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an annotated street view image 
dataset for automated road 
damage detection
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Road damage is a great threat to the service life and safety of roads, and the early detection of 
pavement damage can facilitate maintenance and repair. Street view images serve as a new solution 
for the monitoring of pavement damage due to their wide coverage and regular updates. In this study, 
a road pavement damage dataset, the Street View Image Dataset for automated Road Damage 
Detection (SVRDD), was developed using 8000 street view images acquired from Baidu Maps. Based on 
these images, over 20,000 damage instances were visually recognized and annotated. These instances 
were distributed in five administrative districts of Beijing City. Ten well-established object detection 
algorithms were trained and assessed using the SVRDD dataset. the results have demonstrated the 
performances of these algorithms in the detection of pavement damages. to the best of our knowledge, 
SVRDD is the first public dataset based on street view images for pavement damages detection. It can 
provide reliable data support for future development of deep learning algorithms based on street view 
images.

Background & Summary
As the most fundamental and widely used transportation infrastructure, highways ensure the rapid and effi-
cient flow of people and goods. They also play a key role in economic and social development. However, under 
repeated vehicle loads and harsh environmental conditions, road surface structures undergo aging and deterio-
ration, eventually leading to road damage. This has a severe impact on road performance1. Therefore, the rapid 
and precise monitoring of road pavement damage and its distribution play a crucial role in extending the service 
life of highway roads.

Conventional road damage detection techniques typically depend on manual visual detection and 
vehicle-mounted road Pavement Monitoring Systems (PMS). Such manual-based approaches are greatly influ-
enced by the experience of road maintenance personnel, who primarily employs ground measurements and 
visual assessments to detect road pavement health. These techniques are often time-consuming, inefficient, 
and traffic-disruptive, consequently making them unsuitable for monitoring extensive road pavements2. PMS 
equipped with multiple sensors can acquire comprehensive road information, yet they are associated with high 
acquisition and operating costs. Hence, they are generally only employed for high-level road surfaces and have 
a low efficiency3.

With the development of computer vision and deep learning, image classification, object detection, and 
segmentation techniques have been widely employed in the detection of road pavement damages. Currently, 
the image data for road pavement damage detection predominantly originates from ground-based platforms, 
encompassing top-down view, wide view, and street view perspectives. The top-down view images are usually 
captured by vehicle-mounted or handheld cameras or smartphones, positioned a few meters above the ground 
at a perpendicular angle to the road surface. The wide view images are usually taken from smartphones installed 
either on the dashboard or windshield of vehicles, capturing the road conditions from a forward and slightly 
downward angle. The street view images often consist of the front view of street view images, providing insights 
of road conditions. The set-ups, angles, and ranges of cameras under vehicle platform for these three perspec-
tives are illustrated in Fig. 1.

The present public datasets for road pavement damage detection are limited to top-down and wide view 
images. Table 1 reports an overview of the major datasets available4–18. Crack Forest Dataset (CFD) is a 

Institute of Remote Sensing and Geographic Information System, Peking University, 5 Summer Palace Road, Beijing, 
100871, China. ✉e-mail: xfzhang@pku.edu.cn

DaTa DeSCRIpToR

opeN

https://doi.org/10.1038/s41597-024-03263-7
http://orcid.org/0009-0006-1541-032X
http://orcid.org/0000-0002-2475-4558
http://orcid.org/0009-0005-3443-9737
mailto:xfzhang@pku.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-024-03263-7&domain=pdf


2Scientific Data |          (2024) 11:407  | https://doi.org/10.1038/s41597-024-03263-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

representative dataset for pavement damage segmentation. Such datasets use smartphones and vehicle-mounted 
cameras to capture images of road surfaces from a top-down view and subsequently annotate pavement dam-
ages on a pixel-by-pixel basis. However, they only distinguish between cracks and background road categories, 
while other damage categories are not considered. Moreover, the amount of data is small and the image res-
olution is inconsistent4–11. The German Asphalt Pavement Distress (GAPs) v112 and GAPs v213 datasets use 
vehicle-mounted CCD imagers to capture the images of road surfaces from a top-down view with an image 
array of 1920 × 1080. Six road damage categories are annotated with bounding boxes, making them suitable 
for the object detection of road damage. In particular, the GAPs 10 m14 dataset, released in 2021, contains 20 
high-resolution images (5030 × 11,505 pixels) covering 200 m of asphalt pavement of different road categories. 
Totally 22 categories of objects and damage instances at the pixel level are annotated, facilitating the fine-grained 
segmentation of road damage. The Road Damage Dataset (RDD) series datasets15–18, which was recently updated 
from 2018 to 2022, uses smartphones installed on windshields to capture wide view road images and annotates 

Fig. 1 Camera set-ups, angles, and ranges under vehicle platform for different views of road damage detection 
datasets. (a) top-down view; (b) wide view; (c) street view.

Dataset Images Resolution View captured Annotation-level Annotated category

CFD4,5 118 480 × 320 Top-down view Pixel 2 (good and distressed road)

CrackTree2066 206 800 × 600 Top-down view Pixel 2 (crack and background)

CrackWH1007 100 512 × 512 Top-down view Pixel 2 (crack and background)

CrackLS3157 315 512 × 512 Top-down view Pixel 2 (crack and background)

DeepCrack8 537 544 × 384 Top-down view Pixel 2 (crack and background)

Crack5009 500 2000 × 1500 Top-down view Pixel 2 (crack and background)

CrackNJ15610 156 512 × 512 Top-down view Pixel 2 (crack and background)

CrackSC11 197 320 × 480 Top-down view Pixel 2 (crack and background)

GAPs v112 1969 1920 × 1080 Top-down view Bounding box 6 (cracks, potholes, inlaid patches, applied patches, open joints, and bleedings)

GAPs v213 2468 1920 × 1080 Top-down view Bounding box 6 (cracks, potholes, inlaid patches, applied patches, open joints, and bleedings)

GAPs 10 m14 20 5030 × 11,505 Top-down view Pixel 22

RDD201815 9053 600 × 600 Wide view Bounding box
8 (linear crack, longitudinal, wheel mark part; linear crack, longitudinal, 
construction joint part; linear crack, lateral, equal interval; linear crack, lateral, 
construction joint part; alligator crack; rutting, bump, pothole, separation; 
cross walk blur; white line blur)

RDD201916 13,135 600 × 600 Wide view Bounding box
9 (linear crack, longitudinal, wheel mark part; linear crack, longitudinal, 
construction joint part; linear crack, lateral, equal interval; linear crack, lateral, 
construction joint part; alligator crack; rutting, bump, pothole, separation; 
cross walk blur; white line blur; utility hole)

RDD202017 26,620 600 × 600, 
720 × 720 Wide view Bounding box 4 (longitudinal cracks, transverse cracks, alligator cracks, and potholes)

RDD202218 47,420
512 × 512, 
600 × 600, 
720 × 720, 
3650 × 2044

Wide view, 
extra-wide view, 
top-down view

Bounding box 4 (longitudinal cracks, transverse cracks, alligator cracks, and potholes)

Table 1. Public datasets used for the detection of road pavement damage.
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four damage categories (i.e., longitudinal cracks, transverse cracks, alligator cracks, and potholes). Furthermore, 
the Global Road Damage Detection Challenge (GRDDC) has attracted much attention in research on road dam-
age detection19. Despite the great progress made by these studies on the application of deep learning algorithms 
for the detection of road pavement damages, they are usually associated with high acquisition costs, varying 
image resolutions, and restricted image views, which imped the practical application of the associated models.

Street view images are geotagged images collected by map service providers (e.g., Google Maps and Baidu 
Maps) through street view imaging systems along roads from multiple viewing angles. These images are then 
processed and maintained according to the standard methods20. Street view images can accurately depict the 
urban physical environment21 and have been employed in numerous research applications, including the esti-
mation of poverty, violent crime, health behaviour, and travel patterns22,23. The front view of street view images 
provides insights of road conditions. These images, which are collected by state-of-the-art devices, have the 
advantages of low additional costs, easy accessibility, regular updates, and rich data. Thus, street view images 
offer new data sources for the detection of road pavement damages. Table 2 summarizes the current street view 
image datasets and their application in the existing studies for the detection of road damage24–31. The datasets 
used in the studies vary in terms of quantity, spatial resolution, and annotated damage category, and are not pub-
licly available at all. Classifying pavement damage solely at the image level is inadequate, as it can only indicate 
the presence or absence of damages25,29. While segmenting pavement damage at the pixel level provides detailed 
information on the shape and size, current studies predominantly focuses only on the presence or absence of 
damages and is restricted by a limited image dataset24,28. Some road damage detection studies relying on bound-
ing boxes explore few categories of damages, failing to meet industry requirements30. Alternatively, some damage 
categories may not be suitable for street view image scenarios26,27. Moreover, some datasets have a relatively lim-
ited coverage31. Although the models proposed in these studies have made progress in monitoring road damages, 
their performance is only validated on self-built datasets and there is a lack of training and testing on unified 
public datasets. This makes it challenging to fairly evaluate and compare the performances of various models.

Compared to the top-down and wide view images, the street view images stand out with distinct characteris-
tics when utilized for road pavement damage detection. The top-down and wide view images cover only the cap-
tured areas since they are captured privately. If a trained model is applied to the actual area to be detected, images 
of the study area need to be acquired. The street view images are captured by map service providers using spe-
cialized equipment and are guaranteed in terms of image quality. The data covers almost all cities in the world, is 
publicly available for download, and updated regularly. The model trained using the road damage dataset of anno-
tated street view images can be easily used in street view images of other areas. Also, these three views datasets 
can be used as data for domain adaptation studies with each other. And the wide view and street view images have 
similar perspectives and the same complex road background, which can be better used for the study of pavement 
damage domain adaptation. Table 3 shows the comparison of the attributes of the three views image datasets.

In this study, we propose the Street View Image Dataset for Automated Road Damage Detection (SVRDD), 
a dataset based on street view images for the detection of road pavement damage. To the best of our knowledge, 
SVRDD is the first public dataset based on street view images for pavement damages detection. It comprises a 
total of 8000 street view images from Dongcheng, Xicheng, Haidian, Chaoyang, and Fengtai Districts of Beijing 
City, encompassing a variety of urban road types and pavement conditions. The dataset comprehensively annotates 
pavement damages at the bounding box level, encompassing a total of 20,804 annotated instances. In terms of both 
the number of images and the damage instances, the SVRDD dataset stands out among current datasets for road 
damage detection based on street view imagery, at both bounding box and pixel annotation levels. The categories 
of pavement damage addressed include six damage categories and one confusing non-concrete pavement, namely, 
longitudinal crack, transverse crack, alligator crack, pothole, longitudinal patch, transverse patch, and manhole 
cover. From an application perspective, pavement damage categories in SVRDD are more relevant to the trans-
portation industry sector and are well-suited for detection in street view imagery. Simultaneously, the inclusion of 

Dataset Images Resolution Source Annotation-level Annotated category Methods Availability

Chacra and Zelek24 250 640 × 640 Google Street 
View Pixel 2 (crack and background) Linear SVM Private

Ma et al.25 711,520 640 × 224 Google Street 
View Image 3 (poor, fair, and good) FC-CNN Private

Majidifard et al.26 7237 640 × 640 Google Street 
View Bounding box

9 (reflective crack, transvers crack, block crack, 
longitudinal crack, alligator crack, sealed reflective crack, 
lane longitudinal crack, sealed longitudinal crack, and 
pothole)

YOLOv2, 
Faster R-CNN Private

Lei et al.27 19,665 1024 × 512 Baidu Maps Bounding box 8 (deformation, pothole, loose, net-crack, cracks, patched-
pothole, patched-net, and patch-crack) YOLOv3 Private

Zhang et al.28 400 1024 × 512 Baidu Maps Pixel 2 (crack and background) Deeplabv3+ Private

Maniat et al.29 27,000 200 × 200 Google Street 
View Image 2 (cracked and not cracked) VGG-16 Private

Maniat et al.29 67,000 250 × 250 Google Street 
View Image 5 (not cracked, longitudinal crack, transverse crack, 

alligator crack, and not pavement) VGG-16 Private

Shu et al.30 400 512 × 512 Baidu Maps Bounding box 3 (transverse, longitudinal, and alligator cracks) YOLOv5l Private

Ren et al.31 2900 1024 × 1024 Baidu Maps Bounding box
7 (longitudinal crack, transverse crack, alligator crack, 
pothole, manhole cover, longitudinal patch, and transverse 
patch)

YOLOv5s-M Private

Table 2. Reported street view image datasets and their application in the detection of road damage.
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manhole cover annotations can significantly enhance the detection of pothole16,31. SVRDD provides bounding box 
annotations in two formats (i.e., Pascal VOC and YOLO) to facilitate the easy usage of the datasets. The backgrounds 
of the street view images in SVRDD include pedestrians, vehicles, buildings, viaducts, trees, and their shadows. The 
images were collected under multiple seasons and weather and lighting conditions. In order to evaluate SVRDD, 
we trained and tested ten well-established object detection algorithms using this dataset. We subsequently analysed 
the performance of the dataset with varying numbers of training images and evaluated the impact of the training 
subsets association from different districts on the model training, to assist users in utilizing the dataset. Additionally, 
some potential extensions for the SVRDD dataset were further analysed, which opens the door for further research.

Methods
The creation of the SVRDD dataset includes three key steps, namely, image collection, data cleaning, and dam-
age annotation (Fig. 2).

Images collection. A total of 844,432 street view images of Beijing City were acquired from Baidu Maps32. 
Notably, the use of Baidu Maps street view images must comply with its terms and conditions33. First, road loca-
tion information was obtained using the Open Street Map (OSM) road network data, which was converted to 
the BD09 coordinate system used in the Baidu Maps. A sampling point was then generated every five meters 
along a road network, and the coordinates of the sampling points and other parameters (e.g., image width, 
height, and viewing angle) were input into the Baidu Maps API to download the street view images. Two 
types of images, with pitch angles of 0° and 45°, respectively, were obtained for each sample location. These 
images were vertically concatenated to obtain a complete front-view street view image for a given location. 
Each image has a size of 1024 × 1024 pixels. The street view images used for the dataset were mainly captured  
in 2019 and 2020.

Data cleaning. The large number of obtained street view images ensures a wide distribution of damage fea-
tures. However, as street view images are not specifically designed for the detection of road damage, data cleaning 
was required to guarantee the quality of the pavement damage dataset. The data cleaning process was performed 
following three steps: i) removal of images without damage; ii) considering the high sampling frequency of street 
view images and the minimal road damage differences between adjacent images, redundant images were also 
removed; and iii) deletion of images with either blurry or densely overlapped instances of damage. Considering 
the annotation workload and district area, we ultimately obtained 8000 street view images for the detection of 
road pavement damage, with 1000 images from Dongcheng and Xicheng districts, respectively, and 2000 images 
from Haidian, Chaoyang, and Fengtai districts, respectively.

Damage annotation. All the selected images were manually annotated using LabelImg with object bound-
ing boxes. The annotated damage categories include longitudinal cracks, transverse cracks, alligator cracks, pot-
holes, longitudinal patches, and transverse patches. Due to the potential misclassification of pothole and manhole 
cover16,31, we added a category for manhole covers. The annotation process was done by three trained annotators, 

Attributes Top-down view Wide view Street view

Platform Vehicle, Handheld Vehicle Vehicle

Device Camera, Smartphone Smartphone Street view imaging systems

Position A few meters above the road On the dashboard/windshield of the vehicle On the roof of the vehicle

Angle Downward, perpendicular to the road Forward, slightly downward to the road Directly forward, parallel to the road

Background None Complex road environment Complex road environment

Acquisition Privately obtained Privately obtained Publicly downloadable

Coverage Captured areas Captured areas Global coverage

Updatable No update No update Regular update

Table 3. Attributes of top-down view, wide view, and street view image dataset for road pavement damage 
detection.

Fig. 2 Flowchart of the generation process of SVRDD.
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and the results from each annotator were cross-checked using the other two annotators. Pascal VOC and YOLO 
were included as the annotation formats. For the Pascal VOC format, data is stored in .xml files, and the position 
of a bounding box is represented as (xmin, ymin, xmax, ymax), with (xmin, ymin) and (xmax, ymax) as the top-left and 
bottom-right coordinates, respectively. For the YOLO format, data is stored in.txt files, and the position of a 
bounding box is represented as (x, y, w, h), with (x, y), w, and h as the centre coordinate, width, and height of the 
bounding box, respectively.

Image properties. Statistical analysis was performed to determine the distribution and properties of the 
SVRDD dataset. Figure 3 presents some example images from the dataset with different damage category annota-
tions. The background of the images contains pedestrians, vehicles, buildings, viaducts, trees, and their shadows. 
The images were collected under different seasons and weather and lighting conditions. These varying conditions 
bring challenges to the detection of road damage from the street view images.

The number of damage instances of each category in the SVRDD dataset and the key statistics of each dis-
trict are illustrated in Fig. 4. The 8000 images in the SVRDD dataset offer a total of 20,804 damage annotation 
instances. Among the six damage categories, the number of potholes and alligator cracks is relatively low, as 
these two damage types emerge after severe road aging. Among the five districts, Chaoyang District exhibits the 
lowest average number of damage instances.

The position and shape statistics of the damage instances in the SVRDD dataset, namely, the central point 
coordinates and height–width distributions are presented in Fig. 5. The central points of the damage instances 
are primarily concentrated in the lower half of the images, while the upper half of the images generally represent 
the background. Due to the perspective effect, the road surfaces located in the upper half of the images are nar-
rower, making it challenging to identify damage. The height–width distribution of the damage instances reveals 
that the damage width can span the entire image, while the length is at most equal to half of the image.

The area statistics of damage instances in the SVRDD dataset, which are calculated as the ratio of the area 
of damage instances to the area of images, are illustrated in Fig. 6. The area distributions of longitudinal cracks, 
transverse cracks, longitudinal patches, and transverse patches are approximately the same, and concentrated 
within 10% of the image area. Alligator cracks have a relatively large area, with the highest value reaching 50% 
of the image area. Pothole and manhole cover are determined to have smaller areas, mostly less than 0.5% of 
the image area. The results demonstrate there to be significant differences in the area of damage instances. Thus, 
the object size needs to be considered when constructing a deep learning network for road damage detection.

Fig. 3 Examples of different damage categories included in the SVRDD dataset. (a) longitudinal crack and 
manhole cover; (b) transverse crack; (c) alligator crack; (d) pothole; (e) longitudinal patch; (f) transverse patch.
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Data Records
The SVRDD dataset has been published in the Zenodo repository34. Its data structure and format are described 
in the following.

The dataset includes two folders, namely, ‘SVRDD_VOC’ and ‘SVRDD_YOLO’. The ‘SVRDD_VOC’ organ-
izes the data in Pascal VOC format and contains the ‘JPEGImages’ folder with the street view images of all the 
districts of Beijing City, as well as the ‘Annotations’ folder which contains the corresponding bounding box 
annotation files in .xml format. The ‘SVRDD_YOLO’ organizes the data in YOLO format. It contains the ‘images’ 
folder with the street view images of all districts and the ‘labels’ folder with the corresponding bounding box 
annotation files in.txt format. The directory structure for the SVRDD dataset is shown in Fig. 7.

Each image filename consists of the image serial number PID, horizontal coordinate X of the shooting posi-
tion, and vertical coordinate Y of the shooting position, separated by ‘_’. PID is the serial number of the image 
provided by Baidu Maps and the horizontal and vertical coordinates of the image shooting position are the 
corresponding coordinates in the Baidu BD09 coordinate system.

Fig. 4 Statistics of the number of damage instances included in the SVRDD dataset.

Fig. 5 Position and shape statistics of the damage instances. (a) distribution of the central point coordinate; (b) 
distribution of the ratio between the height and width.
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technical Validation
The technical validation of the SVRDD dataset evaluates its applicability in the construction of deep learning 
models for the detection of road damage based on street view images. In the technical validation, the dataset was 
randomly split into a training set of 6000 images, validation set of 1000 images, and testing set of 1000 images 
at a ratio of 6:1:1. The proportions of images from each district in the three sample sets are consistent with the 
overall image proportions of each district.

performance of object detection algorithms using SVRDD. The SVRDD dataset was used to train 
and evaluate the performance of ten mainstream object detection algorithms, including Faster R-CNN35, Cascade 
R-CNN36, Dynamic R-CNN37, RetinaNet38, FCOS39, ATSS40, YOLOv341, YOLOF42, YOLOv543, and YOLOX44. The 
experimental hardware configuration includes an Intel (R) Xeon (R) Silver 4116 CPU, 128 GB RAM, and four NVIDIA 
GeForce 1080Ti GPUs. The open-source object detection library MMDetection45 was used as the implementation 

Fig. 6 Area statistics of damage instances. (a) longitudinal crack; (b) transverse crack; (c) alligator crack; (d) 
pothole; (e) manhole cover; (f) longitudinal patch; (g) transverse patch; (h) total.
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platform for the algorithms. For the parameter settings, the batch size was set to 16, the stochastic gradient descent 
algorithm was selected to optimize the learning rate, the momentum was set to 0.9, the weight decay coefficient was 
0.0001, and a warm-up method was employed to initialize the learning rate. Table 4 reports the performance com-
parison of these models on the SVRDD testing set. Results indicate that YOLOv5, YOLOX, and Cascade R-CNN 
demonstrated superior performances on the SVRDD dataset. Among them, YOLOv5 exhibited the best detection 
performance with a F1-score of 0.709 and a mAP@0.5 of 0.733. The YOLOv5 network attends to characterize object 
features at four scales with strides of 8, 16, 32, and 64, while thoroughly fusing features between different layers, sig-
nificantly enhancing the detection of pavement damage with substantial variations in size. It can be seen in Table 4 
that YOLOX trailed closely with a F1-score of 0.691 and a mAP@0.5 of 0.703, notching the highest mAP@0.5:0.95 of 
0.420. Next is the Cascade R-CNN, which having the largest parameters and FLOPS, recorded a F1-score of 0.664 and 
a mAP@0.5 of 0.674. Following is Dynamic R-CNN, and the most classic object detection algorithm Faster R-CNN 
and YOLOv3 also achieved good performance. The remaining detection algorithms (i.e., RetinaNet, FCOS, ATSS, and 
YOLOF) also achieved F1-score and mAP@0.5 values nearly reaching 0.6. These results reveal the effectiveness of the 
SVRDD dataset with deep learning algorithms for the detection of road damage in street view images.

performance with varying training set sizes. The model performance was investigated using 
sub-datasets with different numbers of training images. The datasets shared the same validation and testing sets 
as the original SVRDD dataset, while the number of images in the training set were varied. Figure 8 presents 
the division of the datasets. SVRDD6K is the original SVRDD dataset, with 6000 images in the training set, 
SVRDD5K is derived from SVRDD6K by removing 1000 images from the training set based on the image pro-
portions of each district, and so forth for the remaining datasets. Notably, the proportions of images in each 
district in the training sets of these datasets remain consistent with the original proportions of images in each 
district.

Fig. 7 Directory structure of the SVRDD dataset (the file types in folders are exemplified in the ‘Dongcheng’ 
folder).

Methods Parameters FLOPs Precision Recall F1-Score mAP@0.5 mAP@0.5:0.95

Faster R-CNN 41.379 M 274.4 G 0.586 0.662 0.622 0.649 0.363

Cascade R-CNN 69.170 M 331.8 G 0.657 0.671 0.664 0.674 0.403

Dynamic R-CNN 41.753 M 276.5 G 0.625 0.653 0.639 0.660 0.379

RetinaNet 36.454 M 264.2 G 0.547 0.637 0.589 0.604 0.309

FCOS 32.127 M 251.9 G 0.806 0.450 0.578 0.602 0.322

ATSS 32.127 M 258.0 G 0.763 0.536 0.630 0.636 0.349

YOLOv3 61.556 M 139.9 G 0.767 0.554 0.643 0.640 0.279

YOLOF 42.478 M 122.6 G 0.608 0.573 0.590 0.563 0.298

YOLOv5 12.331 M 16.2 G 0.752 0.671 0.709 0.733 0.417

YOLOX 25.284 M 73.5 G 0.675 0.707 0.691 0.703 0.420

Table 4. Performance comparison of different mainstream object detection algorithms.
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As YOLOv5 presents the best performance in the comparative experiments, it was trained and tested on 
these six datasets (i.e., 6K to 1 K) (Table 5). As the number of training images decreased within a certain range, 
the model accuracy also decreased. Compared to SVRDD6K, when the number of training samples is 5000, 
4000, 3000, 2000, and 1000, the model’s F1-score decreased by 0.28%, 0.42%, 1.97%, 8.04%, and 23.13%, and 
the model’s mAP@0.5 decreased by 0, 2.18%, 4.50%, 11.60%, and 29.33%, respectively. The model performance 
is approximately equal for the SVRDD6K and SVRDD5K datasets, with only a slight decrease in the F1-score 
under the latter. This suggests that the model’s performance is significantly influenced by the dataset size. 
However, as the dataset size increases, its impact diminishes, and the model performance is more likely to be 
influenced by the network structure. There is a significant decrease in model performance with the SVRDD1K 
dataset compared to the others due to the fact that the training data size is too small and does not contain suf-
ficient damage instances, which can overfit noise and irrelevant features in the training data, resulting in poor 
generalization.

The mAP@0.5 values for different categories of pavement damages change as the size of the training set var-
ies, with significant differences observed in their respective changes (Fig. 9). In summary, when comparing the 
mAP@0.5 values for different categories of pavement damage: the mAP@0.5 for alligator crack is higher than 
those for patches, which are higher than the mAP@0.5 values for cracks, and finally, the mAP@0.5 for pothole. 
Additionally, the mAP@0.5 for longitudinal damages are greater than that for transverse ones. The mAP@0.5 
values of all pavement damage categories generally decrease as the size of the training set decreases. In the 
decrease of training set sizes from SVRDD6K to SVRDD1K, pothole is most affected with a mAP@0.5 decrease 
of 40.33%. Next, transverse cracks and transverse patches experience a decrease of 35.34% and 31.81% respec-
tively, followed by longitudinal patch and longitudinal crack with decreases of 28.01% and 23.88%. Alligator 
crack is affected with a decrease of 27.28%. All categories of pavement damage show a substantial drop when 
the dataset size changes from SVRDD2K to SVRDD1K. Transverse cracks and potholes presented the most 
significant changes in mAP@0.5, with decreases of 30.65% and 29.87% respectively. The remaining mAP@0.5 
reductions are around 15%. Meanwhile, the mAP@0.5 for transverse crack experiences the smallest change 
when the size transitions from SVRDD6K to SVRDD2K, amounting to only 6.77%. Therefore, when conducting 
data collection or model training, it is crucial to focus on potholes and transverse cracks as these are the most 
affected types of pavement damage by the dataset size.

performance on removing training sets from different districts. The impact of removing training 
data from different districts on the model was also investigated. In particular, the validation and testing set in 
the SVRDD dataset remained consistent, while training images of Dongcheng, Xicheng, Haidian, Chaoyang, 

Fig. 8 Dataset splitting for different training set sizes (a) and the proportion of images for each district in the 
SVRDD1K dataset (b).

Datasets Precision Recall F1-Score mAP@0.5 mAP@0.5:0.95

SVRDD6K 0.752 0.671 0.709 0.733 0.417

SVRDD5K 0.719 0.695 0.707 0.733 0.417

SVRDD4K 0.750 0.666 0.706 0.717 0.407

SVRDD3K 0.736 0.659 0.695 0.700 0.387

SVRDD2K 0.708 0.604 0.652 0.648 0.339

SVRDD1K 0.612 0.492 0.545 0.518 0.232

Table 5. Model performance under sub-datasets with different numbers of training images.

https://doi.org/10.1038/s41597-024-03263-7


1 0Scientific Data |          (2024) 11:407  | https://doi.org/10.1038/s41597-024-03263-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

and Fengtai were removed to form new datasets. Considering the proximity of Dongcheng District and Xicheng 
District and that the sum of the image quantities in the two districts is equal to the individual image quantities in 
the other three districts, we also included the case of simultaneously removing training images from both these 
two districts. The ‘SVRDD-Dongcheng’ represents the SVRDD dataset with the training data of the Dongcheng 
District removed and so forth. The YOLOv5 network, which demonstrated the best performance in the compara-
tive experiments, was used for the training and testing. Figure 10 reports the mAP@0.5 values for the testing set of 
each district. The model performance decreased to varying degrees when the training data from different districts 
was removed. The detection accuracies of Dongcheng and Xicheng districts were the lowest when the train-
ing data of these two districts was simultaneously removed out. After the training data of Haidian District was 
removed, its mAP@0.5 value decreased by 0.074, while the decrease of mAP@0.5 was insignificant in other cases. 
This suggests that the image features in the Haidian District were relatively independent because the District is 
situated across the plain and West Mountain. Removing the training images of Fengtai District had a significant 
impact on all districts, and thus it had the largest effect on the overall performance. This may be because Fengtai 
District provides the majority of pothole annotation data in the dataset, which greatly influences the accuracy of 
pothole detection in all districts, and ultimately affects the overall performance.

Usage Notes
Dataset usage. The SVRDD dataset described in this paper is offered to the scientific community for pro-
moting the progress of road damage detection from street view images. It is the first public dataset of street 
view images for the detection of road damage annotated by trained remote sensing image interpreters and made 
available publicly. SVRDD can be employed ‘as is’ to train deep learning models for road damage detection. The 
SVRDD dataset can be downloaded from the link provided. Moreover, the data division strategy used in the tech-
nical validation is also provided and users can divide datasets based on their research needs. The users are advised 
to cite this article and acknowledge the contribution of this dataset to their work.

Limitations. The SVRDD dataset has some limitations as follows:

•	 Limited coverage. Although currently covering the five districts of Beijing City, China, the SVRDD dataset 
spans diverse road types and pavement conditions. It is still less for the vast road network and massive street 
view data. Pavement damage characteristics may vary from region to region.

•	 Imbalanced classes. The number of instances in each damage category of the SVRDD dataset is not equal. 
Potholes were fewer in number in the area studied, so there were significantly fewer instances of potholes than 
other damages. This could be the reason for the low accuracy of pothole detection (Fig. 9).

Supported extension. The applicability of SVRDD can be broadened to encompass other scenarios. Users 
can select extensions to studies based on their interests, and we first recommend addressing the limitations of the 
dataset. Potential extensions could include:

•	 Multi-city imagery. The first aim is to include more cities to expand the dataset. This extension to multi-city 
street view images is anticipated to enhance diversity and improve pavement damage detection performance 
in various urban settings.

•	 Multi-temporal imagery. The image in the SVRDD dataset is the most recent in the timeline for that location. 
Given the regular updates of street view images, capturing them at different times facilitates a comprehensive 

Fig. 9 The mAP@.5 values of different damage categories with different training set sizes.
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analysis of temporal variations in pavement conditions at specific locations. This temporal dimension adds 
valuable insights for ongoing monitoring and assessment.

•	 Multi-view imagery. Acknowledging the importance of diverse views, the SVRDD dataset can be used with 
images from other views. Leveraging domain adaptation techniques, models trained on the SVRDD dataset 
can effectively be deployed on images captured from varying views. The current domain adaptive object 
detection is mainly based on teacher-student framework and transformer framework, which is worthwhile to 
consider further research to be applied to the SVRDD dataset.

•	 Balancing dataset. Having an imbalanced dataset decreases the sensitivity of the model towards minority 
classes. To handle class imbalance problem, images of fewer number of damage categories can be added 
in. Various techniques can also be employed, such as data augmentation, resampling techniques, synthetic 
minority over-sampling technique, etc.

•	 Additional annotations. Beyond its primary focus, SVRDD images can be annotated for various applications, 
such as identifying road traffic signs, road markings, congestion detection, and more. This expanded annota-
tion approach adds versatility and utility to the dataset for diverse applications.

Code availability
The software used for labelling the pavement damage object bounding boxes is LabelImg, provided by https://
github.com/HumanSignal/labelImg.

In fairness to test the usefulness of the dataset, the framework used for training and testing object detec-
tion algorithms in the technical validation is MMDetection, provided by https://github.com/open-mmlab/
mmdetection.
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