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Disease biomarker identification 
from gene network modules for 
metastasized breast cancer
Pooja Sharma1, Dhruba K. Bhattacharyya1 & Jugal Kalita2

Advancement in science has tended to improve treatment of fatal diseases such as cancer. A major 
concern in the area is the spread of cancerous cells, technically refered to as metastasis into other 
organs beyond the primary organ. Treatment in such a stage of cancer is extremely difficult and usually 
palliative only. In this study, we focus on finding gene-gene network modules which are functionally 
similar in nature in the case of breast cancer. These modules extracted during the disease progression 
stages are analyzed using p-value and their associated pathways. We also explore interesting patterns 
associated with the causal genes, viz., SCGB1D2, MET, CYP1B1 and MMP9 in terms of expression 
similarity and pathway contexts. We analyze the genes involved in both the stages– non metastasis and 
metastatsis and change in their expression values, their associated pathways and roles as the disease 
progresses from one stage to another. We discover three additional pathways viz., Glycerophospholipid 
metablism, h-Efp pathway and CARM1 and Regulation of Estrogen Receptor, which can be related to 
the metastasis phase of breast cancer. These new pathways can be further explored to identify their 
relevance during the progression of the disease.

A normal cell follows a well-known path of growth, divison and death although there are exceptions. Some cells 
do not die. They keep on dividing again and again, leading to abnormal growth. Such condition of cells is called 
cancerous, and it corresponds to a class of diseases known as cancer. Unrestricted growth of cells leads to the 
formation of lumps known as tumors, which can interfere in activities of bodily systems such as the nevous sys-
tem or the circulatory system. These lumps of cells can be benign or malignant. Benign tumors do not disturb 
the normal functioning of the body. They are still usually controlled by genes controlling apoptosis. On the other 
hand, malignant tumor cells invade organs, thereby disrupting their normal functioning. They can also move 
throughout the body using the blood or the lymphatic system as the channel and invade other parts. Such spread 
of the disease is referred to as the metastatic stage. When cancerous cells metastasize, it becomes very difficult to 
treat them. The current characterization of this crucial stage of the disease is incomplete and as a result, proper 
diagnosis is often not feasible. Certain studies such as1–3 have analyzed differentially expressed genes for meta-
static stages of lymphoma, lung cancer and leukaemia. Veer et al.4 and Wang et al.5 have identified 70 genes that 
may be associated with the metastatic stage of breast cancer. Chuang et al.6 use a protein-protein interaction 
network to determine the markers in the metastasis stage. All these studies focus on extracting individual disease 
markers responsible for disease progression. However, studies have shown that these genes may be associated 
with a variety of functions in the body, and interplay among the genes may lead to disorders that finally lead to 
cancer. Therefore, it would be beneficial to study the disease progression from the pathway point of view. This is 
because a biological pathway involves a number of molecules simultaneously, and these molecules have to work 
in coordination to perform normal cellular activities. A slight change in any of the molecules may lead others in 
the chain to behave abnormally, resulting in disease diagnosis.

Treating cancer for the non-metastatic stage is possible by drugs or by chemotherapy, but if the disease has 
spread to other organs, it becomes very difficult to diagnose on time and accordingly provide treatment. In this 
paper, we use the biological similarity between genes to identify functionally related modules. Gene expression 
data only consider the preparatory information available during the experiments. Analyzing the modules using 
only a part of the laboratory information would not be justifiable as genes are known to be functionally correlated 
in nature. Therefore, we use both topological and functional properties of genes to find biologically significant 
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modules. Finding modules with high coherence is very essential in our case, as the main target of this work is 
to analyze the different characteristics of genes including the causal genes of breast cancer from different per-
spective. Such an analysis incorporating evidence from published literature can be used by biologists and other 
researchers to carry forward their work on these genes and their associated features.

This work provides a comprehensive study of biomarkers associated with breast cancer. In this paper, we make 
the following contributions.

•	 We propose an effective gene-gene network module extraction technique from micro-array gene expression 
data. We use both the toplogical and functional characteristics of the gene networks to find highly enriched 
modules.

•	 We analyze members of these modules from different perspectives, eg., expression patterns and pathways.
•	 We identify relevant pathways by analyzing modules for both the stages. Such pathways provide an insight into 

the role of each gene in the body and can be further extended to identify its role during disease progression.
•	 We discover certain interesting characteristics of causal genes such as MET and WARS.
•	 We find three more pathways to be associated with the metastasis stage of the disease. These pathways can be 

further explored to find their role in progression of the disease.

Experimental Results
We implemented our network construction and module extraction method in MATLAB running on an HP 
Z 800 workstation with two 2.4 GHz Intel(R) Xeon(R) processors and 12 GB RAM, using the Windows7 
operating system. The semantic similarity for a given pair of genes is found using the GOSemSim package7 
in R.

Parameter tuning for p-value computation. We carried out our experiments at various CCT and SST 
thresholds. CCT and SST are a clustering coefficient and a semantic similarity threshold respectively, set by the 

Modules
SST = 0.3 
CCT = 0.3

SST = 0.5 
CCT = 0.3

SST = 0.7 
CCT = 0.3

SST = 0.3 
CCT = 0.5

SST = 0.5 
CCT = 0.5

SST = 0.7 
CCT = 0.5

SST = 0.3 
CCT = 0.7

SST = 0.5 
CCT = 0.7

SST = 0.7 
CCT = 0.7

M1 5.41E-6 2.25E-5 5.41E-6 4.14E-6 5.41E-6 5.10E-7 5.41E-6 2.25E-5 5.41E-6

M2 3.41E-5 3.41E-5 4.14E-6 5.41E-6 3.41E-5 7.14E-7 3.41E-5 1.56E-5 3.41E-5

M3 6.25E-5 1.68E-4 3.41E-5 3.41E-5 2.25E-5 8.41E-6 1.68E-4 1.68E-4 2.25E-5

Table 1. p–value of top 3 modules obtained using different thresholds in metastasis stage.

Figure 1. Chemokine signalling pathway (source-http://www.kegg.jp/kegg/kegg1.html).

http://www.kegg.jp/kegg/kegg1.html
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Module No.: Members

Non-metastasis modules Pathway 
associated 
gene names p-valuePathways

1: SRGN, MX1, GBP1, PLEK, 
PDE4B, SLA, IL32, CXCL9, RUNX3, 
IFI44L, CD52, LRMP, TRBV19, 
CTSS, PDE4B, CCL5, CXCL10, 
CCND2, CYP1B1, WARS, MMP9, 
PFKP, TAP1, ARHGAP4, SLC2A3

antigen processing and presentation CTSS

5.38E-6

purine metabolism PDE4B

cytokine-cytokine receptor interaction, chemokine signalling pathway, 
NOD-like receptor signaling pathway, cytosolic DNA-sensing pathway, 
toll-like receptor signaling pathway.

CCL5

cytokine-cytokine receptor interaction, chemokine signalling pathway, 
NOD-like receptor signaling pathway, cytosolic DNA-sensing pathway, 
toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway

CXCL10

p53 signaling pathway, Wnt signaling pathway, focal adhesion, Jak-STAT 
signaling pathway, cyclins and cell cycle regulation CCND2

steroid hormone biosynthesis CYP1B1

tryptophan metabolism, Aminoacyl-tRNA biosynthesis WARS

leukocyte transendothelial migration, pathways in cancer MMP9

glycolysis/gluconeogenesis pentose phosphate pathway, fructose and 
mannose metabolism, galactose metabolism PFKP

antigen processing and presentation TAP1

Rho cell motility signaling pathway ARHGAP4

facilitated glucose transporter SLC2A3

2: CCL5, CCND2, WARS, LAG3

cytokine-cytokine receptor interaction, chemokine signalling pathway, 
NOD-like receptor signaling pathway, cytosolic DNA-sensing pathway, 
toll-like receptor signaling pathway.

CCL5

3.08E-5p53 signaling pathway, Wnt signaling pathway, focal adhesion, Jak-STAT 
signaling pathway, cyclins and cell cycle regulation CCND2

tryptophan metabolism, aminoacyl-tRNA biosynthesis WARS

3: CCL5, CCND2, WARS, IGK@, 
IGLV5-45

cytokine-cytokine receptor interaction, chemokine signalling pathway, 
NOD-like receptor signaling pathway, cytosolic DNA-sensing pathway, 
toll-like receptor signaling pathway.

CCL5

1.68E-4p53 signaling pathway, Wnt signaling pathway, focal adhesion, Jak-STAT 
signaling pathway, cyclins and cell cycle regulation CCND2

tryptophan metabolism, aminoacyl-tRNA biosynthesis WARS

4: CCL5, CCND2, WARS, IGLV3-19

cytokine-cytokine receptor interaction, chemokine signalling pathway, 
NOD-like receptor signaling pathway, cytosolic DNA-sensing pathway, 
toll-like receptor signaling pathway.

CCL5

1.68E-4p53 signaling pathway, Wnt signaling pathway, focal adhesion, Jak-STAT 
signaling pathway, cyclins and cell cycle regulation CCND2

tryptophan metabolism, aminoacyl-tRNA biosynthesis WARS

5: CCL5, CCND2, WARS, NKG7

cytokine-cytokine receptor interaction, chemokine signalling pathway, 
NOD-like receptor signaling pathway, cytosolic DNA-sensing pathway, 
toll-like receptor signaling pathway.

CCL5

1.68E-4p53 signaling pathway, Wnt signaling pathway, focal adhesion, Jak-STAT 
signaling pathway, cyclins and cell cycle regulation CCND2

tryptophan metabolism, aminoacyl-tRNA biosynthesis WARS

Metastasis modules

1: CCL5, CCND2, WARS, SRGN, 
TRAC,

cytokine-cytkine receptor interaction, chemokine signalling pathway, 
NOD-like receptor signaling pathway, cytosolic DNA-sensing pathway, 
toll-like receptor signaling pathway.

CCL5

5.10E-7p53 signaling pathway, Wnt signaling pathway, focal adhesion, Jak-STAT 
signaling pathway, cyclins and cell cycle regulation CCND2

tryptophan metabolism, aminoacyl-tRNA biosynthesis WARS

2: WARS, PDYN, NUCB1, GUSBP3
tryptophan metabolism, aminoacyl-tRNA biosynthesis WARS

7.14E-7
opioid prodynorphin pathway, signaling by GPCR PDYN

3: WARS, ESR1, NUCB1, ASCL1
tryptophan metabolism, aminoacyl-tRNA biosynthesis WARS

8.41E-6
CARM1 and regulation of the Estrogen Receptor, h-Efp Pathway ESR1

4: CCL5, CCND2, WARS, SRGN, 
TRBV19

cytokine-cytkine receptor interaction, chemokine signalling pathway, 
NOD-like receptor signaling pathway, cytosolic DNA-sensing pathway, 
toll-like receptor signaling pathway.

CCL5

9.27E-6p53 signaling pathway, Wnt signaling pathway, Focal adhesion, Jak-STAT 
signaling pathway, cyclins and cell cycle regulation CCND2

tryptophan metabolism, aminoacyl-tRNA biosynthesis WARS

5: CCL5, WARS, LCAT, MFGE8

cytokine-cytkine receptor interaction, chemokine signalling pathway, 
NOD-like receptor signaling pathway, cytosolic DNA-sensing pathway, 
toll-like receptor signaling pathway.

CCL5

1.52E-5
tryptophan metabolism, aminoacyl-tRNA biosynthesis WARS

glycerophospholipid metabolism LCAT

Table 2. Non-Metastasis and Metastasis modules along with pathway information and p-value.
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user. CCT takes care of the topological structure of the network and SST is concerned with the biological similar-
ity among the nodes involved in the network. In order to choose the optimal value of the parameter, we compute 
the p-value for each module at different thresholds. This is because p-value gives the probability for a set of genes 
to be enriched with the same functional group. The p–value for a module M enriched with functional group F is 
given as

∑− = −
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where M contains q genes in F and entire network contains |V| genes.
To choose the best set of parameters, we compute the p-value of each module obtained at CCT values of 0.3, 

0.5 and 0.7. The set of SST values is set to be 0.3, 0.5 and 0.7 for each run of CCT. The p–values of top three mod-
ules obtained at different threshold values are given Table 1.

In Table 1, we see that two of the three top modules show p-value of 5.10E-7 and 7.14E-7 at SST value of 0.7 
with CCT value set to 0.5, while for the rest of the modules, it can be seen that the best p-value obtained is in the 
range of E-6.

Therefore, we can say that the optimal parameter set is achieved at CCT = 0.5 and SST = 0.7. This is supported 
by the fact that lower p-value signifies modules which are more biologically similar in nature among themselves 
and thus the ultimate purpose of module extraction is satisfied.

Pathway identification from module members. We have carried out an extensive analysis of top five 
modules in terms of p-value in both non-metastasis and metastasis stages. We have identified the pathways to 
which each member gene belongs to in a given module. This is done using the DAVID tool8. The members of the 
modules along with the pathways they associate with are given in Table 2.

In Table 2, we see that three pathways viz., Glycerophospholipid metablism, h-Efp pathway and CARM1 and 
Regulation of Estrogen Receptor are associated with genes found in modules in the metastasis stage. These three 
new pathways can be further explored to find how they are responsible for spreading the disease to other organs.

As explained in Proposition 2, we suggest that genes (other than the disease genes) found in a disease associ-
ated module also contribute to the disease. Let us consider the example of the top module in the metastasis stage. 
This module has CCL5, CCND2 (a disease gene), WARS, SRGN and TRAC as its member elements. In Table 2, 
we see the different pathways associated with its members. We provide pathways for only those genes which 
are found in literature. We see that the disease gene CCND2 is related to p53 signaling pathway, Wnt signalling 
pathway, focal adhesion, Jak-STAT signaling pathway and others. Among its member genes, we find that CCL5 
is involved in cytokine-cytokine receptor interaction, chemokine signalling pathway etc. Looking into the pathway 
structure of chemokine signaling pathway given in the KEGG database9, we see that these two pathways are linked 
to the Jak-STAT signalling pathway, which is shown to be linked to the disease gene pathway. Figure 1 shows the 
chemokine-signalling pathway. The WARS gene belongs to the trytophan metabolism pathway, which aids in glyc-
olysis as seen in Fig. 2. The glycolysis mechanism is indirectly regulated by the Wnt signalling pathway10. This sig-
nalling pathway also corresponds to the disease gene pathway. Slight perturbation in any of these pathways may 
affect the changes to be carry forwarded, thus leading to certain disorders. Therefore, we can say that member 
genes of a disease module also contribute to the disease.

Interpreting utility of common genes in both stages. A Venn diagram representation of the common genes 
found among the modules in both the stages is shown in Fig. 3. We see that genes CCL5, CCND2 and WARS 
are found among all the five modules in non-metastasis stage. However, in metastasis stage, Fig. 3(b), we see 
that these three genes occur simultaneously in modules M1 and M4 only. Among the rest of the modules, 
only the WARS gene is present as a common element. The other two genes are not associated with three of 
the modules in the metastasis stage. This may be due to its low semantic value with the seed node for the 
respective modules. In addition to the disease gene, two other genes are found to be strongly related to the 
breast cancer disease. CCND2, which is the causal gene found in both stages is known to have a higher inva-
sive ability. Certain results also suggest that overexpression of this gene in carcinomic cells has an enhanced 
effect on in vivo aggressive growth pattern11. CCL5/CCR3 signalling actively encourages metastasis by polar-
ization of CD4+T cells, for luminal breast cancer12. WARS, popularly known as Tryptophanyl-tRNA syn-
thetase corresponds to the aminoacyl-tRNA synthetase family. They are involved in RNA transcription, 
protein synthesis and in angiogenic signalling pathways13. Overexpression of tRNA synthetase promotes 
migratory movements of carcinogenic cells14. This may be one of the reasons why WARS is present in all 
modules of both the stages.

Common pathways among modules and change in expression value of associated genes. We 
also analyze the common pathways associated with the common genes in both the stages and observe the changes 
in their expression values as the disease progresses from the non-metastatic to the metastatic stage. This is shown 
in Table 3. Among all the genes which are common to the two stages, they show a decrease in their expression 
value in the two stages.

The role of these common pathways in terms of the disease is highlighted here.
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•	 Cytokine-cytokine pathway: Cytokines are released whenever there is some infection or inflammation so as to 
hamper the tumor’s development. Carcinogens can also respond to the host with cytokines so as to promote 
growth and spreading of the disease to other organs15.

•	 Chemokine signaling pathway: Expression values of chemokines are changed in many forms of malignancies 
and eventually lead to disturbed chemokine signalling pathway16.

•	 p53signaling pathway: p53 loss can disrupt metastasis related pathways. However, transcriptionally defective 
TP53 mutants can promote metastasis stage of cancer17.

•	 Wnt signaling pathway: Activity of the Wnt/β-catenin signalling pathway plays a significant role during the 
development of breast cancer18.

•	 Tryptophan metabolism: Higher expression of enzymes involved in tryptophan degradation is known to be 
associated with several forms of cancer such as lung cancer, breast cancer and melanoma19.

•	 Toll-like receptor signaling pathway: Toll like receptor signaling in tumor cells play a role in aggressive behav-
ior of tumor by excessive secretion of cytokines/chemokines20.

•	 Cytosolic DNA sensing pathway: The role of this pathway is yet not clear in context of the disease, but since it is 
found in both the stages, we can say that it plays a significant role in causing the disease.

Figure 2. Tryptophan metabolism (source-http://www.kegg.jp/kegg/kegg1.html).

Figure 3. Common genes found among the modules in both the stages.

http://www.kegg.jp/kegg/kegg1.html
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Non-participation of some causal genes in the modules of metastasis. Analyzing the character-
istics of the top five modules obtained in both the stages, we find that CCND2 is found in most of the mod-
ules. This gene has been reported to be a causal gene by GeneCard21. A few other disease genes such as XBP1, 
SCGB1D2, MET, CYP1B1 and MMP9 have been reported to be active during the non-metastasis module forma-
tion. However, these genes do not participate in the metastasis stage of module formation, although they seem to 
be actively involved during the non-metastasis module formation process. Based on our experimental observa-
tions as well as analysis of the literature, we put forward Proposition 1.

Proposition 1. A causal gene ∈g mi i
nm, the ith non-metastasis module may not participate in coherent module for-

mation at metastatic stage.

Explanation: Assume that a gene ∈g mi i
nm also ∈mj

m, the jth module in metastatic stage. It is evident from the 
literature and also from our experimental study that during stage transistion from non-metastasis to metastasis, 
often a gene undergoes significant variation (i.e., fall or rise) in expression or semantic similarity values. Such a 
gene with signficantly varied expression or semantic similarity values may not remain coherent with other mod-
ule forming genes, and hence may not satisfy the CCT and SST cutoffs, and may not participate in module forma-
tion during the metastasis stage. It contradicts our assumption and hence the proof.

We analyzed the semantic similarity values among these five genes and found that XBP1, MET and CYP1B1 
are probable candidates for module formation. However, these could not be members of the modules in the 
metastasis stage probably due to their low semantic similarity score with the seed nodes.

Analyzing genes based on expression values. Apart from analyzing expression pattern of only the 
common genes found among the modules across the stages, we also tried to find if genes involved during module 
formation are coherent among themselves or not. We show the expression patterns of genes in the top three mod-
ules obtained during both the stages in Figs 4 and 5. In these figures, we see that participating genes demonstrate 
high coherence across the samples.

We then observe expression patterns of genes associated with the disease as given in GeneCard. These 
genes are referred to as causal genes. The average expression levels of these genes across the two stages are ana-
lyzed and we find that CYP1B1 and MMP9 show an increasing trend in their average expression values from 
non-metastasis to metastasis stage. This is clearly different from the normal trend of expression values during 
progression of diseases. The other three genes XBP1, SCGB1D2 and MET show a decreasing trend during the 
progression phase. We plot the expression patterns of these three genes across the two stages in Fig. 6. Two of 
the genes SCGB1D2 and MET show normal trend as seen among the rest of the genes. However, XBP1 shows 
a peculiar trend in both stages. The expression values of this gene shows very low variations across all the 286 
samples. This may be due to its inherent nature, as it acts as a transcription factor which regulates the gene 
expression levels for the immune system and in other cellular responses. This may be one of the reasons of its 
low variation during disease progression as the immune system prompts the body to respond equally during the 
non-metastasis and metastasis stages.

Discussion
Cancer is a complex disease. Its distinguishing characteristics can best be represented in the form of a modular 
structure, technically referred to as a cancer hallmark network. Earlier studies have revealed six types of hall-
marks associated with cancer22. These are (i) cancerous cells that promote their own growth, (ii) they thwart 
inhibitory signals that would harm them, (iii) they do not take part in  from programmed cell death, (iv) they 
promote growth and functioning of blood vessels which provide nutrition to the cancerous cells, (v) they have 
a tendency to keep on multiplying and (vi) they move out to other organs thereby spreading the disease. Four 
new characteristic features have been discovered to be associated with cancerous cells23. These were added to 
the hallmarks of cancer: (vii) associated pathways show abnormality, (viii) cancer cells remain hidden from the 
immune system surveillance, (ix) abnormalities occur in the number of chromosomes in the cancerous cells and 

Pathway Commongene(s)

Non-Metastasis Metastasis

ChangeModule No.
Expression 
Value Module No.

Expression 
Value

Cytokine-cytokine pathway CCL5 14, 6, 15, 21 9.29 12, 15, 10 8.826 ↓

Chemokine signaling pathway CCL5 14, 6, 15, 21 9.29 12, 15, 10 8.26 ↓

p53signaling pathway CCND2 47, 14, 6, 
15, 21 5.961 12, 15 5.676 ↓

Cytosolic DNA sensing pathway CCL5 14, 6, 15, 21 9.29 12, 15, 10 8.26 ↓

Wnt signaling pathway CCND2 47, 14, 6, 
15, 21 5.961 12, 15 5.676 ↓

Tryptophan metabolism WARS 14, 6, 15, 21 8.65 12, 13, 8, 
15, 10 8.276 ↓

Focal adhesion CCND2 47, 14, 6, 
15, 21 5.961 12, 15 5.676 ↓

Toll-like receptor signaling pathway CCL5 14, 6, 15, 21 9.29 12, 15, 10 8.26 ↓

Table 3. Expression value of genes involved in common pathways in both the stages.
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(x) there is inflammation in the affected tissue. For a cancerous cell to survive, divide and move out, it needs to 
have functional capabilities acquired through activation of different hallmarks during different times of cancerous 
progression24, 25.

An extensive study of the signalling network along with the tumor-genome sequencing output has illustrated 
the importance of metamorphing in case of tumor suppressor genes and their role in cancer development and 
progression over stages26. Mutation in these genes results in genome instability and chromosome amplifica-
tion. Such a situation gives rise to heterogeneity in the tumor cells or the cancerous cells. This heterogeneity 
leads to loss of robustness among the disease biomarkers. It poses a major hurdle in cancer biomarker discovery 
as the contemporary methods of discovering biomarkers based on gene expression profiles are inadequate27. 
Identification of robust cancer biomarkers has recently gained importance in the research community. Methods 
such as MSS (Multiple Survival Screening)26 and ensembling methods28 work by characterizing cancer sam-
ples into various classes, depending on their gene expression profiles or signalling network structure. Once they 
are narrowed down to sub-classes, one can easily predict the associated biomarkers depending on their class 
characteristics.

The module extraction method proposed here is based on semantic similarity among the genes. This method 
extracts biologically similar modules as suggested by their p-values. Our module extraction method is used over 
the metastatic and non-metastatic stages of the breast cancer gene expression dataset. We have analyzed members 
obtained from the top five modules in terms of expression similarity and pathway point of view.

Certain interesting behaviors of the causal genes which are members such as SCGB1D2, MET, CYP1B1 and 
MMP9 are also studied. We have also suggested reasons for their peculiar behavior.

We have also identified reasons why certain genes are found in modules of only one stage. Apart from this, we 
give justification for how genes in a module coordinate with others to achieve the function associated with the 
module. We also justify why certain genes such as WARS are present in all identified modules in both the stages.

In addition to this, we analyze the expression values of the common genes in both stages of the disease and 
also speculate how these genes play role in causing the disease considering the pathway.

Lastly, we also find three new pathways namely Glycerophospholipid metablism, h-Efp pathway and CARM1 
and Regulation of Estrogen Receptor to be associated with the metastasis stage of the disease. Understanding these 
pathways will give better insight into the progression of the disease.

Materials and Method
Besides skin cancer, breast cancer is the most commonly dignosed disease among women in the United States. 
About 40,610 women in the U.S. are expected to die in 2017 from breast cancer29. If the disease is detected 
while still at the in-situ stage, the chance of survival is close to 100%. However, if the disease is left untreated, 
it usually spreads to other parts of the body (metastasize), and the first place it usually spreads is to the lymph 
nodes in the axilla area30. Metastatic breast cancer cells differ from the primary ones in properties such as 
receptor status. The cells often develop resistance to several lines of previous treatment and acquire special 
properties that permit them to metastasize to distant sites. Metastatic breast cancer can be treated, sometimes 

Figure 4. Expression patterns of genes in top three modules of metastasis stage.
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for many years, but it cannot be cured. Women in this stage of the disease have less than 16% chances of sur-
vival31. Therefore, it is very crucial to study the progression of the disease to this stage. We make one such effort 
here, and the findings of our work can be used by the biologists to better interpret the causes of the disease, to 
aid on-time treatment.

Dataset Used. The study of progression of metastasis cancer from the non-metastasis stage requires a thor-
ough understanding of the genes which get mutated during the disease progression, how their expression values 
change from time to time, what other changes are brought in during the progression, etc. In order to get a vivid 
picture of the disease progression, we perform our experiments on the GSE 20304 dataset on breast cancer relapse 
free suvival, obtained from ref. 32. It comprises of expression values of 286 patients. Among the 286 samples, 106 
samples are from the metastatic stage and the rest are from the non-metastatic stage.

Preprocessing and Sample selection. The dataset consists of 22,273 genes with expression values. In 
order to scale the values obtained over the large number of samples, we use log2 transformation. We then use var-
iance measure to decide upon the genes which are actively involved across all the 286 samples. We tune variance 
threshold Vth in the range 0.9–1.5, and accordingly we obtain seven different samples of genes, each with 7900, 
7000, 6129, 5292, 4529, 3903 and 3356 genes respectively as given in Table 4.

From our observation, we find the best suitable range to be 1.1–1.3. We carry out our module formation 
process using genes at this range. Modules obtained in this range are analyzed, and we find slightly higher 
number of modules at Vth = 1.1 than at Vth = 1.2 or Vth = 1.3. This may be a result of the extra 872 genes 
at this sample stage, which are later removed in the other two stages due to its low variance as compared to 
Vth. For our extensive analysis purpose, we use module results obtained at Vth = 1.2, as it is the mid-point 
of the two values. Apart from being the average of the two values, it also shows higher number of common 
modules when compared with the modules obtained at both the ends. This threshold value is also supported 
by Wang et al. in their work33, where they use it to get the maximum variance of genes among the samples for 
the dataset.

Figure 5. Expression patterns of genes in top three modules of non-metastasis stage.

Figure 6. Expression pattern of causal genes in both stages.

Vth = 0.9 Vth = 1.0 Vth = 1.1 Vth = 1.2 Vth = 1.3 Vth = 1.4 Vth = 1.5

Number 
of genes 7900 7000 6129 5292 4529 3903 3356

Table 4. Various gene samples drawn at different Vth threshold.
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Network construction and module extraction. The process of network construction begins with 5292 
genes. Two different networks are constructed, one for non-metastatic stage and the other for the metastatic stage. 
These two networks are obtained based on the patient’s characteristics. The network A(i, j) is constructed using 
the Pearson’s correlation coefficient between the genes, PrC(i, j), where

=




≥ .
.

A if i j1 PrC( , ) 0 5
0 otherwise (2)i j( , )

We choose 0.5 as the threshold for Pearson coefficient because we want to extract subnetworks or modules 
with balanced contributions from both gene expression and semantic similarity. Once the networks, i.e., Anm for 
non-metastatic stage and Am for metastatic stage are ready, we start with a seed growing technique to find mod-
ules. Seed selection for modules is based on the clustering coefficient of each gene in the network. The choice of 
seed is based on the node with the maximum clustering coefficient, such that this is greater than an input thresh-
old value for CCT. In order to grow the seed, we use a second criterion which is the semantic similarity between 
gene pairs so as to find their relation with each other. We choose semantic similarity between gene pairs in order 
to get functionally relevant modules. The more biologically relevant a module is, the more will be its correspond-
ence to the disease. This statement is supported by Proposition 2.

Proposition 2. If for a given disease Di, the causal gene ∈g mi i, i.e., ith network module of high biological signifi-
cance, then any other gene ∈g mj i will also have a correspondence with Di.

Explanation: A pair of genes (gi, gj) will be members of a module, mi of high biological significance (i.e., with very 
low p-value) iff PrC(gi, gj) ≥ 0.5 and SS(gi, gj) ≥ SST. So, any other member gene of mi will share highly similar 
functionality with gene gi or gj. Therefore, since gi corresponds to a disease Di, other member genes, say gj ∈ mi will 
also correspond to Di

34–36, and hence the proof.
This proposition can be better understood with the help of an example given in Section Pathway identification 

from module members. In order to get the best semantic similarity between a pair of genes, we use Wang’s seman-
tic similarity, which is known to be the best among all the existing measures37, 38. However, we have restricted 
ourselves to only those genes during expansion whose semantic similarity value is atleast equal to SST, set by the 
user. The parameter is set experimentally as discussed in the Section Parameter tuning for p-value computation. 
We now define some terms which are used during the module extraction process.

Definition 1 (Semantically connected). Two genes gi and gj are said to be semantically connected iff PrC(gi, 
gj) ≥ CCT and SS(gi, gj) ≥ SST, where CCT ad SST are user-defined thresholds.

Definition 2 (Clustering coefficient). For an undirected graph, clustering coefficient of a node vi (representing a 
gene, say gi) is the ratio of the number of links the node has among its neighbors, Nl to the total number of possible 
links for that node. Mathematically,

=
×

× −
CC v N

d d
( ) 2

( 1) (3)
i

l

v vi i

where dvi
 is the degree of node vi.

Definition 3 (Seed node). A node vi is said to be a seed node if ∀ vj, >CC v CC v( ) ( )i j , where ∈ −{ }v V vj i  snd V is 
the set of nodes.

Definition 4 (Module). A module is a set of nodes/genes which are semantically connected among each other.
The steps for module extraction is given in Algorithm 1.

Lemma 1. Two genes (gi, gj) are functionally coherent if they have high expression and semantic similarity.

Proof. This proof is trivial because a pair of genes sharing high expression and semantic similarity show similar 
trend and are more functionally coherent.  ☐

Lemma 2. Nodes included by our method in a module have high functional coherence.

Proof. A gene gi can be a member of module, mi iff Expression(gi, gj) ≥ 0.5 and SS(gi, gj) ≥ SST, where SST is the 
user-defined threshold for Semantic similarity. So, for any two member genes of a module, the expression simi-
larity and semantic similarity between them is always high. Hence, the nodes in a module have high functional 
coherence. ☐

Complexity Analysis. The module extraction technique involves selection of seed nodes based on the clus-
tering coefficient of the nodes. This involves identifying neighbors of each node, which takes O(n) time in the 
worst case. To identify the number of links present among the neighbor sets takes another O(n) time. Thus, the 
seed selection process takes × ≡O n O n O n( ) ( ) ( )2  time. The module expansion process starts from the node with 
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the highest clustering coefficient. Sorting the nodes in terms of decreasing clustering coefficient requires O(nlogn) 
time and then comparing the top most node with user defined CCT requires O(1) time. Expansion of modules 
requires O(n2) as it requires computing the neighbor set again for the seed node, which takes O(n) time and then 
finding its corresponding semantic similarity, which takes at most O(n) time. This semantic similarity value has 
to be compared with the SST value defined by the user, which takes O(1) time. Therefore, the overall time com-
plexity for module extraction is + + + + ≡O n O nlogn O O n O O n( ) ( ) (1) ( ) (1) ( )2 2 2 .

References
 1. Alizadeh, A. A. et al. Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403, 503–511, 

doi:10.1038/35000501 (2000).
 2. Beer, D. G. et al. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nature Medicine 8, 816–824 

(2002).
 3. Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 

531–537 (1999).
 4. Van’t Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).
 5. Wang, Y. et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. The Lancet 365, 

671–679 (2005).
 6. Chuang, H.-Y., Lee, E., Liu, Y.-T., Lee, D. & Ideker, T. Network-based classification of breast cancer metastasis. Molecular Systems 

Biology 3, 140 (2007).
 7. Yu, G. et al. GOSemSim: an R package for measuring semantic similarity among GO terms and gene products. Bioinformatics 26, 

976–978 (2010).
 8. Dennis, G. et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biology 4, 1 (2003).
 9. Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28, 27–30 (2000).
 10. Pate, K. T. et al. Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer. The EMBO journal 33, 

1454–1473 (2014).
 11. Liu, S. C. et al. Overexpression of cyclin d2 is associated with increased in vivo invasiveness of human squamous carcinoma cells. 

Molecular carcinogenesis 34, 131–139 (2002).
 12. Zhang, Q. et al. Ccl5-mediated th2 immune polarization promotes metastasis in luminal breast cancer. Cancer Research 75, 

4312–4321 (2015).
 13. Ghanipour, A. et al. The prognostic significance of tryptophanyl-trna synthetase in colorectal cancer. Cancer Epidemiology 

Biomarkers & Prevention 18, 2949–2956 (2009).
 14. Lee, C.-W. et al. Overexpressed tryptophanyl-trna synthetase, an angiostatic protein, enhances oral cancer cell invasiveness. 

Oncotarget 6, 21979 (2015).
 15. Dranoff, G. Cytokines in cancer pathogenesis and cancer therapy. Nature Reviews Cancer 4, 11–22 (2004).
 16. Tanaka, T. et al. Chemokines in tumor progression and metastasis. CancerScience 96, 317–322 (2005).
 17. Powell, E., Piwnica-Worms, D. & Piwnica-Worms, H. Contribution of p53 to metastasis. Cancer Discovery 4, 405–414 (2014).
 18. Jang, G.-B. et al. Blockade of wnt/β-catenin signaling suppresses breast cancer metastasis by inhibiting csc-like phenotype. Scientific 

Reports 5 (2015).
 19. Puccetti, P. et al. Accumulation of an endogenous tryptophan-derived metabolite in colorectal and breast cancers. PloS One 10, 

e0122046 (2015).
 20. La Creis, R. K., Rogers, E. N., Yeyeodu, S. T., Jones, D. Z. & Kimbro, K. S. Contribution of toll-like receptor signaling pathways to 

breast tumorigenesis and treatment. Breast Cancer 5, 43 (2013).
 21. Rebhan, M., Chalifa-Caspi, V., Prilusky, J. & Lancet, D. Genecards: integrating information about genes, proteins and diseases. 

Trends in Genetics 13, 163 (1997).
 22. Wang, E. et al. Predictive genomics: A cancer hallmark network framework for predicting tumor clinical phenotypes using genome 

sequencing data. Seminars in Cancer Biology 30, 4–12 (2015).
 23. Hanahan, D. & Weinberg, R. A. Hallmarks of Cancer: The Next Generation. Cell 144, 646–674 (2011).
 24. Wang, E. et al. Cancer systems biology in the genome sequencing era: Part 1, dissecting and modeling of tumor clones and their 

networks. Seminars in Cancer Biology 23, 279–285 (2013).

Algorithm 1: Algorithm for module extraction from gene gene network

       Input: A = {V, E} (Gene gene network); CCT (Clustering coefficient threshold); SST (Semantic similarity threshold); NSS (Semantic 
similarity score matrix)

      Output: Modules = {C1, C2, …, CN}, (a set of N modules)

1 Initialize clusterExpNode = V, Modules = NULL;

2      while |clusterExpNode| > 4 do

3           choose ∈v clusterExpNodem  such that ∀ ∈v clusterExpNoden , CC(vm) ≥ CC(vn) and CC(vm) ≥ CCT; 
∪=partialCluster partialCluster vm;

4          while vm exists do

5                   choose another vi from Ns vm( ) if and only if ∃ ∈v partialClusterx  such that NSS(vi, vx) ≥ SST

6                    ∪=partialCluster partialCluster vi;
7                   clusterExpNode = clusterExpNode − vi;

8                    ∪= ( )N N Ns vm s vm s vi( ) ( ) ( )  choose next vi;

9          end

10          Mark partialCluster as Ccount only when |partialCluster| ≥ 3;

11           ∪=Modules Modules Ccount;

12          count + +;

13      end

14 Return Modules;

http://dx.doi.org/10.1038/35000501


www.nature.com/scientificreports/

1 1Scientific RepoRts | 7: 1072  | DOI:10.1038/s41598-017-00996-x

 25. Wang, E. et al. Cancer systems biology in the genome sequencing era: Part 2, evolutionary dynamics of tumor clonal networks and 
drug resistance. Seminars in Cancer Biology 23, 286–292 (2013).

 26. Li, J. et al. Identification of high-quality cancer prognostic markers and metastasis network modules. Nature Communications 1, 34 
(2010).

 27. Wu, M.-Y., Dai, D.-Q., Zhang, X.-F. & Zhu, Y. Cancer subtype discovery and biomarker identification via a new robust network 
clustering algorithm. PloS One 8, e66256 (2013).

 28. Abeel, T., Helleputte, T., Van de Peer, Y., Dupont, P. & Saeys, Y. Robust biomarker identification for cancer diagnosis with ensemble 
feature selection methods. Bioinformatics 26, 392–398 (2010).

 29. US Breast Cancer Statistics. http://www.breastcancer.org/symptoms/understand_bc/statistics, Date of access: 19-01-2017 (2017).
 30. Halls, S. Progression of breast cancer: Stages. http://breast-cancer.ca/prog-untreated/, Date of access: 19-01-2017 (2017).
 31. Halls, S. Understanding breast cancer metastasis. http://breast-cancer.ca/metsurv-stat/, Date of access: 19-01-2017 (2017).
 32. Wang, Y. et al. Breast cancer relapse free suvival. http://www.ncbi.nlm.nih.gov/geo, Date of access: 09-09-2016 (2005).
 33. Wang, X., Qian, H. & Zhang, S. Discovery of significant pathways in breast cancer metastasis via module extraction and comparison. 

IET Systems Biology 8, 47–55 (2014).
 34. López-Bigas, N. & Ouzounis, C. A. Genome-wide identification of genes likely to be involved in human genetic disease. Nucleic acids 

research 32, 3108–3114 (2004).
 35. Jimenez-Sanchez, G., Childs, B. & Valle, D. Human disease genes. Nature 409, 853–855 (2001).
 36. Kitsak, M. et al. Tissue specificity of human disease module. Scientific reports 6 (2016).
 37. Wang, J. Z., Du, Z., Payattakool, R., Philip, S. Y. & Chen, C.-F. A new method to measure the semantic similarity of GO terms. 

Bioinformatics 23, 1274–1281 (2007).
 38. Pesquita, C., Faria, D., Falcao, A. O., Lord, P. & Couto, F. M. Semantic similarity in biomedical ontologies. PLoS Comput.

Author Contributions
D.K.B. and J.K. conceptualized the problem. P.S. materialized the problem, fine tuned its solution and wrote the 
manuscript draft. J.K. and D.K.B. substantially modified the draft. All authors reviewed the manuscript.

Additional Information
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://www.breastcancer.org/symptoms/understand_bc/statistics
http://breast-cancer.ca/prog-untreated/
http://breast-cancer.ca/metsurv-stat/
http://www.ncbi.nlm.nih.gov/geo
http://creativecommons.org/licenses/by/4.0/

	Disease biomarker identification from gene network modules for metastasized breast cancer
	Experimental Results
	Parameter tuning for p-value computation. 
	Pathway identification from module members. 
	Interpreting utility of common genes in both stages. 

	Common pathways among modules and change in expression value of associated genes. 
	Non-participation of some causal genes in the modules of metastasis. 
	Analyzing genes based on expression values. 

	Discussion
	Materials and Method
	Dataset Used. 
	Preprocessing and Sample selection. 
	Network construction and module extraction. 
	Complexity Analysis. 

	Figure 1 Chemokine signalling pathway (source-http://www.
	Figure 2 Tryptophan metabolism (source-http://www.
	Figure 3 Common genes found among the modules in both the stages.
	Figure 4 Expression patterns of genes in top three modules of metastasis stage.
	Figure 5 Expression patterns of genes in top three modules of non-metastasis stage.
	Figure 6 Expression pattern of causal genes in both stages.
	Table 1 p–value of top 3 modules obtained using different thresholds in metastasis stage.
	Table 2 Non-Metastasis and Metastasis modules along with pathway information and p-value.
	Table 3 Expression value of genes involved in common pathways in both the stages.
	Table 4 Various gene samples drawn at different Vth threshold.




