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Electrolytic plasma processing-an 
innovative treatment for surface 
modification of 304 stainless steel
Wanyuan Gui1, Junpin Lin1, Guojian Hao1, Yuhai Qu1, Yongfeng Liang  1 & Hui Zhang2

There is widespread attention to surface profile and modification of 304 stainless steel for research 
development and application. Here, a successful electrolytic plasma processing (EPP) technique 
has been developed for both surface pretreatment and coating deposition of 304 stainless steel. 
Representative images confirm that the number of the pits increases and the ravines gradually 
disappear on the steel pretreated by EPP with the increase of processing time and applied voltage. 
Moreover, there is an obvious enhancement in surface roughness of 304 stainless steel after EPP 
pretreatment. In the case of coating deposition, the further EPP modification conducted on the 
pretreated sample offers a simple and effective technique for the production of zinc coatings having 
the features of full coverage and homogeneous distribution. The results show that a zinc coating with a 
thickness of approximately 0.5 μm can be obtained on the 304 stainless steel by means of EPP for only 
60 s.

The surface profile and properties of 304 stainless steel have been a great concern of research development and 
application in many fields, such as vehicle industry, desalination, and construction, etc, considering contaminant 
adhesion, corrosion issues, and performance optimization1–5. In particular, zinc coatings on the steel surface have 
been widely developed and used in order to provide corrosion protection and enlarge service life of the steel for 
industrial applications. However, conventionally galvanized methods, mainly including electroplating and hot 
dipping, have disadvantages of unfriend environment, or high energy consumption, etc refs 6–16. Moreover, 
there is a close correlation of the coating quality (e.g. adhesion and uniformity) to surface pretreatment associated 
with other processes such as acid pickling and ultrasonic cavitation etc. Thus, a new technique in a simple and 
competitive way has been greatly inspired to occur for surface modification of the steel.

Attempts have been made to use electrolytic plasma processing (EPP) as a relatively innovative means of 
surface treatment and coating for improving specific surface topographies and coating quality of metallic mate-
rials17–23. The formation of plasma on the surface of anodic or cathodic substrate, which depends on the polarity 
of applied voltage, gives the capability to carry out anodic or cathodic EPP for various surface engineering. For 
the anodic EPP, it has been usually associated with surface passivation and coating, leading to oxidizing, carbur-
izing, and/or nitriding of the electrode surface24–26. While the cathodic EPP has been used for preparing metal 
nanoparticles or depositing metallic coating27, 28. Moreover, it has been realized that the cathodic EPP can both 
remove surface contaminants and boost filming kinetics, as it overcomes the issues of traditional methods. A 
good feasibility to form Zn or Al coating on the high Nb-TiAl alloy and steel via the cathodic EPP has been also 
confirmed, according to thermodynamic analysis and simulation in our previous work20. However, there is a lack 
of experimental evidences for surface modification and coating features on the metallic materials.

In this work, EPP is extended to pretreat the steel surfaces and deposit the zinc coatings on 304 stainless steel. 
The main aims here are thereby to verify that EPP can be effectively carried out for both surface pretreatment 
and coating deposit on 304 stainless steel, and to investigate the influence of EPP parameters (i.e. processing time 
and applied potential) on surface microstructure and features of the steel surface and zinc coating. The results 
obtained can provide practical guidance of a highly effective and efficient EPP way in surface modification of 304 
stainless steel and other metallic materials for favorable application.
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Results
EPP has been successfully employed for both surface pretreatment and coating deposition of 304 stainless steel. 
The effect of EPP duration and applied voltage have been also studied on the surface microstructure and char-
acteristics of the steel. It can be confirmed that there is an enhancement in the size and quantity of craters on the 
steel pretreated by EPP with the increase of processing time and applied voltage due to the increased number and 
intensity of plasma discharge. In the meanwhile, surface roughness of 304 stainless steel after surface pretreatment 
of EPP also increases, suggesting that the pretreated surface could provide favorable feasibility for the coating 
growth with good adhesion. Thus, a zinc coating with a full coverage and homogeneous distribution after further 
EPP treatment has been verified to form on the surface of the pretreated steel. More importantly, the surface mod-
ification of 304 stainless steel can be performed in a highly efficient and effective way by means of EPP.

Discussion
Surface morphology. Differences are observed concerning the surface morphology of 304 stainless steel 
treated by EPP at an applied potential of 110 V with various processing time (0–180 s) as given in Fig. 1. The 
surface of the untreated 304 stainless steel before EPP displays clear ravine-like texture. When operating EPP at 
110 V, a strong electric field can be formed across the electrode gap, leading to the evolution of mass hydrogens at 
the surface of the workpiece. The hydrogen plasma is thereby generated in a thin electrolyte layer just above the 
sample surface as shown in Fig. 2. After EPP treatment of 20 s, sharp edges on the steel surface tends to be smooth 
and surface craters occur. This can be attributed to local melting of the steel surface resulted from joule heat and 

Figure 1. FESEM image of 304 stainless steel after EPP at an applied potential of 110 V for various intervals: (a) 
0 s; (b) 20 s; (c) 40 s; (d) 60 s; (e) 120 s; and (f) 180 s.

Figure 2. Schematic illustration of surface modification via EPP.
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hydrodynamic instability caused by solvent electrolysis. In the meantime, the generation and extinction of hydro-
gen bubbles created forceful pressure and shock wave at the surface, removing surface scale and contaminations. 
As reaction time extends, the surface becomes more rough and mossy, as well as the size and quantity of craters 
arise because of the increased number of plasma discharge channels releasing a large amount of energy on the 
surface29–32. When the EPP treatment increases 180 s, shown in Fig. 1(f) is the uniform distribution of globules 
and pits in a typically intersectional characteristics. The diameters of the globules and pits are about 0.3–0.5 μm 
and 0.5–0.8 um, respectively. The consequence above can be explained by the formation and effect mechanism of 
plasma in the reports for other metallic materials33.

Figure 3 displays the surface micrographs of the samples treated by EPP to determine the effect of applied 
potential and processing time on the steel surface. In the case of time extension, there is a similar trend to the 
results in Fig. 1, showing a gradual increase in size of microstructural crater and produced area of mossy surface. 
With an increase of the applied voltage from 110 V to 130 V with the same reaction time (180 s), as shown in 
Fig. 3(f–h), the diameters of the globules and pits increase more than doubles. These results can be attributed 
to the increase of discharge voltage and discharge energy, as a results, breakdown of electrolytic plasma bubbles 
constantly releases a large amount of energy and pressure on the sample surface34, 35.

Three-dimensional morphology and surface roughness. 3D topography of 304 stainless steel treated 
by EPP with an input voltage of 120 V for various time are shown in Fig. 4. It can be verified that there is the same 
change trend of the 3D surface topography and surface morphology depicted above as a function of processing 
time. Before EPP treatment, there is clear ravine-like texture existing at the surface of the 304 stainless steel, 

Figure 3. FESEM image of 304 stainless steel treated by EPP through using various applied potentials and 
intervals: (a) 120 V, 0 s; (b) 120 V, 20 s; (c) 120 V, 40 s; (d) 120 V, 60 s; (e) 120 V, 120 s; (f) 120 V, 180 s; (g) 110 V, 
180 s; and (h) 130 V, 180 s.

Figure 4. 3D topography of 304 stainless steel before and after EPP with an input voltage of 120 V for different 
processing time: (a) 0 s; (b) 20 s; (c) 40 s; (d) 60 s; (e) 120 s; and (f) 180 s.
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as shown in Fig. 4(a). With the increase of EPP interval under an applied voltage of 120 V, height fluctuation 
becomes smaller in the microscopic texture and more pits form on the steel surface under the shock wave of 
hydrogen plasma. This suggests that the surface modified with the extension of EPP duration (e.g. 120 and 180 s) 
uniformly distributes abundant microholes, and the bulges and ravines practically disappear. It can be expected 
that the steel surface with uniform distribution of microholes could provide subsequent electroplating or EPP 
coating with good adhesion and uniformity.

Surface roughness (Ra) of the steel modified by EPP is presented with the change of applied voltage and 
processing time are shown in Fig. 5. It can be confirmed that the Ra of 304 stainless steel increases with the 
enhancement of input voltage and reaction time. At the beginning, there is not enough energy to form amount 
of electrolytic plasma, as a results there is small change in Ra of the steel. As the reaction process continues, the 
breakdown of electrolytic plasma bubbles constantly releases a large amount of energy on the sample surface, 
while the Ra of 304 stainless steel moved up rapidly, which is consistent with the results of S K Sengupta36. In 
addition, solution volatilization caused by joule heat and solution hydrodynamic instability caused by solvent 
electrolysis of EPP lead to the considerable growth of partial melting areas of the steel surface and the formation 
of multiple discharging channels. All of these have a great effect on the increase of discharge hole diameter (i.e., 
roughness). Therefore, the maximum EPP time in the experiment, i.e. 180 s, makes the occurrence of the most 
craters on the steel surface with a greatest Ra value.

Hardness testing. The mechanical properties of alloy surface could be affected by electrolytic plasma reac-
tions with high temperatures and strong shock waves20, 30. We employs nanoindentation testing to measure the 
hardness of 304 stainless steel treated by EPP for 60 s with 120 V applied voltage, as shown in Fig. 6, in order to 
quantitatively characterize the effect of the electrolytic plasma on the sample surface. The results demonstrated 
that EPP affects the surface mechanical properties mainly within the depth of 1 mm from the surface to core. The 
average hardness of the subsurface with the distance of 1 mm from the surface slightly decreases after EPP treat-
ment, because the surface structures grow loose and porous.

Figure 5. Surface roughness of 304 stainless steel as functions of EPP interval and applied voltage.

Figure 6. Changes in hardness along the surface to core radius of 304 stainless steel treated by EPP for 60 s with 
120 V applied voltage.
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Characterization of zinc coating. After EPP pretreatment of the steel at an applied voltage of 120 V for 
60 s, the steel is further modified in 15 wt% ZnSO4 solution by means of EPP. Figure 7 represents the surface 
images of zinc coating formed on the steel surface with EPP applied voltages of 150 and 180 V for 60 s. When 
the surface coating of EPP treatment at an applied voltage of 150 V for 60 s, there is a loose zinc layer with the 
co-existence of needle-like dendrites and small pellets on the steel surface. Composition analysis of the surface 
coating (Table 1) reveals that the content of zinc was 61.52 at% besides quantities of Fe and O, indicating that 
the zinc layer could not completely cover the surface. These results verify that the EPP treatment can form zinc 
coating on the steel surface in a highly efficient way. During the coating process, a hydrogen evolution reaction 
likewise occurs under the effect of a breakdown voltage, creating the generation of hydrogen plasma in a thin 
electrolyte layer just above the surface of 304 stainless steel. Most of zinc cations presenting in the electrolyte can 
be attached to the hydrogen bubbles and migrated toward the surface of 304 stainless steel. Thus, zinc coating is 
continuously formed at a high rate over the entire sample surface via adsorption transport and subsequent col-
lapse of hydrogen bubble.

In the case of high applied voltage of EPP treatment, i.e. 180 V, it can be observed from Fig. 7(b) that a compact 
layer of zinc coating with a relatively uniform distribution grows on the sample surface. In the meantime, zinc 
content reaches 99.71 at%, suggesting the complete coverage and homogeneous distribution of zinc element on 
the entire surface. This can be explained that high applied voltage provides considerable hydrogen plasma and 
forceful energy to rapidly migrate the attached zinc cations. Hence, zinc coating with a full coverage can be effec-
tively obtained on the 304 stainless steel by means of EPP for only 60 s.

Figure 7. Surface morphology of zinc coating obtained by EPP under different voltages: (a) 150 V and (b) 
180 V.

Zn (at. %) Fe (at. %) O (at. %)

a 61.52 2.41 36.07

b 99.71 0.29 0.00

Table 1. Surface composition of zinc coatings shown in Fig. 7(a) and (b).

Figure 8. (a) Cross section morphology and (b) line scanning spectrum of zinc coating on 304 stainless steel.
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Figure 8 exhibits the SEM cross-sections of the zinc coatings formed at an applied voltage of 180 V for 60 s, 
along with EDS line scans across the surface coatings. It can be seen that the zinc coating has a relatively uniform 
thickness of about 0.5 μm under the effect of EPP plasma. These results further demonstrate that EPP modifica-
tion can successfully deposit zinc coating on 304 stainless steel in a highly efficient and effective way.

Experimental
Materials. 304 stainless steel was supplied by Baosteel Group Corp with chemical composition listed in 
Table 2. Samples of the stainless steel were cut into pieces of 30 × 20 × 1 mm in size. Afterwards, all specimens 
were ground with progressively finer SiC paper (180, 400, 800, 1200, 2400, and 4000 grit) to minimize the effect 
of incidence angle. They were thoroughly washed and ultrasonically cleaned in distilled water and absolute eth-
anol for 10 min, and then dried in air. Further, sodium bicarbonate and zinc sulfate were purchased from J & K 
Chemical Technology.

EPP treatment. The electrode device and power source we used in the experiment is depicted in Fig. 2. 
The electrolyzer consisted of a silica glass container with the size of 20 × 10 × 15 cm. An anode supply was con-
nected to two parallel graphite plates, and the sample of 304 stainless steel was used as a cathode (see Fig. 1). 
7.5 wt% sodium bicarbonate and 15 wt% zinc sulfate solutions prepared with ultra-pure MilliQ water (resistance 
>18 MΩ cm−1) were used as electrolytes for the pretreatment of the steel surface and the formation of zinc coat-
ing, respectively.

In the case of surface pretreatment of the steel, the input voltage was set at 110, 120, and 130 V, and the pro-
cessing time was varied in the range of 0–180 s for optimization of surface profile. The temperature of NaHCO3 
electrolyte with an initial value of 70 °C was monitored by using a k-type thermocouple along with time. All 
samples were respectively washed with water and ethanol in ultrasound for three times, and dried in air prior to 
characterization analysis and further coating. For the formation of zinc coating, the obtained samples above were 
soaked in 15 wt% ZnSO4 solution for 60 s. Afterwards, EPP was operated by controlling an applied potential to 
150 and 180 V, respectively, for 60 s.

Characterization. The morphological features of 304 stainless steel and zinc coating were observed with 
a ZEISS SUPRA55-FESEM instrument, while composition analyses of the samples’ surfaces were performed 
via energy dispersion spectrometry (EDS). XRD patterns were examined on a Rigaku D/max 2500 instrument 
equipped with Cu Kα radiation. The three-dimensional (3D) surface morphology of the samples was character-
ized by white-light interferometer (State Key Laboratory of Tribology, Tsinghua University) with minimum verti-
cal resolution of 0.8 nm. We used the optical interference method for quantitative measurement and our in-house 
system for the 3D surface texture images as well as for measuring the microscopic linear height measurement and 
average surface roughness (Ra). We used a Nano Indenter II to test the hardness of 304 stainless steel after EPP. 
The final hardness of 304 stainless steel was determined through the average of seven different positions along the 
radius from the surface to the core on a cross-section of each steel after surface pretreatment.
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