tube (3) after first washing were 
further incubated with 5 μL of APC conjugated streptavidin (BD Biosciences, San Jose, CA) for another 20 min, 
followed by washing twice in washing buffer, and fixing in fixation buffer as those in tube (1) and (2). For each 

Figure 5. Effect of IL-10 genotypes on the initial plasma IL-10 concentrations and the 90-day survival 
probability after receiving ECMO support. ARDS patients with −592 AC and CC (−819 TC and CC) genotypes 
were associated with higher plasma IL-10 level (a) and had significantly worse survival after ECMO support (b).
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test, a minimum of 20,000 leukocytes were acquired on BD Calibur flow cytometer and analyzed with CellQuest 
software version 3.2. Neutrophils, lymphocytes, and monocytes were identified based on their forward and side 
scattered (FSC/SSC) light patterns by flow cytometry. CD4+CD25+CD127low Tregs were analyzed using CD25 
and CD127 markers on CD4+ gated population of T cells.

Genotyping for genetic variants. Genomic DNA in all the patients were extracted and purified from the 
peripheral blood leukocytes using the DNeasy Blood & Tissue kit according to the manufacturer’s instructions 
(QIAGEN GmbH, Germany). A set of primer pairs was designed with Primer344 to amplify the 2 kb promoter 
region of IL-10 gene. The PCR products were purified by ExoSAP-IT (GE Healthcare, USA) following by sequenc-
ing reactions using the BigDye Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific Inc./Applied 
Biosystems, USA). The reaction products were purified and run on a 3730xl DNA Analyzer (Applied Biosystems). 
Variations of the IL-10 gene were detected by Geneious version 8.0.5 (www.geneious.com)45.

Statistical analysis. The data were analyzed using SPSS 17.0 (SPSS Inc, Chicago, IL). Categorical variables 
were presented as numbers percentages, and compared using Χ2 or Fisher’s exact test. Continuous variables were 
assessed by Shapiro-Wilk test for normality of data distributions, and the significant differences between groups 
were compared by Mann–Whitney U test or Student’s t test. Plasma cytokine concentrations and immune cell 
percentages were presented as means with standard error of mean (SEM) in figures. Non-normally distributed 
data were logarithmically transformed before bivariate comparisons. The odds ratios (OR) and 95% confidence 
intervals (CI) were calculated using logistic regression. The correlated data were scattered as dotted plots and 
analyzed by the Pearson’s test. Receiver-operating characteristic (ROC) analysis was performed to validate the 
predictive ability for various outcomes and determine the optimal cut-off values by Youden index. The Kaplan–
Meier survival curve was presented to show the survival differences between groups, and the log-rank test was 
used to calculate the statistical significance.
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