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Cerebral blood flow, blood supply, 
and cognition in Type 2 Diabetes 
Mellitus
Jacobus F. A. Jansen  1,2, Frank C. G. van Bussel1,2, Harm J. van de Haar1,2,3, Matthias J. P. 
van Osch4, Paul A. M. Hofman1, Martin P. J. van Boxtel2,3, Robert J. van Oostenbrugge2,5,6, 
Miranda T. Schram5, Coen D. A. Stehouwer5,7, Joachim E. Wildberger1,5 & Walter H. Backes1,2

We investigated whether type 2 diabetes (T2DM) and the presence of cognitive impairment are 
associated with altered cerebral blood flow (CBF). Forty-one participants with and thirty-nine without 
T2DM underwent 3-Tesla MRI, including a quantitative technique measuring (macrovascular) blood 
flow in the internal carotid artery and an arterial spin labeling technique measuring (microvascular) 
perfusion in the grey matter (GM). Three analysis methods were used to quantify the CBF: a region of 
interest analysis, a voxel-based statistical parametric mapping technique, and a ‘distributed deviating 
voxels’ method. Participants with T2DM exhibited significantly more tissue with low CBF values in 
the cerebral cortex and the subcortical GM (3.8-fold increase). The latter was the only region where 
the hypoperfusion remained after correcting for atrophy, indicating that the effect of T2DM on CBF, 
independent of atrophy, is small. Subcortical CBF was associated with depression. No associations were 
observed for CBF in other regions with diabetes status, for carotid blood flow with diabetes status, 
or for CBF or flow in relation with cognitive function. To conclude, a novel method that tallies total 
‘distributed deviating voxels’ demonstrates T2DM-associated hypoperfusion in the subcortical GM, not 
associated with cognitive performance. Whether a vascular mechanism underlies cognitive decrements 
remains inconclusive.

Type 2 diabetes mellitus (T2DM) is associated with cognitive decrements and an increased risk to develop 
dementia1. Furthermore, diabetes is related to complications related to damage of large blood vessels, including 
macrovascular disease such as coronary artery disease, peripheral vascular disease, and stroke2. In addition, many 
complications of diabetes due to impairment of small blood vessels arise, including neuropathy, nephropathy, and 
retinopathy3. In the brain, T2DM is associated with white matter hyperintensities (WMHs), often presumed to 
be of vascular origin4. Altered cerebral hemodynamics is one of the potential mechanisms thought to underlie 
the characteristic cognitive decrements5, 6. Rather than studying WMHs, which are structural end-stage mani-
festations of impaired cerebral hemodynamics, it is also possible with advanced MRI techniques to investigate 
more functional or physiological cerebral characteristics, which may precede these structural changes. A prime 
candidate for this is actual cerebral blood flow (CBF), which can be measured noninvasively using arterial spin 
labeling, an MRI method that uses magnetically labeled arterial blood as a tracer7.

Several studies have attempted to relate T2DM with alterations in CBF, using a variety of techniques, study 
designs, and patient selection criteria, but results appear therefore not consistent as some report hypoperfusion, 
while others do not8. Most global CBF analysis methods either average over a volume to summarize the charac-
teristics of that region of interest9, or assume a certain overlap of local perfusion abnormalities over subjects using 
voxel-based statistical parametric mapping techniques10. As the effect of T2DM on CBF is likely to be subtle, 
the former method might not be sensitive enough to detect changes, especially when relatively large regions are 
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analyzed. The latter method assumes a regional anatomical overlap of tissue alterations, which might not be apt 
for a non-focal disease such as T2DM. The current study introduces an alternative method of analysis that aims to 
overcome these issues. In this method, the number of voxels that statistically deviate from a normative value are 
recorded as ‘distributed deviating voxels’ and their numbers are compared between groups. In addition to CBF, 
which is a local measure of tissue perfusion, it is also relevant to consider the functionality of the feeding arteries. 
Especially the (internal) carotid arteries are of interest, as these conduit arteries provide to a large extent the blood 
supply to the cerebrum.

We set out to address in a non-demented population of patients with T2DM, with a range in cognitive perfor-
mance and healthy controls, whether T2DM and cognitive function are related to alterations in (macrovascular) 
blood flow in the internal carotid artery and (microvascular) perfusion in the cerebral grey matter (GM).

Results
Clinical characteristics. Table 1 shows the baseline characteristics of the low and high cognitive perfor-
mance groups, as participants were selected based on cognitive status. The groups were matched for age, sex, 
education and T2DM status. Table 2 lists the clinical characteristics of the participants, based on T2DM status. 
T2DM was associated with higher fasting blood glucose levels, higher HbA1c levels, higher body mass index, 
higher diastolic as well as systolic blood pressure, more often hypertension, and higher WM (white matter) lesion 
loads (Table 2). With respect to cognition, T2DM participants scored significantly lower on baseline MMSE 
score (p = 0.006) compared with non-diabetes participants. Baseline MMSE did not differ from repeated MMSE 
(p = 0.30).

Cerebral hemodynamics. The flow analysis revealed that the flow in the internal carotid arteries in T2DM 
(10.5 ± 2.2 cm3/s) was not significantly different from controls (10.8 ± 1.8 cm3/s, p = 0.6). For global measure-
ments of GM CBF, significantly lower values were found in T2DM (28.3 ± 5.6 ml/100 g/min) compared with 
controls (31.5 ± 5.9 ml/100 g/min, p = 0.014). However, after including age and sex as covariates, the difference 
disappeared (p = 0.51), also after adding atrophy (p = 0.69) or carotid flow in a separate analysis (p = 0.52). 
Therefore, no post-hoc analyses for sub-regions were performed. Additionally, the statistical parametric mapping 
CBF technique also did not reveal any significant locally overlapping differences (both for FDR and regional 
FDR). The voxel based morphometry analysis of T1-weighted images revealed for T2DM a small region of 
increased atrophy in the left insular cortex.

‘Distributed deviating voxels’ method. The ‘distributed deviating voxels’ method revealed approxi-
mately twice as many negatively deviating (low flow) voxels in the whole cerebrum for T2DM (0.10 ± 0.08% of 
intracranial volume (ICV)) compared with controls (0.05 ± 0.03% of ICV, p<0.001). Therefore post-hoc analyses 
were performed for the sub-regions (see Table 3). This analysis revealed that there were significantly more neg-
atively deviating voxels for T2DM in frontal, temporal, parietal, and subcortical GM regions (p < 0.003), which 
only remained significant in the subcortical GM after correcting for atrophy (3.8-fold increase, p = 0.029, Fig. 1), 
also after correcting for carotid flow (p = 0.044). A similar trend was found for the frontal and temporal regions 
(p = 0.061 and p = 0.080, respectively). No regions were found showing more positively deviating (high flow) vox-
els for T2DM (2.27 ± 1.19% of ICV) compared with controls (2.56 ± 1.50% of ICV, p = 0.35). Age was a significant 
predictor of hypoperfusion (p = 0.041), but gender was not (p = 0.96).

Post-hoc regression analyses revealed that the total of negative deviating voxels in subcortical GM was (pos-
itively) associated with self-reported diabetes duration (beta = 0.406, p = 0.005), but that none of the cardio-
vascular or glycemic measures were significant predictors (p > 0.19). However, the post-hoc analysis did reveal 
that some measures did have an effect on the group difference (by including it as covariate, the group difference 
disappeared: fasting blood glucose (p = 0.47), BMI (p = 0.20), presence of hypertension (p = 0.09), self-reported 

Lower cognition 
(n = 40)

Higher 
cognition 
(n = 40) p-value

T2DM (%, n) 55.0 (n = 22) 47.5 (n = 19) 0.5b

Age (y) 61.1 ± 9.5 62.6 ± 6.6 0.4

Sex (male, %, n) 57.5 (n = 23) 55.0 (n = 22) 0.8b

Education 0.8b

Low (%, n) 15.0 (n = 6) 20.0 (n = 8)

Middle (%, n) 47.5 (n = 19) 45.0 (n = 18)

High (%, n) 37.5 (n = 15) 35.0 (n = 14)

15-WLT total score 37.1 ± 10.0 49.8 ± 9.2 <0.001

Executive 
functioning (sec) 63.3 ± 35.2 34.8 ± 12.7 <0.001

Verbal fluency 20.3 ± 4.9 27.3 ± 5.5 <0.001

Cumulative 
cognition score −2.30 ± 2.18 2.08 ± 1.28 <0.001

Table 1. Characteristics of the two cognition groupsa. Data are mean ± standard deviation. T2DM, type 2 
diabetes mellitus; WLT, (verbal memory) Word Learning Test. aonly participants who were included in the final 
analysis; Independent samples t-test; bPearson χ2 test.
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diabetes duration (p = 0.97)), whereas for other measures the significant group difference remained intact 
(HbA1c (p = 0.040), systolic blood pressure (p = 0.045), cardiovascular disease (p = 0.032), diastolic blood pres-
sure (p = 0.032)).

Furthermore, linear regression, with inclusion of cognitive performance as covariate, also did not yield any 
significant association between cognition with flow or CBF (p > 0.37). Association with depression was not signif-
icant for the region of interest analysis (p > 0.11), but a significant (positive) association was found when included 
in the deviating voxels analysis, particularly for the whole brain analyses, and the individual frontal, temporal and 
subcortical grey matter (p < 0.003).

Discussion
This study was performed to investigate whether T2DM and cognitive impairment are associated with differences 
in cerebral blood flow. To this end, participants with T2DM, with a range in cognitive performance and healthy 
controls, were investigated by use of MRI flow techniques: a macrovascular flow technique to study the blood 
supply from the internal carotid artery, and an arterial spin labeling technique to measure the microvascular grey 

Participants 
with T2DM 
(n = 41)

Participants 
without T2DM 
(n = 39) p-value

T2DM-related variables

Duration of diabetes 
(years) 9.8 ± 6.7 —

Fasting Blood Glucose 
(mmol/l) 7.5 ± 1.2 5.1 ± 0.3 <0.001

HbA1c (%) 6.7 ± 0.4 5.6 ± 0.4 <0.001

HbA1c (mmol/mol) 50.2 ± 4.9 38.0 ± 4.5 <0.001

T2DM medication:

None (%) 12.2 100 <0.001a

Insulin (%) 2.4 —

Oral medication (%) 75.6 —

Insulin and oral 
medication (%) 9.8 —

Clinical variables

BMI (kg/m2) 29.2 ± 3.5 24.7 ± 2.8 <0.001

SBP (mmHg) 152 ± 18 131 ± 18 <0.001

DBP (mmHg) 83 ± 10 76 ± 13 0.013

Cardiovascular 
disease (%) 20.5 13.5 0.4

Hypertension (%) 95.1 38.5 <0.001a

Smoking status, 
never/former/current 
(%)

23.7/71.1/5.3 23.7/55.3/21.1 0.114a

Cognitive Score

Cumulative cognition 
score −0.60 ± 3.17 0.40 ± 2.36 0.117

Baseline MMSE total 
score 28.6 ± 1.4 29.4 ± 0.8 0.006

Table 2. Clinical characteristics of participants with and without T2DM. Data are mean ± standard deviation. 
T2DM, type 2 diabetes mellitus; HbA1c, glycated hemoglobin; BMI, body mass index, SBP, systolic blood 
pressure; DBP, diastolic blood pressure; MMSE, Mini-Mental State Examination. Independent samples t-test; 
aPearson χ2 test.

Participants 
with T2DM 
(n = 41)

Participants 
without T2DM 
(n = 39) p-valuea

Cerebral cortex 0.10 ± 0.08% 0.05 ± 0.03% <0.001b

Frontal cortex 0.04 ± 0.03% 0.02 ± 0.01% 0.003

Temporal cortex 0.03 ± 0.02% 0.01 ± 0.01% <0.001

Occipital cortex 0.00 ± 0.00% 0.00 ± 0.00% 0.249

Parietal cortex 0.01 ± 0.01% 0.00 ± 0.00% <0.001

Subcortical GM 0.02 ± 0.02% 0.01 ± 0.01% <0.001b

Table 3. Fraction of negative ‘deviating voxels’ with low flow (hypoperfusion) in GM, relative to intracranial 
volume. Data are mean  ± standard deviation. GM, grey matter; T2DM, type 2 diabetes mellitus. aIndependent 
samples t-test, bSignificant after correcting for age, sex, and atrophy.
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GM perfusion in terms of CBF. The distributed deviating voxels method revealed that participants with T2DM 
exhibited significantly more GM tissue with low CBF values in the cerebral cortex and, particularly, the subcor-
tical GM. Interestingly, depression was associated with low CBF values in the subcortical GM. No (independent) 
associations were found between carotid artery or GM blood flow and cognitive decrements.

T2DM was not associated with carotid artery blood flow, which is fully in agreement with previous studies11, 12,  
and indicates that blood supply to the brain is not affected in the investigated T2DM population. However, the 
current study did observe more GM tissue with abnormally low flow values in the cortex and the subcortical GM 
in T2DM, which can be interpreted as evidence for cerebral hypoperfusion. The fact that age was also a significant 
predictor of hypoperfusion, fits the theory that T2DM accelerates ageing13. This finding concurs with the hypoth-
esis that T2DM is associated with impaired cerebral hemodynamics, a mechanism that might in part underlie the 
cognitive decrements or accelerated cognitive aging associated with T2DM5. It has been suggested that T2DM 
can affect the glucose and insulin transfer across the blood-brain barrier, hence altering regional metabolism 
and microcirculation14. Chronic hyperglycemia has been shown to decrease regional blood flow and increase 
membrane permeability, eventually prompting permanent brain cell damage15. A progressive metabolic distur-
bance in the cerebrovascular bed seems to disturb blood flow and accelerate WM degeneration14. Interestingly, 
hypertension was not associated with CBF, which might indicate that the cerebral autoregulation is still intact in 
this relatively healthy population.

An explanation why the CBF association was detected in the subcortical GM, but not in the cortical regions, 
might be a different local microvascular architecture: vessel density is lower and vessels are more deep than 
collateral in the subcortical region compared with the cortical region16. Furthermore, in small vessel disease, 
for which T2DM is a risk factor, microbleeds are more often found subcortical17, indicating that the subcortical 
region might have a higher susceptibility to vascular pathology (e.g. ischemia or hypoperfusion). Furthermore, 
we observed an association of depression with subcortical CBF measures. It has previously been shown that major 
depressive disorder is associated with structural subcortical alterations18, therefore a compromise of the blood 
supply to the subcortex and its connections can result in behavioral syndromes, including depression19.

Over the last 2 decades, the association of T2DM with CBF has been investigated in a number of studies, using 
various techniques including single-photon emission computed tomography, positron emission tomography and 
ASL. Although some report hypoperfusion in T2DM10, 14, 20, 21, other studies did not find any association with 
CBF11, 22, 23. It has been shown that most studies reporting on hypoperfusion in T2DM typically use small pop-
ulations, include patients with severe complications, and did not account for atrophy, which has been shown to 
largely explain hypoperfusion24. The latter notion was also evidenced in the current study, as including atrophy 
as covariate decreased the number of regions with hypoperfusion, but the results in subcortical GM remained 
significant. Hence, the effect of T2DM on CBF, independent of atrophy, is small. Furthermore, a regional analysis 
of atrophy (voxel based morphometry) did not indicate atrophy in the subcortical GM, providing more support 
that the hypoperfusion in the subcortical GM is indeed independent of atrophy.

Larger, epidemiologic studies have failed so far to find associations of CBF with T2DM9, 25. Tiehuis et al. 
suggested that despite the absence of an association of T2DM with CBF under resting conditions, it is still pos-
sible that T2DM is associated with altered cerebrovascular reactivity11. Indeed, research specifically designed to 
assess cerebral vasoreactivity using ASL under hypercapnic conditions reported that patients with T2DM exhibit 

Figure 1. Normalized T1 weighted images, with as overlay the percentage of participants within a group 
displaying negatively ‘deviating voxels’ (using threshold Z < −2.576, indicative of hypoperfusion) for 
participants without T2DM (upper figure) and participants with T2DM (lower figure). Note the high percentage 
(indicating hypoperfusion) for T2DM in the subcortical GM, especially in the nucleus accumbens and caudate 
structures.
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diminished global and regional cerebral vasoreactivity23, 26. In addition, the work from Duarte et al., who used 
tasked-based functional MRI, showed that T2DM is associated with impaired neurovascular coupling, as the 
hemodynamic response function is different from healthy controls27.

A possible explanation for the fact that the current study does find evidence of cerebral hypoperfusion under 
resting conditions, even when correcting for atrophy, might be attributable to the potentially higher sensitivity of 
the analysis applied. The current study applied three distinctly different methods to assess the effect of T2DM or 
cognitive status on CBF. The applied methods were sensitive to either 1) global effects (region of interest analysis), 
2) locally overlapping focal effects (voxel-based statistical parametric mapping), or 3) more spatially distributed 
(diffuse) effects (‘deviating voxels’). Only the deviating voxel method appeared sensitive enough to detect a sig-
nificant effect of T2DM on CBF.

An explanation for this is that the CBF effect of T2DM is probable subtle (which is reflected by the very low 
percentage of deviating voxels), and not necessarily localized at identical spots across different individuals. These 
effects might not be picked up by a region of interest analysis, as subtle effects in sub regions might be overshad-
owed by noise from other sub regions when taking an average over a selection of sub regions. Furthermore, when 
a large number of regions is considered, one has to correct for multiple comparisons, thereby decreasing the likeli-
hood of obtaining significant effects. Additionally, voxel-based statistical parametric mapping technique could be 
insensitive to such effects, as this method assumes a certain regional overlap across individuals of altered tissue. In 
contrast with more focal pathologies such as epilepsy and stroke, T2DM is a systemic disease, and although there 
might be regional differences, there is no evidence that these regions should be identical for different patients 
with T2DM. The current study introduced an alternative method of analyzing (‘distributed deviating voxels’) that 
proved to be more sensitive than the other two analysis techniques. By tallying the number of deviating voxels, 
changes in CBF can be detected that are subtle while not requiring overlap at the exact location of the hemody-
namic disturbance over the studied participants.

In contrast with other studies on blood flow in T2DM5, 11, 22, 23, 25, no significant associations of cognitive per-
formance status were found with CBF. In the current, non-demented population of participants with T2DM, the 
cognitive performance for all participants either with or without T2DM falls within the range considered cogni-
tively normal (i.e. MMSE > 27). The individuals that do experience cognitive decrements still exhibit substantially 
better cognitive performance scores than for example patients who are suspect of a cognitive disorder (MMSE 
< 25). A potential implication of this study that found a significant association between CBF and T2DM status, 
but not between CBF and cognitive performance, is that T2DM-induced cerebrovascular alterations potentially 
precede the cognitive decrements. Therefore, an altered CBF might be a potential biomarker to identify patients 
at risk of developing cognitive problems. Interestingly, we did find a positive association of depression with sub-
cortical CBF (deviating voxel analysis), which fits the theory of a vascular pathology underlying depression19. A 
post-hoc analysis showed that none of the cardiovascular or glycemic measures were significant predictors for 
subcortical CBF, however some measures, including fasting blood glucose, BMI, and presence of hypertension 
were shown to affect the group difference, which hints at some sort of cardiovascular and glycemic mechanisms 
underlying hypoperfusion in T2DM.

T2DM was found to be associated with hypoperfusion, hence the results of this study indicate that treatment 
to avoid decline of or even improve vascular function (e.g. with antihypertensive or antiplatelet drugs) could be 
beneficial in patients with T2DM. Future studies that further elucidate these biological alternations might reveal 
new opportunities to monitor therapeutic/lifestyle interventions for improving cognition and/or prevention 
of cognitive impairment. A longitudinal set up is required to investigate whether T2DM patients with cerebral 
hypoperfusion are at increased risk for developing cognitive decrements in the near future.

The strengths of the present study comprise: first, the extensive (cardiovascular) characterization of the par-
ticipants. Second, the investigation included both microvascular GM perfusion and macrovascular blood supply, 
and incorporated a variety of CBF analysis methods. Third, the quantified measures for carotid flow (approxi-
mately 11 cm3/s) and CBF (approximately 32 ml/100 g/min) are comparable with previously reported values of 
8 cm3/s for carotid flow28 and 30 ± 5 ml/100 g/min ([15O]H2O PET) and 34 ± 5 ml/100 g/min (ASL) for CBF29, 
which is indicative of sound quantitative results. On the other hand, limitations should also be considered. A first 
limitation is the cross-sectional design of the study. Nevertheless, these first cross-sectional results are promising 
and pave the way for future (longitudinal) studies. Second, the inclusion of relative healthy subjects with T2DM 
decreased the likelihood of finding a possible association between cognition and CBF, as observed in other stud-
ies, but might provide a more representative view of early effects of diabetes on cognition. The subjects with 
TD2M included in our study were selected from a community-dwelling population and are in excellent control, 
therefore our results only apply to T2DM with outstanding control. A post-hoc analysis with diabetes duration 
as measure for ‘severity’ did show a positive relationship between hypoperfusion and ‘severity’. However, this 
analysis is not entirely reliable, as only 39 subjects were included, and duration as a measure for diabetes severity 
is typically a self-reported, and therefore imprecise measure, and its misclassification may obscure analysis30. 
Nonetheless, it will be interesting to include more severe diabetes participants in the future. Lastly, for the devi-
ating voxel analysis, we used the non-diabetic, high cognitive performers as reference group, which might not be 
ideal as this group was not free of smokers or hypertension. However, we are confident that our results are sound, 
as we already find differences with respect to this group, and we would expect to only find stronger effects if we 
had the opportunity to select a ‘cleaner’ reference group.

To conclude, a novel analysis method that tallies total ‘deviating voxels’ demonstrates distributed hypoper-
fusion in T2DM, especially in the subcortical regions, whereas more traditional analysis methods appeared to 
be not sensitive enough. Whether a vascular mechanism underlies the cognitive decrements in T2DM remains 
inconclusive.



www.nature.com/scientificreports/

6Scientific RepoRts | 6: 10  | DOI:10.1038/s41598-016-0003-6

Methods
Study population. Forty-seven participants with T2DM and forty-one participants without T2DM mellitus were 
recruited from the first 866 participants in the community-dwelling population of the Maastricht Study31 for addi-
tional brain MRI measurements. Participants were considered to have diabetes according to the WHO 2006 criteria 
if they used diabetes medication, or if they had a fasting blood glucose ≥7.0 mmol/L, and/or a 2-hour blood glucose 
≥11.1 mmol/L after an oral glucose tolerance test. Participants without T2DM were characterized by fasting blood 
glucose <6.1 mmol/L and a 2-hour blood glucose <7.8 mmol/L. At baseline inclusion, participants underwent an 
extensive battery of measurements, including cognitive performance tasks, blood pressure measurements, and blood 
sampling31. After these measurements, participants were invited to participate in this additional MRI examination.

Participants with the highest and lowest cognitive scores were selected from the first 866 participants to 
obtain a range in cognitive scores (Table 1), as has been described previously32. The division of participants into 
a low and high cognition group was based on a cumulative score of three neuropsychological tests covering the 
domains of verbal memory33, attention and flexibility, and executive functioning34 and verbal fluency35 (Table 1). 
This selection was performed to increase the possibility of finding cerebral differences, as the effect of T2DM on 
cognition is only mild in non-demented subjects36. Scores were adjusted for age, sex, and education level using 
linear regression analysis. The low and high cognition groups were matched for age, sex, and education level, and 
displayed a comparable number of participants with and without T2DM (Table 1), for demographic character-
istics based on diabetes status, please see Table S1 in the Supplementary Information. Depression was assessed 
using the Mini International Neuropsychiatric Interview (MINI)37.

A total of 41 and 39 participants with and without T2DM with reliable data were included, respectively. The 
study was approved by the Medical Ethics Committee of the Maastricht University Medical Center (MUMC+), 
the Netherlands, and all participants gave written informed consent. Furthermore, all methods described in this 
manuscript were carried out in accordance with the approved guidelines. The study was registered at http://www.
clinicaltrials.gov with identifier NCT01705210.

Magnetic resonance imaging. MRI data were acquired on a 3T scanner (Achieva TX, Philips 
Healthcare, Best, the Netherlands) using a 32-element head coil for parallel imaging. The MRI protocol con-
sisted of structural scans (including T1-, T2-, T2*-weighted and fluid attenuated inversion recovery sequences), 
phase-contrast angiograms, quantitative flow of the carotid artery, and whole cerebrum arterial spin labeling. A 
three-dimensional T1-weigthed (T1) fast field echo sequence (TR/TE 8.1/3.7 ms, 8° flip angle, 1 mm isotropic 
voxel size, 170 continuous slices, matrix size of 240 × 240) was used as anatomical reference.

Vascular anatomy from the common carotid artery to a level distal to the circle of Willis was determined 
using three-dimensional phase-contrast MR angiography. Maximum intensity projections in orthogonal direc-
tions resulted in three-dimensional angiograms which were used to position the two-dimensional slice for the 
quantitative flow estimation (Q-flow, Philips Medical Systems) (Fig. 2A) and the labeling slice for quantitative 
CBF estimation (Fig. 2B).

The Q-flow technique was based on a single-slice, multiphase, fast-field echo sequence which encoded velocities 
parallel to the slice-encode direction. The slice was placed perpendicular to the internal carotid artery, distal to the 
bifurcation, on a position where the artery appeared least tortuous. Measurements were made in both the left and right 
sides of the carotid arteries, and were subsequently averaged over the entire cardiac cycle (Fig. 2D). Carotid flow images 
were acquired using 2D fast cine PC-MRI pulse sequence with retrospective ECG gating with 15 time frames cover-
ing the entire cardiac cycle. Phase-contrast parameters were as follows: TE/TR 8/13 ms, flip angle 10°, field-of-view 
150 × 105 mm2, matrix 128 × 88, and slice thickness 6 mm. Flow direction: craniocaudal, encoding velocity: 120 cm/s.

Subsequently, a pseudo-continuous (PC) ASL 2D multislice single-shot echo planar imaging (EPI) sequence38 
was acquired with a TR/TE of 3847/14 ms, voxel size of 3 × 3 × 7 mm3, matrix size of 80 × 80 × 17, a post labeling 
delay (PLD) of 1525 ms for the first slice (PLD of last slice was 2085 ms) and a label duration of 1650 ms. The 
labeling slice was positioned at the same location as for the Q-flow technique (Fig. 2B). Slices were obtained in 
the feet-head direction (35 ms per slice), and 50 control-tag pairs were acquired. A single proton density (PD) 
sequence was acquired with a TR of 10 s to scale the PCASL signal intensity to an absolute CBF value.

Data analysis. The T1 weighted images were automatically segmented to obtain total intracranial volume 
(ICV), and lateral ventricle size using the Freesurfer software package (Martinos Center for Biomedical Imaging, 
Boston, USA)39. The total lateral ventricular volume was taken as a measure for atrophy.

Carotid flow images were analyzed in Matlab. Arteries were visually identified and delineated on the magni-
tude image to segment the flow regions on the phase images for all time frames. Flow was calculated in cm3/s by 
integrating the velocity value over the pixels of the vessel cross-section and averaging over the time frames. Due 
to technical difficulties, not all flow measurements were successful. For the final flow analysis, reliable data were 
available in 36 (of 47) participants with T2DM and 37 (of 41) healthy controls.

For ASL, motion correction was performed relative to the mean of the control images with FMRIB’s linear 
image registration tool (FLIRT) using a mutual-information algorithm40. Next, the label images were subtracted 
from the control images. Control-tag pairs were removed when visual inspection of the subtraction result showed 
abnormal results. CBF maps calculation (Fig. 2C) was based on the ASL whitepaper41 with correction for a 2D 
multislice acquisition scheme and a correction factor for background suppression42, see equation 1:
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where λ is the blood-brain partition coefficient (set at 0.9 ml/g), SIcontrol and SIlabel are the means over time of the 
control and label images, respectively, Tdelay is the post label delay (1525 ms), Tslice is the acquisition time for a sin-
gle slice (35 ms), z is the slice number, T1,blood is the longitudinal relaxation time of blood (set at 1650 ms for 3T), α 
is the labeling efficiency (set at 0.85), αinv is a correction factor for the background suppression (set at 0.83), SIPD 
is the signal intensity of the proton density image and τ is the label duration (1650 ms). A GM probability map 
was created from the T1-weighted structural scan using FAST43, which allowed for correction of the CBF for the 
amount of GM in a voxel44. Finally, CBF maps were coregistered to Montreal Neurological Institute space using 
FNIRT45 to use the MINC1 atlas46.

For the regional analysis, CBF values were expressed in ml/100 g/min and averaged over the GM of the fol-
lowing regions: whole cerebral cortex, frontal, temporal, parietal, and occipital cortex, and subcortical GM (i.e. 
accumbens, caudate, pallidum, putamen, and thalamus), as defined by the MINC1 atlas46.

Additionally, a voxel-based statistical parametric mapping analysis was performed on CBF maps (to assess 
regional anatomical overlap of altered CBF values) and separately on T1-weighted images (voxel based morpho-
metry, to assess overlapping regions with atrophy) using routines from the SPM8 software package (Wellcome 
Department of Cognitive Neurology). Age and sex were added as covariates, and correction for multiple compar-
isons was applied using a False Discovery Rate (FDR) of 5%. To increase the sensitivity by exploiting the spatially 
clustered nature of effects, an additional analysis was performed using a regional FDR47 of 5%.

Finally, for the ‘distributed deviating voxels’ analysis, the CBF maps of the subjects were transformed on a 
pixel-by-pixel basis into a statistical z-score (defined as [(xi − xref)/SDref]) maps using the locally averaged CBF 
values of the controls, with the highest cognitive performance (xref) and its standard deviation (SDref), as refer-
ence 48, see Table S2 in the Supplemental Information for their summarizing characteristics. The z-score maps 
of the participants with the highest cognitive performance within the control group were based on the values of 
the other high cognitive performance controls (n-1). (n-1) stands for total of subjects within the reference group 
minus that specific individual (using the one leave out method). For all regions (whole brain, frontal, temporal, 
parietal, and occipital cortex, and subcortical GM, as defined by the MINC1 atlas), the voxels were counted that 
deviated with 99% confidence, corresponding to z-score of zα/2  =  2.576. Both positive and negative z-values were 
considered separately. The number of voxels are reported as percentage of the total intracranial volume.

For the CBF analysis, 6 participants with T2DM were excluded due to claustrophobia (n = 2), Parkinsonism 
(n = 1), brain injury because of an accident (n = 1), an incidental finding (n = 1) and a major artifact in the ASL 
data (n = 1). For the participants without T2DM, 2 excluded due to non-diabetes participants with impaired fast-
ing blood glucose levels (n = 2). For carotid flow, an additional 5 subjects with T2DM and 2 without T2DM were 
excluded based on incomplete Qflow data due to no ECG signal.

Therefore, reliable data were available in 41 (of 47) participants with T2DM and 39 (of 41) healthy controls.

Figure 2. (A) Coronal maximum intensity projections derived from phase-contrast angiography with 
indication of the slice for quantitative flow measurement in the internal carotid artery in a participant with 
T2DM. (B) Sagittal T1 weighted image with labeling slice (red), which was positioned at the same location of 
the slice for quantitative flow estimation, and imaging volume (green). (C) Resulting transverse CBF map. (D) 
Magnitude and (E) phase images of the carotid region, 1 left internal carotid artery, 2 left vertebral artery, 3 right 
internal carotid artery, 4 right vertebral artery.
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Statistical analysis. Descriptive participants’ characteristics are reported as mean ± standard deviation. 
Group characteristics were tested by use of independent samples t-tests and Pearson χ2-tests with SPSS (Statistical 
Package for Social Sciences, version 20, IBM Corp., USA), with α = 0.05.

Differences in carotid flow and CBF measures between T2DM and controls were tested by use of independent 
samples t-tests. When differences were significant, they were subsequently explored with linear regression anal-
ysis, to correct for differences in clinical characteristics between groups. For carotid flow, the linear regression 
analysis was adjusted for age and sex. For CBF measures (global GM CBF, and number of deviating CBF voxels 
relative to ICV), first age and sex were used as covariates in the analysis. Subsequently, lateral ventricular volume 
(as measure for atrophy) and carotid flow were separately added as covariates. Atrophy was included, as it is 
known to affect CBF24. Subsequently, the association with and the effect on CBF of cardiovascular, glycemic meas-
ures, and self-reported diabetes duration was explored in a post-hoc fashion by adding these measures separately 
as covariates to the regression model which included age, sex, and atrophy.

Furthermore, to limit the number of statistical tests for the CBF analyses, in a staged approach, first only the 
whole cerebrum was considered. When significant differences were observed for the whole cerebrum, exploratory 
post-hoc tests were subsequently performed to evaluate the sub-regions (frontal, temporal, parietal, and occipital 
cortex, and subcortical GM). Finally, to evaluate the association of cognitive performance or depression, a dichot-
omous value (low versus high cognition, or presence of major depressive episode, respectively) was added to the 
linear regression models for flow and CBF.
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