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A novel 4-arm DNA/RNA 
Nanoconstruct triggering Rapid 
Apoptosis of Triple Negative Breast 
Cancer Cells within 24 hours
Joline Tung1, Lih Shin Tew2, Yuan-Man Hsu3 & Yit Lung Khung1

Measuring at ~30 nm, a fully customizable holliday junction DNA nanoconstruct, was designed to 
simultaneously carry three unmodified SiRNA strands for apoptosis gene knockout in cancer cells 
without any assistance from commercial transfection kits. In brief, a holliday junction structure was 
intelligently designed to present one arm with a cell targeting aptamer (AS1411) while the remaining 
three arms to carry different SiRNA strands by means of DNA/RNA duplex for inducing apoptosis in 
cancer cells. By carrying the three SiRNA strands (AKT, MDM2 and Survivin) into triple negative breast 
MDA-MB-231 cancer cells, cell number had reduced by up to ~82% within 24 hours solely from one 
single administration of 32 picomoles. In the immunoblotting studies, up-elevation of phosphorylated 
p53 was observed for more than 8 hours while the three genes of interest were suppressed by nearly 
half by the 4-hour mark upon administration. Furthermore, we were able to demonstrate high cell 
selectivity of the nanoconstruct and did not exhibit usual morphological stress induced from liposomal-
based transfection agents. To the best of the authors’ knowledge, this system represents the first of its 
kind in current literature utilizing a short and highly customizable holliday DNA junction to carry SiRNA 
for apoptosis studies.

Some of the quintessential characteristics of any customizable therapeutics should be non-immunogenic, low 
toxicity as well as high tissue specificity1–4 but attaining these attributes remains challenging at this stage. This 
is largely due to the wide choices available in innovative molecular/drug designs, ranging from nanoparticles5, 

6 to drug-antibody conjugates4, 7. Yet not a single system can be truly beyond reproach8, 9. Of the many novelties 
advocated in literature, delivering RNA interference (RNAi) remains a strong contender for treating diseases at 
a cellular level by means of repressing and shutting down disease-causing genetic anomalies10–13. While RNAi 
technology currently represents the forefront in gene suppression from an academic standpoint, it does suf-
fer from some drawbacks as well. High degradation rate within the cytoplasmic environment14 as well as the 
requirement for high dosage15, 16 had drawn much criticism from the scientific community. Chemically modi-
fied RNA may improve the circulation longevity15 but is highly susceptible towards immunogenic responses17, 18.  
Hence, the plasmid derivatives in the form of ShRNA (short hairpin RNA) are often promoted in its place for the 
maintenance of interfering RNA levels19. Nevertheless, the main problem remains in the selection of the most 
appropriate delivery mechanism into the cell. The most common mode of deliverance is via liposomal-based 
technology but the issues of cytotoxicity20, 21 as well as the lack in cell-specificity were serious enough to impede 
its development as a viable clinical option. While handling issues pertaining to cytotoxicity remains a tricky and 
daunting task, gaining high cell specificity is comparatively more straightforward. Many groups in the past had 
tried to covalently conjugate antibodies directly to liposomes22–24 but the problems of immunogenic responses 
towards the antibodies had plagued these hybrid systems right from the start25, 26. This had subsequently regressed 
antibodies-liposome hybrids (coined “immunoliposomes”) to the role of useful in-vitro tools. In contrast, DNA 
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aptamers, with its lower level of immunogenicity27 as well as being more economically viable compared to anti-
bodies, are often proposed as another alternative for cell targeting.

DNA aptamer are short strands of DNA that can readily self-hybridized with itself to present important ter-
tiary structures. They can serve to bind to cell surface receptors and ultimately gaining entry into cell targets 
with high specificity28–31. Indeed, synergizing both aptamer and RNAi had already gained much footing in liter-
ature and reports had already shown considerable success in recent years10, 32–34. Advantages of using aptamers 
over antibodies are that they are usually inexpensive and have a higher shelf life compared to antibodies35. They 
can be easily tailor-made through SELEX enrichment procedures and are more thermally stable. Compared to 
liposomal-based delivery21, 36, aptamers do not require any additional preparation steps other than purification 
prior to administration to cells and they do not typically induce any of the cytotoxicity compared to liposomal 
delivery37.

Much of the current research has reported the use of aptamers to deliver single antisense RNA (double 
stranded) and most often involved covalent conjugation of the ends of the DNA aptamer directly to the func-
tional end of the RNA or as “chimeras”10, 38. These bioconjugated DNA/RNA nanocomplexes were then admin-
istered directly to the designated cell, and gene suppression was subsequently measured. However, the process 
of bioconjugation can be technically difficult in untrained hands, and RNA chimeras may suffer from potential 
immunogenic responses. Coupled by the fact that many of these systems only dealt with a single gene target, 
this may not be as efficient compared to multiple gene targets being singled out simultaneously. It was with these 
thoughts that we proposed this DNA/RNA nanoconstruct that was designed to simultaneously carry multiple 
copies of antisense RNA strands into cells. Borrowing from the concepts of the self-assembled holliday junction 
as demonstrated by Li et al. delivering fluorophores39 as well as complex DNA/RNA machinery by Lee et al.40, we 
assembled a four-armed nanoconstruct in a single pot fashion and an aptamer (AS1411) was selected to anneal 
towards one of the arms via a sequence specific ‘sticky’ end. The remaining three arms comprised of overhanging 
sequences that were complementary to its individual antisense RNA sequences and the respective RNA strands 
were then hybridized to these selective regions via DNA/RNA hybrid duplex.

In short, all the strands were introduced into a single PCR tube and placed in a thermocycler and the temper-
ature slowly reduced from 95 °C to 4 °C in order to self-assemble into its final holliday configuration as shown 
in Fig. 1A. This process of rapidly assembling took no more than an hour. Herein, we were able to show that this 
nanoconstruct was able to induce high cancer cell apoptosis within 24 hours and could be tailored to suppress 
any gene of interest by the mere change of the sequence selection without relying on overly complicated biocon-
jugation processes.

Results and Discussion
Four strands of DNA were specially designed to host three separate antisense RNA strands while leaving a single 
arm for hybridization to an aptamer DNA (see Fig. 1A). We had especially devised the nanoconstruct to be a 
DNA/RNA duplex system due to several considerations but principally for its lower immunogenicity compared 
to RNA/RNA as reported by Afonin et al.41. One other important consideration was the potential cleavage by 

Figure 1.  (A) Graphical illustration of the holliday junction DNA nanoconstruct carrying multiple antisense 
RNA. (B) Mode of transfection by which the nanoconstruct gain entry and subsequent disassembly within the 
cell and (C) inset with white arrows showing the transmission electron microgram exhibiting the cross-like 
features upon full assembly (white bar represents 50 nm). See Supplementary Figure 1 for the sequence of the 
nanoconstruct.
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cellular Ribonuclease H1 of the DNA/RNA duplex within the cell cytoplasm. To mediate this, the system was 
designed in such a way that the 5′ end for all three RNA strands (19 bases) was approximated less than 5 nm 
relative to the center of holliday junction. Molecular dynamics simulation on the cellular ribonuclease H1 inter-
action with DNA/RNA hybrid strand revealed that the binding process would require a surface area of 177 nm2 
on site42. But it is essential that the DNA region to be free of any structured loops (such as hairpin loops etc) in 
order to accommodate the binding domain of the ribonuclease43, which would not be in our case due to the 
immediate flanking of the RNA’s 5′ end with DNA. The key recognition of the binding domain for Ribonuclease 
H1 to the width of the minor groove had been reported to be around 7.5 Å44 and is highly intolerant towards other 
dimensions. The holliday junction DNA right next to the 5′ RNA/DNA duplex antisense strand would distort and 
rigidize the backbone of the DNA/RNA which could offer resistance towards ribonuclease H1 cleavage. Moreover 
it was already well-established that structured RNA tends to cleave off significantly slower than unstructured 
RNA45. Hence, we postulated that the cross-like contorted nano-architecture could offer much steric hindrance 
towards the ribonuclease antisense and this would also help to reduce the overall processivity for the ribonuclease 
antisense to work on cleaving the DNA/RNA. It is important to note that if cleavage had indeed occurred for the 
DNA/RNA duplex, calculations from closest neighbor parameter would shown that the fragmented RNA oli-
gomers were incapable of forming stable duplex with mRNA at 37 °C. It was therefore with these considerations 
that we proceeded with unmodified RNA strands rather than chemically modified species in order to reduce 
toxicity and facilitate for rapid clearance from the cellular system. The successful attainment of protein repression 
in later section of this manuscript had helped to reinforce these notions.

For this work, we had chosen AS1411 an aptamer that was widely reported in literature that would bind to 
the nucleolin protein on the cell membrane46, 47. Nucleolin was highly expressed in cancer cells and they were 
often localized on the outer-membrane while their surface presentation was not typically found on non-cancer 
targets48. The rationale was that upon the complete assembly of the nanoconstruct, the aptamer would bind to 
the cell surface to facilitate for uptake (see Fig. 1B) and once within the cellular environment, the nanoconstruct 
would undergo disassembly and disseminate its antisense RNA packages. Three protein targets, Akt1, MDM2 and 
Survivin, were selected as candidates for suppression as they were all responsible for maintaining the longevity 
of cancer cells. Both expressions of AKT1 and MDM2 proteins, following along a single pathway, suppress and 
ubiquintinate the important p53 protein which subsequently arrested apoptosis in cancer cells49. Hence suppress-
ing them may in turn trigger the events of apoptosis. In conjunction to this, Survivin is an apoptosis inhibitor by 
means of inactivating caspase protein family and the liberation of caspase would in turn promote apoptosis50. It 
was with these thoughts that simultaneous repression of these three protein targets may aid in inducing rapid cell 
apoptosis.

In a one step process, four strands of the holliday junction DNA strands, one strand of the AS1411 aptamer 
and three strands of the antisense RNA (Akt1, MDM2 and survivin) were mixed in equimolar concentration 
within a single PCR tube and were subjected to a melting temperature of 95 °C before allowing all oligomers to 
reassemble via complementary pairing with the slow gradual reduction of temperature to 4 °C. In order to validate 
the proper assembly of the full nanoconstruct, non-denaturing acrylamide gel electrophoresis was also performed 
(as shown in Fig. 2A) where the various strands were discerned under a UV-Transilluminator.

As observable in Fig. 2A, the nanoconstruct with only the four holliday junction arms (Fig. 2A(i)) migrated 
the fastest while there was a slight retardation (8% polyacrylamide gel) in migration speed when the aptamer 
was introduced (Fig. 2A(ii)). What was notable was that upon the addition of the three antisense RNA strands, 
there was a increase in size that may be explained by the successful hybridization of the antisense RNA to the 
DNA holliday junction as predicted. The DNA ladder cannot be taken as a correct size indicator due to the 
fact that branched DNA are motionally impeded in the gel matrix51, 52 while the retardation of the entire DNA/
RNA hybrid nanoconstruct was expected as RNA tends to move slower in gel electrophoresis compared to DNA 
species53. The regions within the non-denaturing gel was then excised and purified via spin-column and atomic 
force microscopy (AFM) was subsequently performed to verify the sizing of the nanoconstruct. As shown in 
Fig. 2B, the nanoconstruct was determined to be at approximately 28.64 ± 2.53 nm while dynamic light scatter-
ing studies (Fig. 2C) had shown that the hydrodynamic size of the nanoconstruct approximated close to 31 nm. 
Transmission electron microscopy was also performed on these nanoconstructs and the observations were in 
tandem with the findings above (Fig. 1C). Furthermore, the experimental sizing of this nanoconstruct was in 
full agreement with the hypothetical approximations based on calculations of closest neighbor parameter as 
performed earlier.

Using a holliday junction decorated with the AS1411 aptamer, a FITC tagged DNA sequence homologous to 
that of the antisense RNA belonging to the MDM2 was used to hybridized to the nanoconstruct and MDA-MB 
231 cells were incubated for 2 hours. This was to examine if the cells were able to uptake nanoconstruct on the 
virtues of the AS1411 aptamer as selected. As shown in Fig. 3A, stimulated emission depletion (STED) micros-
copy performed on the FITC tagged nanoconstruct carrying the AS1411 aptamer was able to gain entry into the 
cytoplasmic region of the cell while a FTIC-tagged nanoconstruct without the aptamer was found to be localized 
at the outer peripheral regions of the membrane (as shown in Fig. 3B, white arrows). Hence the results confirmed 
that these nanoconstructs were indeed able to gain entry into the cells with the AS1411 aptamers. In conjunction 
to this, we had also decided to compare the morphological outlook of administrating our nanoconstruct to cells 
and how cellular morphology may differ when using lipofectamine. As shown in Fig. 3C, the three antisense 
RNA strands were prepared with lipofectamine at a final concentration of 16 picomoles concentration and incu-
bated for 4 hours while Fig. 3D shows the 231 cells incubated with the nanoconstruct at 16 picomoles as well and 
incubated at 4 hours. The light microscopy images revealed that 231 cells after incubation with lipofectamine 
had shown much morphological duress as the cell shape was much stouter compared to those from the nano-
construct. On the other hand, the transfection event from the nanoconstruct was visually observed to have very 
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little effect of the overall morphological of the 231 cells after 4 hours and this was taken to have had induced less 
stress to the cells.

In a series of dose dependent studies, the full nanoconstruct carrying the three apoptosis inducing anti-
sense RNA was purified from non-denaturing polyacrylamide gels and were added at 4, 8, 16 and 32 pmoles to 
MDA-MB 231 cells for a period of 24 hours. After the incubation period, cells were collected and the cell numbers 
were determined using the hemocytometer. Figure 4A shows the extent of the apoptosis level induced by the 
nanoconstruct from the dose dependent studies. At 4 pmoles and 8 pmoles, we were able to observe a reduction 
in cell number to 73.79% ± 3.23% and 54.82% ± 5.18% respectively. However at 16 pmoles and 32 pmoles, the 
drop in cell count was observed to be at 25.51% ± 12.86% and 18.62% ± 11.51% but both sets of observations 
were statistically insignificant relative to one another. This suggested that at 32 pmoles, the threshold of efficiency 
was met (no notable reduction was also observed for at 64 pmoles) and any further increase in concentration was 
deemed unnecessary.

In order to further demonstrate the stringent cell-type selectiveness of this nanoconstruct, two other cell 
types were incubated with the apoptosis-inducing nanoconstruct at the dosage of 16 pmoles. As shown in Fig. 4B, 
non-tumorigenic epithelial cell line MCF-10A cells were known to have little expression of nucleolin on its surface 
membrane and was therefore employed to act as a positive control. After a 24hr incubation with the nanocon-
struct, the MCF-10A cells showed very little change in its overall cell number. On the other hand, the gastric can-
cer cell line AGS was also engaged in this study and after 24 hours, there was a marked reduction in cell number 
observed (48.52% ± 4.59%). This had shown that the nanoconstruct was indeed selective toward cancer cell types 
that had AS1411 expression on its outer membrane. However, when no aptamer was assembled into the nanocon-
struct, both cell types did not exhibit any notable changes in cell number after incubation for 24 hours. Once again, 
this had suggested that the transfection was indeed mediated by the presence of the aptamer on the nanoconstruct.

Cell count for lipofectamine-based transfection was performed using the three single strand antisense RNA at 
16 picomoles. As these antisense were unmodified, we did not envisage for any high efficiency from this delivery 
event and this was as shown in Fig. 4C whereby the changes to cell number was only marginal (88.78% ± 27.21%). 
This had confirmed that the arrangement of this DNA/RNA branch duplex can indeed drive apoptosis more effi-
ciently compared to delivering naked unmodified antisense RNA.

As mentioned three antisense RNA protein were selected under special consideration that all the genes con-
tribute towards cell death. AKT and its downstream MDM2 are proteins that regulate the expression of p53 and 
the suppression of these genes would upregulate phosphorylated p53 expression levels that would contribute 
towards cell apoptosis. On the other hand, survivin was another protein that inhibits caspase activity, thus con-
tributing to the overall unnatural longevity of cancer cells. Hence, by suppressing all these three genes, it was in 
principle possible to induce rapid cell death. In Fig. 5A, the suppression of these three proteins was characterized 
with immunoblotting for a course of 2 h, 4 h and 8 h to evaluate the time course of the repression. At the fourth 

Figure 2.  (A) Acrylamide gel electrophoresis and staining of the nanoconstruct (i) the four arms holliday 
junction strands without the aptamer, (ii) nanoconstruct with the aptamer strand and (iii) nanoconstruct with 
aptamer as well as all three antisense RNA hybridized to the overhanging sequences. Atomic force microscopy 
(B) and dynamic light scattering (C) had revealed that the nanoconstruct was approximately 28.64 ± 2.53 nm.
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hour mark, we noticed that all three proteins were suppressed to between 42–49%. Their collective reduction in 
level had demonstrated that the three antisense strands had been successfully delivered into the cell. The recovery 
of their expression level collectively after 8 hours was subsequently observed and this was within our expecta-
tions, as the antisense RNA strands used in this study did not have any special chemical modification and would 
undergo rapid degradation. In conjunction with the increasing up-regulation of phosphorylated p53 level over 
the 8 hour period, this had strongly implied that while the suppression was a relatively transient affair, the initial 
shock imposed by repressing these three proteins at the same time were sufficiently disruptive enough to trigger 
series of cell apoptosis events, ultimately contributing to cell death of up to 82% at the 24 hour mark as far as 
quantification was concerned. Our observations may defer from the important report by Kracikova et al.54 by 
which that the maintenance of high p53 levels was deemed as a prerequisite for inducing cell apoptosis. However, 
this study could not be directed comparatively with that report as we had deliberately suppress three proteins in a 
simultaneous fashion although it is important to note that this was not the first time that this simultaneous repres-
sion of multiple protein target was attempted55, 56. Nonetheless the general consensus was that multiple protein 
suppression in a concurrent fashion could indeed shortened the time-line required for apoptosis (24 hours)56–58 
and our findings here were no different.

Furthermore, in order to demonstrate that this nanoconstruct was easily programmable as a proof of con-
cept, we decided to introduce three separate RNA antisense strand (8 picomoles) that would simultaneously sup-
pressed the same metastatic Twist protein and we were able to obtain an even early repression at the 2 hour mark 
of up to ~77% (see Supplementary Figures 2 and 3). Even the downstream vimentin protein was also repression 
by upstream suppression of the Twist protein for up to 8 hours (see Supplementary Figure 3).

Conclusion
Herein, we had demonstrated the feasibility of using a small holliday junction-type nanoconstruct to simultane-
ously delivery three antisense RNA strands for the suppression of AKT, MDM2 and Survivin proteins in-vitro. 
While the detected suppression event was relatively transient, this package was sufficiently detrimental towards 
the contribution of rapid apoptosis within 24 hours. Antisense RNA selected for this work was unmodified with 

Figure 3.  Stimulated emission depletion (STED) microscopy on MDA-MB 231 breast cancer cells incubated 
with FITC tagged nanoconstruct after 2 hours. (A) FITC tagged nanoconstruct with aptamer gaining entry into 
cells hence resulting in fluorescence within the cytoplasm while (B) FITC tagged nanoconstruct without the 
aptamer was unable to transfect the cells and fluorescence was found to be localized near the outer membrane. 
Light microscopy of the 231 cells at the 4-hour mark after transfection with (C) lipofectamine with the three 
single strands antisense RNA and (D) the nanoconstruct with AS1411 aptamer and three hybridized antisense 
RNA. Note the morphological disturbance induced by the presence of the lipofectamine where overall became 
stouter with lesser protrusions radiating out.
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the intentions for facilitating their rapid clearance from the biological system. Preliminary studies had shown that 
the administration of the nanoconstruct and the uptake did not affect its morphological characteristics compared 
to conventional lipofectamine based technologies and the nanoconstruct was especially cell-specific by merely 
interchanging the aptamer sequence. By assembling the nanoconstruct in the form of four immobile arms of the 
holliday junction, we believed that the structural arrangement may help to negate the effects of Ribonuclease 
cleavage which in turn confer certain structural stability. Based on the results garnered in this paper, holliday 
junction type architecture may present itself as another alternative for designing antisense therapeutics and work 
on in-vivo models would follow shortly.

Methods and Materials
Unless otherwise specified, all chemicals and reagents were used as received. Primary antibodies were purchased 
from the following sources: MDM2 (Catalog Number: GTX100654) was purchased from Genetex, Survivin 
(Catalog Number: NB500-201) was acquired from Novus Biologicals and AKT (Catalog Number: #4691) was 
obtained from Cell Signalling. Anti-rabbit IgG, HRP-linked Antibody (#7074) was purchased from Cell Signalling 
as well. DMEM/F12 cell culture media, EGF (20 ng/ml), Insulin (10 ug/ml) was purchased from Invitrogen while 
Hydrocortisone (0.5 mg/ml) was from Sigma. 5% Horse Serum was acquired from HyClone Donor Equine Serum 
(#SH3007403) while Fetal Bovine Serum was purchased from Gibco®.

Cell culture.  All cell cultures were incubated in 5% CO2 incubator at 37 °C. MDA-MB-231 cells were cultured 
in DMEM-F12 supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin. 90% RMPI 1640 
medium, 10% fetal bovine serum and 1% penicillin-streptomycin was used to maintained AGS cells. Upon reach-
ing 80% confluency, the cells were treated with trypsin after washing with PBS (3 times). The detached cells were 
centrifuged at 1000 rpm for 5 minutes. The pellets were then resuspended with growth medium at appropriate 
dilution, and cultured in a new 75 ml polystyrene cell culture flask.

Figure 4.  Apoptosis level on (A) MDA-MB 231 cells after 24 hours showing that at 32 pmoles, the 
nanoconstruct was able to induce cellular apoptosis of up to 82%. (B) 24 hour cell count from the incubation 
of the MDA-MB 231 and AGS cells with nanoconstruct that was constructed with the AGS-selective aptamer, 
AS1411 and when no aptamer was used. The absence of aptamer did not shown any appreciable reduction in 
numbers for both cells types. (C) 16 picomoles of single stranded antisense RNA was packaged with commercial 
lipofectamine 3000 and 231 cells were transfected without any notable changes in cell numbers after 24 hours.
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The medium recipe for MCF-10A cells was adapted from Brugge’s lab. In brief, MCF-10A cells were grown 
at 37 °C incubator with 5% CO2 with DMEM and Nutrient Mixture F12 (Ham) (Invitrogen) with high glucose 
containing L-glutamine, pyridoxine hydrochloride, and HEPES buffer supplemented with 5% Donor Equine 
Serum (Hyclone), 20 ng/ml Epidermal Growth Factor, 0.5 mg/ml Hydrocortisone, 10 ug/ml Insulin, and 1% 
penicillin-streptomycin.

Nanoconstruct assembly and purification.  All DNA and RNA were obtained from Invitrogen™ unless 
otherwise specified. To assemble the holliday junction nanoconstruct, the following sequences were selected to 
form a holliday junction with 4 overhanging ends that are complementary of the the individual RNA antisense 
strands and the respective aptamer sequence are also as listed below:

Holliday Junction 1 = 5′TTTGTGCAGCCAACCCTCCGTGTGTGTGCCATAGTGCATTGCGAGAGAGAG 3′
Holliday Junction 2 = 5′ATACTATCAGATTTGTGGCTTTCCTTTGCATTCGGACTATGGCACACACAC 3′
Holliday Junction 3 = 5′GCAGTGGATGAAGCCAGCCTTAAGGCCCGTGCTCACCGAATGCAAAGGAAA 3′
Holliday Junction 4 = 5′GGGGGGGGGGGCTCTCTCTCGCAATGCTGAGCACGGGCCTTAA 3′
AS1411 (nucleolin) aptamer = 5′ GGTGGTGGTGGTTGTGGTGGTGGTGG CCCCCCCCCCC 3′59

�AGS cell specific aptamer = 5′ CGACCCGGCACAAACCCAGAACCATATACACGATCATTAGTCT 
CCTGGGCCG CCCCCCCCCCC 3′60

Three strands of antisense RNA was selected from well-cited sources in literature and was shown below:

AKT: 5′ GGAGGGUUGGCUGCACAAA 3′61, 62

MDM2: 5′ GCCACAAAUCUGAUAGUAU 3′63, 64

Survivin: 5′ GGCUGGCUUCAUCCACUGC 3′36, 65

To assembly the full nanoconstruct, all received oligomers (DNA and RNA) were firstly resolubilized in Rnase 
Free DEPC water (Invitrogen™) and 1 nmol for each strands (seven in total) were collectively pooled to a PCR 
tube and annealing buffer (10 mM Tris, pH 7.5–8.0, 50 mM NaCl, 1 mM EDTA) was added to bring the mixture to 
a final volume of 100 μl. The oligomer mixture was then mixed well before subjecting to the thermocycler (Biorad 
MJ Mini-personal Thermal Cycler) to 95 °C and held for 10 minutes. The temperature was then slowly reduced to 
4 °C over 30 minutes before purification.

The nanoconstruct was purified using an 8% native polyacrylamide gel in Tris/Borate/EDTA buffer. The 
gel was sectioned out according to the size of the fully assembled nanoconstruct (a lane was stained with EtBr 
as a guideline). The sections were crushed and transferred to Nanosep® MF centrifugal devices and spun at a 
17949 × g for 10 mins. All purified nanoconstruct was quantified with UV-Vis Spectrophotometer (Eppendorf 
Biophotometer plus) at 260 and 280 nm. The “roadmap” of the nanoconstruct was as shown in Supplementary 
Figure 1.

Figure 5.  (A) Levels of suppression of Survivin and expression of p53 for 2 h, 4 h and 8 h for MBA-MD 231 
cells. (B) Light microscopy images of the three cell types using nanoconstruct with the AS1411 aptamer. Cell 
population had been observed to reduce for the MBA-MD 231 cells and AGS while the non-tumorigenic cells 
MCF-10a did not exhibit any appreciable loss in cell number as well as cell morphology.
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Cell count analysis.  For all cell types, the cells were seeded at a density of 2 × 104 in a 24-well plate and then 
transfected with the nanoconstruct at the nanoconstruct concentrations of 4, 8, 16 and 32 picomoles (plated out 
in quadruplicates) for 24 hours. The cells were washed three times with phosphate-buffered saline and resus-
pended with 0.05% Trypsin-EDTA for ~15 mins. After which, 10 μl of the cell suspension was loaded into a hemo-
cytometer and counted according to the manufacturer’s protocol. Statistical analysis of differences was performed 
via a one-way ANOVA analysis whereby P value of ≤0.05 was taken as statistically significance.

Immunoblot.  For immunoblotting, the cells were seeded at a density of 1 × 106 and co-incubated with the 
nanoconstruct. Total protein concentration was determined by bicinchoninic acid assay (Thermo Fisher). Whole 
cell lysates were resolved by SDS-PAGE and transferred onto polyvinylidene fluoride membrane (Milipore) 
using a wet transfer system (Hoefer) with a Tris-glycine buffer containing 20% methanol. The membrane was 
then blocked with 3% bovine albumin serum in Tris-buffered saline with 0.1% Tween-20 (TBST) for an hour 
room temperature and gently washed twice with TBST. The membrane was probed with antibodies against 
Akt (Cell Signaling), MDM2 (Genetex), phosphorlayted-p53 (Novus Biologicals), and GADPH (Genetex) for 
~16–18 hours at 4 °C and washed three times for ~10 mins with TBST. Afterwards, the blot was detected with 
HRP-linked Anti-rabbit IgG antibodies (Cell Signaling) for an hour at room temperature and followed by three 
washes with TBST for ~10 mins. The blot was developed using Immobilon Western Chemiluminescent HRP 
Substrate (Milipore).

Negative staining for transmission electron microscopy.  The following staining protocol was 
adapted from Sir William Dunn School of Pathology. In brief, Uranyl acetate was dissolved in deionized water to 
prepare a 2% stain solution. The nanoconstruct was diluted by 10-folds in DEPC-treated water. Equal ratios of 
the stain solution and nanoconstruct were combined. The mixture loaded onto the grid for ~30 seconds and then 
absorbed with filter paper. Transmission electron microscopy was performed on Hitachi HT7700 platform at an 
acceleration voltage of 70 kV.

Atomic Force Microscopy.  Atomic force microscopy (AFM) images were acquired using Bruker 
Dimension Icon AFM system using an in-build AFM tapping mode. Scan area on the surfaces were of 0.3 μ 
m × 0.3 μ m and the scan speed was set at 0.5 hz with the integral and proportional gain set at automatic mode. 
Post image processing was performed with Gwyddion MacOS version 2.38.

Dynamic Light Scattering.  Particle size of the nanoconstruct was determined using a disposable plastic 
cuvette through the Zetasizer Nano (Malvern #ZS90) at room temperature using DEPC water as the solvent.

Super Resolution Microscopy.  To evaluate the uptake of the nanoconstruct, the four arm holliday junc-
tions with the AS1411 aptamer was assembled without antisense RNA but was replaced with a FITC-tagged 
complementary strand to holliday junction 2 (5′ GCCACAAATCTGATAGTAT 3′). The fluorescence labeled 
nanoconstruct (16 picomoles) was administrated to MDA-MB-231 cells at density of 1 × 106. After 2 hours, 
the cells were washed 3 times with PBS followed by the nominal fixation protocol with paraformaldehyde and 
stained with Alexa Fluor® 594 phalloidin before mounting on cover slips. The surfaces were then examined 
under Nikon® N-SIM super resolution microscopy using using an oil immersion objective lens CFI SR at laser 
wavelength of 488 nm and 561 nm for the visualization of the nanoconstruct carrying FITC and the cell mem-
brane respectively. Image processing was done with NIS Elements Revolutionizes Imaging software (Nikon 
Corporation, Shinagawa-ku, Tokyo, Japan).
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