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Imputation-Based Whole-Genome 
Sequence Association Study 
Rediscovered the Missing QTL for 
Lumbar Number in Sutai Pigs
Guorong Yan1, Ruimin Qiao2, Feng Zhang1, Wenshui Xin1, Shijun Xiao1, Tao Huang1, Zhiyan 
Zhang1 & Lusheng Huang1

Resequencing a number of individuals of various breeds as reference population and imputing the 
whole-genome sequences of individuals that were genotyped with medium-density chips to perform 
an association study is a very efficient strategy. Previously, we performed a genome-wide association 
study (GWAS) of lumbar number using 60K SNPs from the porcine Illumina chips in 418 Sutai pigs and 
did not detect any significant signals. Therefore, we imputed the whole-genome sequences of 418 Sutai 
individuals from 403 deeply resequenced reference individuals and performed association tests. We 
identified a quantitative trait locus (QTL) for lumbar number in SSC1 with a P value of 9.01E-18 that was 
close to the potential causative gene of NR6A1. The result of conditioning on the top SNP association 
test indicated that only one QTL was responsible for this trait in SSC1. The linkage disequilibrium (LD) 
drop test result for the condition of the reported potential causative mutation (c.575T > C missense 
mutation of NR6A1) indicated that this mutation was probably not the underlying mutation that 
affected lumbar number in our study. As the first trial of imputed whole-genome sequence GWAS in 
swine, this approach can be also powerful to investigate complex traits in pig like in human and cattle.

Pigs were first domesticated from wild boars (Sus scrofa) approximately 10,000 years ago1. Thus, a large num-
ber of traits have changed dramatically, including more docile behavior, larger litter size and increased carcass 
length. The number of vertebrae associated with carcass length varies among breeds. Compared to the wild boar, 
European commercial pigs have 2–4 more vertebrae2. Because of its importance, this trait has received consider-
able attention. A quantitative trait locus (QTL) on chromosome 1 that affects the carcass in swine was identified 
in 1998 using a Meishan × White reciprocal backcross population3. In addition, a QTL significantly affecting ver-
tebral number that is located extremely close to the QTL affecting carcass length on SSC1 was discovered in the 
Meishan × Gottingen cross population4. Furthermore, two additive quantitative trait loci (QTLs) on chromosome 
1 and chromosome 7 were identified for the number of vertebrae using nine F2 families, including European 
breeds, Asian breeds, and miniature pigs5. Subsequently, to further investigate these two QTLs, fine mapping was 
carried out and the NR6A1 gene was found to be a potential gene controlling the number of lumbar vertebrate; 
later, the c.575T > C missense mutation of this gene was suggested to be the potential mutation affecting the num-
ber of lumbar6. However, the QTL located on SSC1 was not detected in the Sutai population.

With the rapid development of SNP genotyping technology, genome-wide association studies (GWASs) have 
become a very effective and widely used approach to identify genetic variants associated with complex diseases 
or traits across the entire genome7. Using this strategy, several SNPs and QTLs and some quantitative trait genes 
(QTGs) were recently uncovered for economically important traits in pig breeds8–11. However, the power of 
GWASs is limited by the current density of SNP chips. The average density of the porcine SNP chips is much 
lower than the linkage disequilibrium (LD) block of most native breeds12, and as a result, several QTLs are miss-
ing from GWASs based on Illumina 60K porcine SNP chips. To improve the reliability and accuracy of GWASs, 
the use of high-density SNPs or even whole-genome sequence data to reperform the GWAS based on low-density 
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SNPs is needed to identify missing QTLs. With the rapidly decreasing costs of next-generation sequence tech-
nology and the increasing accuracy of sequencing, numerous researchers have employed sequencing or rese-
quencing to understand the demography, diversity and selection sweep of the investigated animals13–15. However, 
resequencing thousands of individuals and then determining associations for economically important traits is 
still an inefficient strategy. A more efficient approach is to impute the whole-genome sequence genotypes of 
individuals genotyped with medium-density chips using a previously sequenced reference population, and then 
determine associations between imputed genotypes and traits of interest using well-developed GWAS software. 
This approach is very popular for human disease studies, such as HapMap16 and the 1000 Genomes Project17, 
which provided standard reference panels. This approach has also worked very well in cattle, such as the 1000 
bull genomes project (Run 2.0)18, 19. To the best of our knowledge, there are still no GWASs using whole-genome 
resequenced data in pigs.

Previously, we performed a GWAS using 60K porcine Illumina chips in Sutai pigs to detect the association 
loci for lumbar number. We expected to identify significant loci for this trait in Sutai pigs because this breed 
originated from Duroc and Erhualian pigs, which have similar paternal and maternal structures of an advanced 
intercross resource family20. Unexpectedly, no association signals were identified in Sutai pigs for lumbar num-
ber, which was different from the results of most published QTL mapping studies. Therefore, we hypothesized 
that the non-significant result may have arisen because of the low LD between causal mutation and nearby SNPs. 
To increase the detection power and decrease the cost of the GWAS, we first imputed the genotypes of 60K 
chips to the genotypes of whole-genome sequence variants in Sutai pigs using a reference panel containing 403 
deep-sequenced individuals. Then, we used the imputed genotypes to reperform GWAS for the same phenotypes 
with the objective of determining whether there was a genetic variation in NR6A1 associated with lumbar number 
in this breed. As noted above, the c.575T > C missense mutation of NR6A1 was the strongest potential candidate 
for lumbar number. However, the causality of this SNP in Sutai pigs was unknown. In this study, we genotyped 
this mutation to estimate the imputation accuracy and its causality in Sutai pigs.

Methods
Ethics statement.  All the experiments that involved animals were performed in accordance with the guide-
lines approved by the Ministry of Agriculture of China. Approval was obtained from the ethics committee of 
Jiangxi Agricultural University before this study.

Animals of the target population.  The target population of Sutai pig is a synthesized swine breed pro-
duced by crossing the Western Duroc and Chinese Erhualian breeds with continued selection for 19 generations. 
For the present study, we genotyped and phenotyped 526 individuals. The pigs were raised with the same fodder 
under uniform circumstances and slaughtered at 240 days of age in a commercial slaughterhouse. After the har-
vest, the carcasses were cut into halves and the numbers of lumbar vertebrae were counted and recorded. The 
lumbar number was either 5 or 6 in 436 pigs, including 206 gilts and 230 barrows, and the lumbar number was 
not available for 90 animals. More detailed information on the pigs’ environment and other phenotype data for 
these experimental animals were provided in our previous study21.

Genomic DNA samples were extracted from ear tissue using the standard phenol/chloroform method22, and 
the samples were diluted to a standardized concentration of 50 ng/µl after the quality was checked. A total of 526 
samples were genotyped using Illumina PorcineSNP60 Beadchips, including 62,163 SNPs, on an iScan System 
(Illumina, San Diego, CA, USA)23. Quality control (QC) was conducted using PLINK (v1.90 beta) to detect and 
exclude unreliable genotypes24. SNPs with a missing rate of each marker (geno) >0.1 or with minor allele fre-
quency (MAF) <0.05 were excluded. Individuals with a call rate <0.9 were also removed. To maintain consist-
ency with the sequencing data, the primer sequences of each SNP were aligned to the reference porcine genome 
assembly Sus-scrofa 10.2 using BLAST to detect their positions and forward (reverse) strand information. SNPs 
without positions were excluded, and the genotypes of reversed SNP strands were flipped using PLINK software.

Haplotype construction of the reference panel.  In this study, a wide collection of 403 whole-genome 
sequence data from 10 different pig populations15, 25–27 was used as a reference and each breed contained 9 to 86 
pigs. More details on the breeds, origins and sample size are listed in Table 1. The sequencing coverage of these 
individuals ranged from 5 to 25. The raw reads were cleaned based on a quality score threshold >15, which passed 
chastity filtering and would be then aligned to the reference porcine genome assembly Sus-scrofa 10.2 using 
BWA (Burrows-Wheeler Aligner)28. Variants were identified following the GATK (Genome Analysis Toolkit)29 
best practice protocol. PCR duplications were first marked by Picard MarkDuplicates (http://broadinstitute.
github.io/picard/), and local realignments were performed with GATK IndelRealigner. Individual GVCF files 
were produced using GATK Haplotypecaller. Variants were called and filtered with GATK Genotype GVCFs 
and VariantFiltration options. Structural variants were removed with VCFTOOLS30. With cleaned SNP data, the 
haplotypes of 403 individuals were constructed using Beagle (v4.1)31.

Imputation.  Imputation from 60K SNPs to whole-genome sequences for Sutai pigs was conducted with 
Beagle (v4.1)32 using the default parameter settings, and the size of each sliding window was set to 7,000,000 bp. 
This software is based on a hidden Markov Chain Monte Carlo algorithm for imputation that first constructed 
local haplotypes using the MCMC algorithm and then resampled new estimated haplotypes for each individual 
using the HMM model.

Because of the very low density and common variants (MAF > 0.05) in 60K (Illumina, San Diego, CA, USA), 
imputation accuracy should be investigated in whole-genome sequence data. We used a 15-fold cross-validation 
strategy described in several previous studies33–35. Ninety individuals were selected randomly from the sequenced 
reference population as a target population for each fold (i.e. there would be some same individuals sampled in 
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different target populations), and the genotypes in this target population were reduced to the variants that were 
included in the 60K genotyping array. The remaining individuals (313) were included in the reference panel. Two 
validation actions were taken to calculate the accuracy of imputation. One action was allelic correct rate (CR), 
which calculated as the number of alleles imputed correctly divided by total alleles at each locus, and the more 
detailed formula (see equation (1)) was as follows:
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where m and N are the number of individuals and SNPs, respectively, and Obs (nij) and Imp (nij) are the observed 
and imputed numbers of allele “1” for individuals i at marker j, respectively. The other action was the correlation 
coefficient between true and imputed SNPs. To investigate the imputation accuracy impacted by MAF, we classi-
fied CR and correlation into 10 classes with regard to the MAF of imputed SNPs. The accuracy of imputation was 
the mean CR or correlation across 15 folds for each class.

GWAS analysis.  The associations between lumbar number and imputed genotypes were tested using 
GEMMA (v.0.93)36. This method implements a mixed model37 (see equation (2)) including covariates when we 
carried out conditional association test and LD drop association test, SNP effects, individual effects and residual 
error, which were calculated with the following formula:

β ε ελτ τ= + + + ∼ ∼− −a uy W x u K I; MVN (0, ), MVN (0, ) (2)n n n
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where y is the vector of phenotypes; W is a matrix of covariates, including a column of 1s; α is a vector of the cor-
responding coefficients, including the intercept; x is a vector of genotypes; β is the effect of markers; u is a vector 
random effect following the multivariate normal distribution (see equation (2)), in which τ−1 is the variance of the 
residual errors, λ is the ratio between τ−1 and ε, and K is a kinship matrix that is estimated from whole-genome 
sequence variants; ε is a vector of errors following the multivariate normal distribution (see equation (2)) and In 
is an identity matrix. Using naïve Bonferroni corrections of 0.05 divided by the number of examined SNPs would 
lead to an overly conservative threshold because these SNPs were highly correlated with each other. Pe’er et al. 
and Johnson et al. suggested that 5E-08 could serve as a genome-wide significant threshold in human GWASs 
based on haplotype blocks of an African population structure38, 39. Based on the assumption that an equal num-
ber of independent haplotype segments between pigs and humans are held, we used the same genome-wide 
threshold in our study. The model for the GWAS of Sutai pigs with 60K genotypes was the same as that used for 
whole-sequence association tests and the kinship matrix was estimated either from 60K SNPs (original SNP-data) 
or whole-genome sequence variants. To make the results comparable, the values of the 60K marker from the 
results of the whole-sequence association study were extracted for comparison.

LD analysis.  To detect the linkage disequilibrium (LD) of SNPs near the most significant SNPs in the GWAS 
results, the 3 Mb region near the top SNPs in the whole-sequence association results was used to conduct LD 
analysis by extracting genotypes from the 60K data set using Haploview (v.4.2) software40. Haplotype blocks were 
then estimated with a confidence intervals algorithm in Haploview.

Genotyping of c.575T > C locus.  Variation of the c.575T > C (rs326780270) of NR6A1 in Sutai pigs was 
detected following the methods of Yang et al.41. Briefly, a 360 bp segment was amplified and cut into two pieces of 

Breeds
Sample 
Size Coverage Data Origin

Duroc 32 ~25, 8 JXAU*, WAU26, 
Korea27

Erhualian 29 25 JXAU15,*

Large White 86 25, 8 JXAU*, WAU26, 
Korea27

Western Commercial 36 25, 8 JXAU*, WAU26, 
Korea27

CNH_Y 9 25, 8 JXAU15, WAU26

Wild Boar 34 25, 8, 5 JXAU15, WAU26, 
SCAU25

CNNorth 24 25 JXAU15,*

CNSouth 24 25 JXAU15,*

Tibetan 85 25, 5 JXAU15,*, SCAU25

CNElse 44 ~25 JXAU15, WAU26, 
SCAU25

Table 1.  The components of the reference panel. Breed and origin abbreviations: CNH_Y: China Huai River 
and Yangtze River area pig; CNNorth: China North pigs; CNSouth: China South pigs; CNElse: China local 
pigs from other places. JXAU: Jiangxi Agricultural University; WAU: Wageningen University; SCAU: Sichuan 
Agricultural University; Korea: Korea University. *These part of data were sequenced by our laboratory and 
accessible under readers’ requirement.
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183 and 177 bp for allele C at the position of 299,084,752 bp on SSC1. Genotypes of this locus were then identified 
through agarose gel electrophoresis.

Conditional association test.  To elucidate whether there are additional QTLs for lumbar number on SSC1, 
we performed a conditional test by including the genotypes of the top SNPs as a covariance to the mixed model 
and retested the association between SNPs and phenotypes. If no additional signal was detected, then there was 
only one QTL that affected lumbar number. Otherwise, there were multiple QTLs that cooperated to control 
lumbar number.

LD drop association test.  To determine whether NR6A1 c.575T > C was the mutation that determined 
lumbar number in Sutai pigs, we performed an LD drop test by including the genotypes of NR6A1 c.575T > C in 
the mixed model framework to determine how rapidly the association with the signal decreased.

Results
SNP characteristics after QC in the target panel.  After QC, 11,338 variants were excluded for the lack 
of chromosome position information, 42 pigs were removed due to a low genotype call rate, 3,229 variants were 
removed due to a low call rate and 9,804 variants were excluded for low minor allele threshold(s). Finally, a total 
of 37,792 SNPs and 484 pigs were introduced to perform further analyses.

Summary of imputation.  Imputation was produced using Beagle software. The summarization of impu-
tation results is presented in Table 2. After imputation, we obtained 87,552,595 SNPs for 484 individuals, and 
20,985,704 SNPs were kept after filtering with MAF > 0.01. SSC1 was selected for 15-fold cross-validation to 
calculate the imputation accuracy tested by CR and correlation related to MAF. The correct rate decreased when 
MAF increased. In contrast, the correlation increased along with the increase of MAF (Fig. 1). The average CR 
was 0.90 with maximum and minimum values varying from 0.98 to 0.86 across MAF. The average correlation was 
0.80 with maximum and minimum values ranging from 0.86 to 0.74.

Summary of GWAS.  We conducted a GWAS on the Sutai population in two scenarios, i.e., the target panel 
data before and after imputation. In the scenario for before imputation, as noted above, no significant loci were 
detected in Sutai pigs using 60K chips (Fig. 2a, which contains the 60K original data), and P values positioned 
on the 60K original data were extracted from sequencing GWAS (which included the 60K imputed data). To 
further compare array based result to sequences based result underlying the same kinship matrix, we extracted 
P values positioned on the 60K chips from result of sequencing GWAS. The Manhattan plots of the 60K imputed 
data results are shown as Supplementary Fig. S1. Both results confirmed that no significant QTLs were located 
on SSC1 when only 60K SNPs were used. The association P values of the top SNP in the 60K imputed data and 
the 60K original data were 1.27E-06 and 2.99E-06, and the position of the top SNP in both results was 298972575 
(rs81352477) in chromosome 1. In the scenario with the sequence data, 105 genome-wide significant SNPs were 
uncovered (Table 3, Fig. 2b) on SSC1 within a 4.6 Mb region (298,912,325 bp-303,530,285 bp). Furthermore, 
the proposed causal gene, NR6A1, for lumbar number6 was located in this region. However, the P value of the 

Chr
Before QC (SNP/
NIND)

After QC (SNP/
NIND)

Chr 1 9,369,975/484 1,930,649/418

Chr 2 5,734,943/484 1,430,107/418

Chr 3 4,910,467/484 1,242,704/418

Chr 4 4,774,170/484 1,139,870/418

Chr 5 3,816,805/484 961,177/418

Chr 6 5,216,961/484 1,264,513/418

Chr 7 4,663,028/484 1,153,610/418

Chr 8 5,035,221/484 1,185,766/418

Chr 9 5,392,245/484 1,344,280/418

Chr 10 3,405,060/484 1,028,000/418

Chr 11 3,347,457/484 853,465/418

Chr 12 2,406,736/484 660,770/418

Chr 13 7,186,391/484 1,442,485/418

Chr 14 5,407,899/484 1,282,555/418

Chr 15 4,998,888/484 1,105,999/418

Chr 16 3,266,711/484 815,314/418

Chr 17 2,608,589/484 686,832/418

Chr 18 2,373,396/484 602,229/418

Chr 19 3,637,653/484 855,379/418

Whole genome 87,552,595/484 20,985,704/418

Table 2.  The distribution of SNPs in different chromosomes. Chr: chromosome number; QC: quality control. 
the QC condition was MAF > 0.01 and 66 individuals were removed for the case of without phenotypes.
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Figure 1.  Evaluation of imputation accuracy MAF. The x-axis is the MAF range from 0 to 0.5, and the y-axis is 
imputation accuracy denoted by the correct rate (CR) and correlation. The pink line shows the CR, which was 
calculated as the number of alleles imputed correctly divided by the total alleles at each locus across MAF. The 
blue line shows the correlation between true and imputed genotypes at each locus across MAF.

Figure 2.  GWAS results for lumbar number trait. (a,b) Manhattan plots for lumbar number with the data 
before imputation (a) and after imputation (b). (c,d) c and d are the quantile-quantile plots. In the Manhattan 
plots, the y-axis and x-axis represent the negative log10 P value of the SNPs and the genomic positions 
separated by chromosomes, respectively. In Manhattan plot a, black solid lines indicate the 5% genome-wide 
Bonferroni-corrected threshold. In Manhattan plot b, the tomato puree points represent SNPs that exceeded the 
chromosome-wide significance threshold (−log10(5E-08)), and the black solid lines indicate the significance 
threshold. In quantile-quantile plots c and d, the y-axis and x-axis represent the expected and observed negative 
log10 P values, respectively.
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proposed causal mutation c.575T > C was only 2.26E-06 at the position of 299,084,752 bp (imputation accu-
racy, r2 = 0.95), which indicated much lower significance than the top SNP (P value = 9.01E-18) at a position of 
299,627,873 bp.

LD results.  By carrying out GWAS with imputation data, we identified the most significant SNP at a position 
of 299,627,873 bp as well as a total of 31 markers that were extracted from the significant region (3 Mb) in the 
60K data that were used to conduct LD analysis. The LD block was shown as follows (Fig. 3). Three blocks were 
detected on this region using a confidence interval algorithm. The most significant was the smallest block of 
approximately 212 kb, and the r2 among each SNP in this region was very low. The NR6A1 gene was not present 
in any block in this region.

Results of genotyping c.575T > C.  Among the 526 samples, a total of 382 pigs were genotyped on the 
c.575T > C locus. Subsequently, we obtained 187 CC genotypes, 166 CT genotypes and 29 TT genotypes (see 
Supplementary Table S1). To further confirm imputation accuracy, we compared imputed genotypes to real gen-
otyped genotypes on this locus and found that only 12 of 382 individuals had different genotypes. In other words, 
a very high allelic imputation accuracy (98.43%) was obtained at this locus.

Results of the conditional association test and LD drop association test.  After GWAS was per-
formed by including the most significant SNP from imputed GWAS results in a mixed model as a covariate, no 
additional genome-wide significant loci were detected on this chromosome, which indicated that only one major 
QTL affected lumbar number (Fig. 4a).

After fitting genotypes of NR6A1 c.575T > C into the mixed model for the LD dropping test, we still identified 
a genome-wide significant locus near the top SNP at a position of 299,432,549 bp with a P value of 1.93E-08. This 
result probably indicated that locus NR6A1 c.575T > C was not the causative mutation in Sutai pigs for lumbar 
number (Fig. 4b).

Discussion
Imputation-based association studies have achieved great success in humans42–45 and some livestock, such as 
cattle46. Both have resequenced more than 1000 individuals of multiple populations as reference panels, and the 
unrelated targets were genotyped using middle- (high-) density SNP chips. Whole-genome sequences of the tar-
get panel were imputed based on shared haplotype blocks between reference and target individuals and then were 
used to test associations of complex disease (traits) or to predict the genetic potential of economically important 
traits. Imputation accuracy ranged from 0.90 to 0.95 in cattle from the genotypes of an Illumina BovineHD 
genotyping array to whole-genome sequence data35. High correlations (0.64) were observed in humans with 
MAF = 0.1% when imputing an Illumina 1M SNP array to whole-genome sequences using a reference panel of 
64,976 haplotypes45. In our study, a total of 403 individuals were included on the reference panel, including 32 
Duroc and 29 Erhualian pigs, which are ancestors of the Sutai population. CR decreased and correlation increased 

Chr rs ps n_miss beta se l_remle l_mle p_wald

Chr 1 rs334252332 299,627,873 0 3.02E-01 3.35E-02 1.00E-05 1.00E-05 9.01E-18

Chr 1 rs331286845 299,560,236 0 3.12E-01 3.56E-02 6.58E-04 1.00E-05 5.84E-17

Chr 1 rs344688372 299,031,889 0 2.92E-01 3.48E-02 6.41E-02 1.46E-02 9.09E-16

Chr 1 rs333213419 300,706,429 0 3.01E-01 3.59E-02 9.87E-03 1.00E-05 9.22E-16

Chr 1 rs336248841 299,463,071 0 2.76E-01 3.36E-02 1.00E-05 1.00E-05 3.06E-15

Chr 1 rsxxxxxxxx1 299,590,806 0 3.01E-01 3.66E-02 1.00E-05 1.00E-05 3.06E-15

Chr 1 rs341631790 299,554,614 0 3.03E-01 3.74E-02 4.42E-02 1.00E-05 6.01E-15

Chr 1 rs320822074 299,569,286 0 2.98E-01 3.69E-02 1.91E-02 1.00E-05 8.34E-15

Chr 1 rs326834750 299,031,654 0 2.77E-01 3.45E-02 4.60E-02 1.00E-05 1.06E-14

Chr 1 rs334124688 299,663,720 0 2.91E-01 3.74E-02 7.20E-02 3.82E-04 7.46E-14

Chr 1 rs327909125 299,031,891 0 2.79E-01 3.70E-02 2.02E-01 1.69E-01 2.86E-13

Chr 1 rs329239802 299,464,519 0 2.72E-01 3.62E-02 6.56E-02 1.00E-05 3.67E-13

Chr 1 rs320616940 298,988,212 0 2.65E-01 3.58E-02 1.18E-01 1.00E-05 9.25E-13

Chr 1 rs319146997 299,462,559 0 2.62E-01 3.62E-02 7.32E-02 1.18E-02 2.45E-12

Chr 1 rs331600883 299,462,537 0 2.62E-01 3.62E-02 7.32E-02 1.18E-02 2.45E-12

Chr 1 rs334129807 299,554,649 0 2.83E-01 3.96E-02 1.61E-01 1.29E-01 4.86E-12

Chr 1 rs324516984 299,741,083 0 2.85E-01 3.99E-02 1.56E-01 1.18E-01 4.89E-12

Chr 1 rsxxxxxxxx2 299,561,306 0 2.86E-01 4.01E-02 1.77E-01 1.45E-01 5.05E-12

Chr 1 rs323786500 299,562,197 0 2.86E-01 4.01E-02 1.77E-01 1.45E-01 5.05E-12

Chr 1 rs320840172 298,943,126 0 2.47E-01 3.51E-02 8.59E-02 1.00E-05 9.23e-12

Table 3.  Description of the most significant 20 SNPs associated with lumbar number by GWAS. Chr: 
chromosome number; rs: SNP IDs and two SNPs that do not possess rs ID were named after rsxxxxxxxx1 
and rsxxxxxxxx2, respectively, by the author; ps: base pair positions on the chromosome; n_miss: number 
of missing values of the SNP; beta: beta estimates; se: standard errors for beta; l_remle: remle estimates for 
lambda; l_mle: mle estimates for lambda; p_wald: P value from the Wald test.
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along with an increase in MAF. CRs are highly sensitive to allelic frequencies and are not appropriate for com-
paring SNPs with different values of MAF47. Correlation is a more popular approach that is used to evaluate 
imputation accuracy. The correlation values ranged from 0.74 to 0.86 with an average of 0.80, which was lower 
than the results for cattle and human studies. Both were imputed from high-density chips (600K in cattle and 
1M in human) to sequenced data, and the reference panels were very large. In pigs, the vast majority of studies 
were based on genotypes from the 60K porcine Illumina BeadChip because a high-density panel (600,000 SNPs) 
that provides high-quality imputed genotypes in pig populations is currently impractical. Therefore, increasing 
the number of sequenced populations and individuals in the reference panel to improve imputation accuracy 
is necessary. Our GWAS results demonstrated that this was a powerful method to identify QTLs in agricultural 
animals, and this method will help researchers find new loci or rediscover QTLs associated with complex traits.

Since the first application of GWAS research on age-related macular degeneration was performed successfully 
in 2005 by Klein et al.48, GWAS has become an effective method for identifying genetic variations associated with 
economically important traits in agricultural animals. A recent GWAS study showed that the QTL for the number 
of vertebrae on chromosomes 1 and 7 independently influenced the numbers of thoracic and lumbar vertebrae49. 
Potentially significant signals could be missed in a GWAS analysis if low-density SNPs were applied to a popu-
lation that held a low LD characteristic, such as the results of our GWAS when only 60K SNPs were used before 
imputation and a highly significant QTL was uncovered for lumbar number after imputation. The LD between top 
SNPs in the 60K original association results (rs81352477) and top SNPs (rs334252332) in the sequence associa-
tion result was 0.75, indicating a medium correlation. The increased detection power was probably due to causal 
mutations being in the data by imputation. This result was further confirmed by displaying the LD profiles of 
markers near the top loci. The top SNP was located in the smallest haplotype block, and the r2 values among these 
SNPs in this region were very low, which hampered the discovery of association signals. Furthermore, no haplo-
type block was found near the NR6A1 gene, which implicated the low LD station in that region in the Sutai popu-
lation. The Sutai breed was intercrossed from Erhualian female and Duroc male for approximately 19 generations. 
Thus, the Sutai genome is a mosaic mixture of these two breeds. As a result, the LD block is smaller than the LD 
block in either of the two founder breeds. In this study, we identified 105 significant SNPs located on chromosome 
1 across a region of 4.6 Mb (298,912,325 bp–303,530,285 bp) associated with lumbar number, and the highest sig-
nal was located on 299,627,873 bp of chromosome 1. This region contains the NR6A1 gene, which was reported 
to be associated with lumbar number6. The results also showed that using whole-genome resequencing data to 
perform genotype imputation can be an effective method to identify the QTLs that were missed in low-density 
SNP GWAS analysis. The imputation method can also narrow the QTL region or improve the power when GWAS 
analysis is performed. To determine whether population stratification was corrected in this study, we exploited 
quantile-quantile plots (Fig. 2c and d) from the GWAS with 60K SNP data and imputed the sequenced data. The 

Figure 3.  Haplotype block of a significant region (3 Mb) of SSC1 in Sutai pigs. The NR6A1 gene (a) did not fall 
into any block in this region, and the most significant position (b) was located at 299,627,873 bp in the 454 kb 
block 3.
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two quantile-quantile plots with lambda values of 1.08 and 1.06 showed that the population stratification effect 
was adjusted very well, and the detected signal was most likely reliable.

Although we identified the same QTL as that identified in a previous study4, the reported potential causative 
mutation at position of 299,084,752 bp (c.575T > C)6 showed only a weak association with lumbar number in our 
study (P value = 2.26E-06). The possible reason for this result is that the QTN in the position of 299,084,752 bp 
may not be the causative mutation in the Sutai population. To confirm that NR6A1 c.575T > C was the causative 
mutation in our population, we performed an LD drop test by fitting genotypes of this locus into a mixed model. 
Normally, all significant signals nearby would disappear after correcting for causative mutation. The minimum P 
value increased from 9.01E-18 to 1.93E-08, which still indicated genome-wide significance. This result indicated 
that NR6A1 c.575T > C was not the causative mutation in our study. The results also indicated that we should 
recognize that the accuracy of imputation also affects the GWAS result. Several imputation studies in different 
species have shown that as the minor allele frequency in the target panel decreased, the imputation error rate 
increased34, 50. As shown in previous studies, the fundamental aspect of imputation is the identical DNA segments 
in the target and reference panels, and increasing the number of parents or male parents in a reference panel can 
increase the imputation accuracy51–53. In other words, if we can increase the number of individuals in the target 
panel and reference panel, the imputation accuracy will be increased. Mixing different breeds in a reference panel 
would thus improve imputation accuracy54. In this study, we mixed different pig breeds in the reference panel 
and executed strict quality control, such as MAF and call rate, in the target and reference panels. We achieved a 
high CR with an average of 90% and real genotypes of c.575T > C, which confirmed the high imputation accu-
racy (98.43%). Therefore, this factor may not be very critical in this study, but we also should pay more attention 
to exploring the factors that affect the imputation results in the future. In addition, a reassociation study using 
real genotypes at c.575T > C achieved a P value of only 3.89E-07, which further indicates that it was not associ-
ated with lumbar number in the Sutai population. To determine whether there are several causative mutations 
responsible for lumbar number, we performed a conditional test by adjusting the top SNP on SSC1 and conducted 
GWAS again. Additional significant signals would stand out if the multiple causative mutation hypothesis was 
true. In our analysis, there were no other QTLs associated with lumbar number, which means there is only one 
QTL that controls lumbar number on SSC1, whereas the causative mutation is not the same as that previously 
reported. Further functional studies, such as gene expression and site-specific editing technology, are necessary 
to confirm the possibility of causality for the top SNP in the Sutai population.

Figure 4.  GWAS results for lumbar number in two scenarios: conditional test and LD drop test. (a,b) 
Manhattan plots for lumbar number in the conditional association test and LD drop association test, 
respectively. In the Manhattan plots, the y-axis and x-axis represent the negative log10 P values of the SNPs and 
the genomic positions separated by chromosomes, respectively. In Manhattan plots a and b, the black solid lines 
indicate the chromosome-wide significance threshold (−log10(5E-08)), and in (b), the tomato puree points 
represent SNPs that exceeded the chromosome-wide significance threshold.
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In this study, we rediscovered the missing QTL for lumbar number in Sutai pigs using GWAS based on a 
whole-genome imputation strategy. This QTL includes the same potential causative gene, NR6A1, that was previ-
ously reported, while the top SNP differed from the previously reported potential causative mutation. This study 
illustrates the importance and effectiveness of uncovering the traits in agricultural animals using a whole-genome 
imputation approach and provides a solution that combines second-generation sequence data with GWAS. Our 
results also show that this approach can be a powerful strategy to analyze economically important complex traits 
in livestock. Along with developing good imputation software, exploiting more public database systems will con-
tribute to genotype imputation in the future.
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