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a dataset for fatigue estimation 
during shoulder internal and 
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Wearable sensors have recently been extensively used in sports science, physical rehabilitation, and 
industry providing feedback on physical fatigue. Information obtained from wearable sensors can be 
analyzed by predictive analytics methods, such as machine learning algorithms, to determine fatigue 
during shoulder joint movements, which have complex biomechanics. The presented dataset aims 
to provide data collected via wearable sensors during a fatigue protocol involving dynamic shoulder 
internal rotation (IR) and external rotation (ER) movements. Thirty-four healthy subjects performed 
shoulder IR and ER movements with different percentages of maximal voluntary isometric contraction 
(MVIC) force until they reached the maximal exertion. The dataset includes demographic information, 
anthropometric measurements, MVIC force measurements, and digital data captured via surface 
electromyography, inertial measurement unit, and photoplethysmography, as well as self-reported 
assessments using the Borg rating scale of perceived exertion and the Karolinska sleepiness scale. 
This comprehensive dataset provides valuable insights into physical fatigue assessment, allowing 
the development of fatigue detection/prediction algorithms and the study of human biomechanical 
characteristics during shoulder movements within a fatigue protocol.

Background & Summary
Repeating the same, or comparable, motions over time can cause some muscle groups to become overused and 
overextended, resulting in muscular fatigue1. Monitoring fatigue in the shoulder joint is crucial, considering 
its vital role in diverse athletic activities, work-related tasks, and rehabilitation routines2–5. Measuring shoulder 
fatigue of upper extremities in sports involving repetitive and high-intensity movements, such as throwing, 
tennis volley and serves, golf swing, and swimming strokes, allows trainers to control athlete’s training, pro-
viding personalized sessions and diminishing injury susceptibility6–10. Physiotherapists can customize exercise 
programs to provide safe and progressive rehabilitation that balances muscle recovery and prevents overstrain 
by monitoring fatigue levels during shoulder rotation exercises3,11–13. Shoulder movements are also critical for 
various industrial and occupational tasks, such as lifting, assembling, reaching, pulling, and pushing during pro-
longed or repetitive movements14–18. In environments where workers are at risk of being exposed to work-related 
shoulder fatigue, which is a risk indicator for musculoskeletal disorders, it is essential to understand the physio-
logical and biomechanical patterns that can induce fatigue and take precautions15,19–21.

Due to their ability to generate real-time data, cost-effectiveness, non-invasiveness, remote monitoring, and 
portability, wearable devices are frequently utilized in a variety of applications to detect or monitor physical 
fatigue, including medical rehabilitation22, sports applications23, and occupational health and safety24,25. In this 
context, the present work provides a comprehensive set of data to globally assess physical fatigue during tasks 
involving shoulder internal rotation (IR) and external rotation (ER) movements holding a series of weights 
corresponding to different percentages of maximal voluntary isometric contraction (MVIC) force. The dataset 
includes data generated by wearable surface electromyography (EMG), inertial measurement unit (IMU), and 
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photoplethysmography (PPG), as well as the results of subjective self-reporting tests, such as the Borg rating of 
perceived exertion (RPE) scale and Karolinska sleepiness scale (KSS).

EMG enables continuous muscle activity monitoring, providing information on muscle contractions26. 
Physical fatigue is typically detected from EMG signal as an increase in amplitude and changes in the frequency 
spectrum27,28. By positioning EMG sensors on the involved muscle groups, time to fatigue can be measured, and 
muscle activation patterns can be tracked over time29. IMU sensors generally comprise a triaxial accelerome-
ter (acc), triaxial gyroscope (gyr), and triaxial magnetometer (mag). These sensors can be attached to various 
body segments to capture orientation and motion data, providing insight into kinematic information during the 
physical task, and related changes caused by physical fatigue30,31. PPG sensors, often integrated into wearable 
devices, enable the non-invasive measurement of blood flow and heart rate variability, offering information 
about an individual’s physiological state32,33. By monitoring changes in PPG signals, such as pulse rate, oxygen 
saturation, and vascular tone, early signs of physical fatigue, stress, and decreased cognitive function can be 
detected34–36. Concerning the subjective self-reporting assessments, the Borg RPE scale assesses an individual’s 
exertion, strain, and fatigue during physical activity based on physical signs (such as an elevated pulse rate and 
muscle fatigue) experienced by the subject37. In addition, fatigued individuals may feel raised sleepiness and 
decreased ability to stay awake38. Some studies found a significant correlation between sleepiness and physical 
fatigue39. In the contest of our study, the KSS value offers an indication of the subject capability and reactiveness 
at the day the data were collected, providing an extra level of information in processing and interpreting the 
objective data collected by the wearables40,41.

Although several datasets are available for fatigue measurement with wearable devices25,42–47, none contain 
information on physical fatigue during complex repetitive shoulder joint movements with varying loads. By 
combining objective and subjective assessments, this dataset provides a comprehensive and adaptive tool for 
model fatigue, during shoulder rotations at varying levels of contraction force. Incorporating various wearable 
sensors to assess fatigue can aid in the development of objective detection of muscular fatigue via modelling or 
data-driven approaches, such as machine learning. Previous studies have integrated artificial intelligence tech-
niques into fatigue management strategies, using wearable sensor data for physical fatigue prediction and tailor 
manual tasks or physical training to enhance human performance. These models have effectively monitored and 
detected how a person’s endurance degrades when fatigue sets in48–50; nevertheless, there is a need to understand 
how fatigue differs according to changes in people’s physical characteristics49. Individual features such as age, 
gender, fitness, and previous injuries contribute to variation in human performance49,51. Based on the anthro-
pometric measurements and wearable sensors, data supplied in this dataset can be utilized to construct tailored 
machine learning approaches that consider physical characteristics that differ across individuals. Moreover, this 
database seeks to provide data for studies aiming at optimizing training regimens, injury prevention protocols, 
and workplace ergonomics by investigating the effects of varying MVIC force percentages on fatigue and evalu-
ating the relationship between perceived exertion and physiological measures. As wearable EMG, IMU, and PPG 
sensors have proven useful for fatigue recognition, the dataset provides an open and easy-to-download resource 
for building and testing relevant algorithms. It can also be used by researchers interested in physical fatigue 
detection to compare and validate algorithms.

Methods
The study was approved by the Clinical Research Ethics Committee (CREC) of the Cork Teaching Hospitals at 
the University College Cork under Reference ECM 4 (p) 6/7/2021 & ECM 3 (ww) 09/08/2022 and adhered to 
ethical regulations. Data were collected at the Wearable Laboratory at the Tyndall National Institute, University 
College Cork, in Cork, Ireland from April to July 2023.

participants. This study comprised 34 healthy participants (female:11, male:23, age: 26 ± 4 years) without 
musculoskeletal injuries. Subjects were recruited through word of mouth and subsequently detailed information 
about the experiment protocol was provided via e-mail. Participants were instructed to avoid excessive physical 
activity before the data capture. They were also cautioned not to consume stimulants (caffeine, energy drink etc.) 
before the measurements as stimulants can affect performance and focus52,53. These effects could have a positive 
impact on reducing fatigue and improving alertness, potentially leading to inconsistent results54. On the meas-
urement day, subjects signed the informed consent to indicate their intention to join the study. Most participants 
were right-handed, with two individuals reporting left-handed dominance. They were in general physically active, 
specifically engaging in fitness training on an average of three times a week.

Experimental protocol. Demographic and anthropometric data were initially collected for each volunteer. 
Later, an upper extremity dynamic warm-up protocol was conducted, including wrist flexion and extension, 
large and small forward and backward circles, arm taps and hugs, standing rotation, and internal and external 
shoulder rotations. This approximately seven-minute routine was carried out to prepare the upper extremity 
muscles involved in the movement physiologically and prevent a possible risk of injury55. Once participants com-
pleted the warm-up protocol, EMG electrodes and IMU sensors were placed on the muscles and joints on the 
dominant side of the upper body; positions are described in the ‘EMG measurement’ and ‘IMU measurement’ 
sections, respectively. Afterward, KSS was administrated to participants to determine their sleepiness states at the 
beginning and very end of the measurements41. The MVIC forces of the participants during shoulder IR and ER 
movements were measured using a push/pull dynamometer (Walfront NK-500). The tests were repeated twice 
with a two-minute interval between each repetition. After MVIC force measurement, the PPG wearable wireless 
sensor was placed on the non-dominant index finger to measure blood volume changes during the shoulder IR 
and ER tasks. Participants then performed shoulder IR and ER exercises with cable pulley apparatus with three 
different weight (kg) ranges corresponding to 30–40%, 40–50%, and 50–60% of their MVIC force. In order to 
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minimize order effects, given that the proposed tasks affect participant performance differently and require dif-
ferent conditions (varying body posture and weight), the volunteers were divided into three groups. Each group 
performed the tasks in a different order, as outlined in Table 1. This pseudo-randomization contributes to meeting 
the statistical assumption of independence, enhancing the generalizability of the study’s findings.

The shoulder IR movement was performed while subjects were standing in a lateral position next to the 
fixed cable pulley. The shoulder IR movement was performed while subjects were standing in a lateral position 
next to the fixed cable pulley. Shoulder rotation movements under investigation are predominantly executed in 
a standing position in sports practices such as racket sports, rehabilitation settings for shoulder injuries, and 
industrial practices like pick-and-place activities, the standing position was chosen as it better reflects real-world 
scenarios to simulate more practical and realistic conditions56,57. They held the U-handle cable attachment, 
maintaining a neutral shoulder position with their upper arm at the side of the body. The elbow was flexed to 
90 degrees, the wrist was kept straight, and the arm was rotated inward towards the abdomen. For the shoulder 
ER movement, the same body posture was required. Subjects remained in a standing position on the lateral side 
of the fixed cable pulley, holding the U-handle cable attachment. The shoulder maintained a neutral position 
with the upper arm alongside the body, while the elbow was flexed at a 90-degree angle, and the wrist was kept 
straight. In this case, the arm was rotated outward, away from the front of the body. The Borg RPE was utilized as 
a subjective scale for participants to determine fatigue levels before and every 10 seconds during shoulder IR and 
ER exercise. Participants continued to perform the task until they reached the exhausting level (20) on the Borg 
RPE Scale. The scale was positioned at eye level in front of the participants during each exercise and monitored. 
Participants were verbally instructed to maintain the required body position and continue the exercises until 
completely exhausted. A metronome sound recording of 40 beats per minute was used to ensure the exercises 
were performed uniformly at the same speed during the tests. A 10 min rest interval was given between each 
measurement. A step-by-step description of all the stages in the protocol and the data collected in each stage is 
provided in Fig. 1.

anthropometric measurements. Body composition - Body weight (kg), body mass index (BMI) (kg/m2), 
body fat (%), visceral fat, and skeletal muscle (%) - was determined by the clinically proven bioelectrical imped-
ance analysis (OMRON BF511 T Monitor, Healthcare Co., Ltd. Kyoto, Japan) (https://www.omron-healthcare.

Group
Number of 
participants

Task order

I II III IV V VI

Group one 12 IR 30–40% IR 40–50% IR 50–60% ER 30–40% ER 40–50% ER 50–60%

Group two 10 ER 50–60% ER 40–50% ER 30–40% IR 50–60% IR 40–50% IR 30–40%

Group three 12 IR 50–60% ER 50–60% IR 40–50% ER 40–50% IR 30–40% ER 30–40%

Table 1. Task orders.

Fig. 1 Experimental design.
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com/products/bf511-turquoise) following Omron guideline58 (Fig. 1). A measuring tape (Bozeera Body Mass 
Tape 150 cm) was utilized to obtain standing height, length (upper arm, forearm, palmar, and hand) and circum-
ference (upper arm distal (UAD), upper arm proximal (UAP), upper arm middle (UAM), upper arm tense (UAT), 
forearm distal (FD), forearm proximal (FP), forearm middle (FM), and hand (H) measurements (all expressed in 
cm). An electronic digital calliper (Neiko 01407 A USA, 0–150 mm) was used to assess breadth and depth meas-
urements of the UAD, UAP, UAM, FD, FP, FM, and H. Measurements were taken from the dominant side of the 
body. Measurements were conducted using the arm reference points outlined by Neuman et al.59 and the hand 
reference points described by Garrett (1971)59,60.

MVIC force measurement. An ad-hoc setup was prepared to perform the shoulder IR and ER MVIC force 
tests using the Walfront NK-500 push/pull dynamometer (Fig. 1). Firstly, the dynamometer U-shape handle 
and clamp were designed ad-hoc and fabricated using a fused filament modelling 3D printer. Afterward, The 
U-shaped holder was fastened to the dynamometer with a non-stretch rope. The dynamometer was arranged 
inside the clamp and positioned horizontally on a 90 cm high stable table. During the MVIC force tests, par-
ticipants sat on a stable bench placed parallelly alongside the table. Their feet were flat on the ground, and their 
shoulders were neutral with zero abduction. They kept their upper arms on the side of their bodies while their 
elbows were flexed at 90 degrees. Participants were asked to stabilize their spine and avoid scapular protraction 
and retraction as they could compromise shoulder rotation. In the shoulder IR and ER MVIC tests, the dominant 
arm was employed to apply resistance using the U-shaped hand grip. In the shoulder IR MVIC test, participants 
were instructed to exert full force (maximum effort) while attempting to rotate their arm against the dynamom-
eter internally. In the shoulder ER MVIC test, participants were instructed to exert full force (maximum effort) 
while attempting to rotate their arm against the dynamometer externally. Subjects were carefully monitored 
throughout each isometric test to ensure that they maintained the required shoulder position and did not attempt 
compensatory movements of the scapula or trunk. During the shoulder IR and ER MVIC force test, the subjects 
were positioned according to the direction of force application. Each MVIC force test lasted for around five 
seconds and was repeated twice. Two-minute rest intervals were given between each repetition. EMG and IMU 
sensors were recorded simultaneously during MVIC force tests.

EMG measurement. Muscle electrical activity was recorded with 1000 Hz sampling frequency by surface 
EMG (BTS FREEEMG 300, BTS Bioengineering, Italy) (https://www.btsbioengineering.com/products/freeemg) 
during MVIC force measurements and shoulder IR and ER exercises (Fig. 1). Standard pre-gelled 24 mm adhesive 
electrodes from Covidien Kendall were positioned on the pectoralis major, anterior deltoid, infraspinatus, poste-
rior deltoid, upper trapezius, and latissimus dorsi at the dominant side of the body. Electrodes were placed using 
the reference areas described in Cram’s Introduction to Surface Electromyography61. Every electrode weighed 13 
grams and had a 16-bit resolution, along with a common mode rejection ratio (CMMR) of >110 dB at 50–60 Hz 
and an input impedance of 100 MOhm62. Before attaching the EMG electrodes, if necessary, participants’ skin was 
carefully shaved and cleaned with a 70% alcohol-based gel to reduce impedance between the skin and electrodes 
and ensure optimal signal transmission63. A trigger box (The FreeEMG Xsens) was used to synchronize IMU and 
EMG devices. EMG sensors placement is shown in Fig. 2.

IMU measurement. IMU sensors (MTw Awinda, Xsens Technologies B.V., Enschede, The Netherlands) 
(https://www.movella.com/products/wearables/xsens-mtw-awinda) were used to obtain acc, gyr, and mag data at 
a sampling frequency of 100 Hz. These sensors collected raw data on acceleration, angular velocity, and magnetic 
field intensity along the x, y, and z axes for each sensor independently and synchronously64. Six IMU sensors (each 
weight: 16 gr, dimensions: 47 × 30 × 13 mm) were placed on the dominant hand, dominant forearm, dominant 
upper arm, shoulder, sternum, and pelvis, with elastic Velcro straps and medical tape according to the manu-
facturer’s instructions (https://base.movella.com/s/article/Sensor-Placement-in-Xsens-Awinda-System?languag
e=en_US) (Fig. 1). Straps and medical tapes were fastened tightly enough to the body segments to ensure that the 
sensors remained fixed and immobilized. IMU sensors placement is shown in Fig. 2. Before the measurements, 
sensors were aligned side-by-side in a lateral position. They were then calibrated with the “heading orientation” 
option of the Xsens system’s acquisition software so that their orientation was correctly established with respect 
to testing area. After completing the measurements, the sensors were placed back in their initial side-by-side 
arrangement to visually confirm that there was no drift in the raw values.

Fig. 2 EMG, IMU, and PPG sensors placement.
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ppG measurement. PPG is a method of measuring volumetric changes in blood circulation that employs a 
light source and a photodetector on the skin’s surface65,66. During shoulder IR and ER exercises, a PPG (Biosignals 
Plux, Portugal) (https://www.pluxbiosignals.com/products/fnirs-pioneer) wearable wireless sensor hub (45 g, 
dimension 54 × 85 × 10 mm) was clipped around the waist, while an optical non-invasive blood volume pulse 
sensor clip was placed on the non-dominant index finger to measure PPG signals with a 200 Hz sampling fre-
quency (Fig. 1). During the tests, participants were asked to keep their non-dominant hand stable on the side of 
their body. PPG sensor placement is shown in Figs. 2, 3.

Borg RpE scale measurement. The Borg’s RPE scale was used at 10-second intervals during the shoulder 
IR and ER exercises. The RPE scale is linear, ranges from 6 to 20 and includes descriptions ranging from ‘No effort 
at all’ to ‘Maximum effort’67. It is a reliable measure for monitoring the collective feedback of physiological, psy-
chological, and situational factors. It allows the individuals to assess how easy or difficult a task is and how tired 
the participants feel when performing tasks68. The measurement was continued until the participants reached 
maximum exertion (level 20) and could not continue the exercise. The scale was positioned at eye level in front of 
the participants and monitored throughout each exercise. Participants were verbally encouraged to continue to 
exercise until they were exhausted and could not continue.

KSS measurement. KSS is a popular method for assessing subjective sleepiness or alertness at specific 
moment in time40. The KSS assesses various dimensions of an individual’s subjective encounter with wakefulness, 
alertness, and fatigue69,70. Although the primary purpose of the KSS is to evaluate sleepiness, it is often employed 
simultaneously or alternatively with fatigue assessments, reflecting the close association between these two dis-
tinct concepts71,72. Additionally, KSS has been compared with electroencephalogram and behavioral variables, 
demonstrating its high validity in assessing sleepiness40. Therefore, we included the KSS measurements during 
the fatigue protocol to be used in correlation analyses with the objective data coming from the wearable sensors. 
The nine steps of the KSS scale range from ‘extremely alert’ to ‘very sleepy, great effort to keep awake, fighting 
sleep’. The test was administrated at the beginning and end of the study to assess the impact of the exercises on the 
participants’ levels of sleepiness and alertness41.

Data processing. During the data acquisition, IMU and EMG raw data were synchronized by a trigger box 
and then saved into.cvs and.emt file formats, respectively. The PPG raw data were not synchronized with the 
aforementioned signals and are stored in a.txt file. Then, data were imported and processed using Python 3.8 
(Python Software Foundation, Delaware, US). A single directory titled ‘EMG, IMU, and PPG data’ was generated, 
containing comprehensive information regarding IMU, PPG, and EMG. An elaborate description of this folder is 
provided in the section ‘Data records’.

Data Records
Data are archived in the repository available at https://zenodo.org/record/841506673. The dataset contains data 
from 34 individuals, including demographic and anthropometric information, MVIC force, Borg RPE Scale, 
KSS, EMG, IMU, and PPG data. Demographic and anthropometric information data were reported within 
a folder named ‘Demographic and anthropometric data’, including separate.csv files for body composition, 

Fig. 3 PPG sensor placement.
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breadth, circumference, demographic, depth, and length. Besides this, MVIC force, Borg RPE scale, and KSS 
data are housed in separate folders called ‘MVIC force data’, ‘Borg data’, and ‘KSS data’, respectively. Additionally, 
EMG, IMU, and PPG data are stored in a single folder named ‘EMG, IMU, and PPG data’.

Demographic and anthropometric data. The demographic and anthropometric measurements of the 
participants are provided in a folder named ‘Demographic and anthropometric data’. This folder comprises sep-
arate files for body composition, breadth, circumference, demographic, depth, and length. The files are named 
‘body_composition.csv’, ‘breadth.csv’, ‘circumference.csv’, ‘demographic.csv’, ‘depth.csv’ and ‘length.csv’.

In the ‘body_composition.csv’ file, the body weight of each participant is labelled as ‘mass (kg)’, the body fat 
ratio is labelled as ‘body fat%’, the skeletal muscle mass is labelled as ‘muscle%’, the visceral fat is indicated as 
‘visceral fat’, and the body mass index values are provided as ‘BMI (kg/m²)’.

In the ‘breadth.csv’ file, the following measurements are recorded for each participant: upper arm middle 
point breadth as ‘upper_arm_mid_b_(cm)’, upper arm distal breadth as ‘upper_arm_ditsal_b_(cm)’, upper arm 
proximal breadth as ‘upper_arm_proximal_b_(cm)’, forearm middle point breadth as ‘forearm_mid_b_(cm)’, 
forearm distal breadth as ‘forearm_ditsal_b_(cm)’, forearm proximal breadth as ‘forearm_proximal_b_(cm)’, 
and hand breadth ‘hand_b_(cm)’.

In the ‘circumference.csv’ file, the following measurements are recorded for each participant: upper arm 
middle point circumference as ‘upper_arm_mid_c_(cm)’, upper arm tense circumference as ‘upper_arm_tense 
_c_(cm)’, upper arm distal circumference as ‘upper_arm_distal_c_(cm)’, upper arm proximal circumference as 
‘upper_arm_proximal_c_(cm)’, forearm middle point circumference as ‘forearm_mid_c_(cm)’, forearm distal 
circumference as ‘forearm_distal_c_(cm)’, forearm proximal circumference as ‘forearm_proximal_c_(cm)’, and 
hand circumference as ‘hand_c_(cm)’.

On the ‘demographic.csv’ file, the date of the measurements (dd/mm/aaaa) for each participant is labelled as 
‘date’, the time of the measurements (24-hour clock) is ‘time’, the order of the exercises is indicated by ‘group’, the 
age of the participants is ‘age’, their gender and height is noted as ‘sex’ and ‘height’, respectively, their dominant 
hand is ‘dominant_hand’, information about the type of exercises they engage in is described as ‘what_kind_of_
exercise_do_you_participate_in?’, and the frequency with which they perform these exercises during the week 
is provided as ‘how_often_do_you_exercise_per_week?’.

In the ‘length.csv’ file, the upper arm length of each participant is labelled as ‘upperarm_l_(cm)’, the 
forearm length is ‘forearm_l_(cm)’, the hand length is ‘hand_l_(cm)’, and the palmar length is indicated as 
‘palmar_l_(cm)’.

In the ‘depth.csv’ file, the following measurements are recorded for each participant: upper arm middle point 
depth as ‘upper_arm_mid_d_(cm)’, upper arm distal depth as ‘upper_arm_ditsal_d_(cm)’, upper arm proximal 
depth as ‘upper_arm_proximal_d_(cm)’, forearm middle point depth as ‘forearm_mid_d_(cm)’, forearm dis-
tal depth as ‘forearm_ditsal_d_(cm)’, forearm proximal depth as ‘forearm_proximal_d_(cm)’, and hand depth 
‘hand_d_(cm)’. Anthropometric measurements are provided in Table 2.

MVIC force data. The MVIC force information is stored in a folder named ‘MVIC force data’, within a file 
called ‘MVIC_force_data.csv’. The file comprises shoulder IR MVIC force first measurement, labelled as ‘IR_
MVIC_1_(N)’, shoulder IR MVIC force second measurement, labelled as ‘IR_MVIC_2_ (N)’, mean of first and 
second shoulder IR MVIC force, labelled ‘IR_MVIC_mean_(N)’, shoulder ER MVIC force first measurement, 
labelled as ‘ER_MVIC_1_(N)’, shoulder ER MVIC force second measurement, labelled as ‘ER_MVIC_2_ (N)’, 
and mean of first and second shoulder ER MVIC force, labelled as ‘ER_MVIC_mean_(N)’. Descriptive statistics 
for the participants’ mean, minimum, and maximum MVIC force for shoulder IR and ER are given in Table 3.

Borg RpE scale data. The Borg RPE scale values of each subject during each exercise are given in a folder 
named ‘Borg data’, inside a file called ‘borg_data.csv’. The Borg RPE scale values of each subject during each 
exercise are given in the file named ‘borg_data.csv’. The ‘task_order’ column was created to provide the sequence 
and load of the tasks. To ensure a clear understanding for the reader, the task sequence does not correspond to 
the order in which the subject executed them (group one, two, and three); instead, it maintains an unvarying 
order. The shoulder IR exercise performed with a load in the 30–40% range of MVIC force is named ‘task1_35i’, 
the shoulder IR exercise performed with a load in the 40–50% range of MVIC force is named ‘task2_45i’, and the 
shoulder IR exercise performed with a load in the 50–60% range of MVIC force is named ‘task3_55i’; while the 
shoulder ER exercise performed with a load in the 30–40% range of MVIC force is named ‘task4_35e’, the shoul-
der ER exercise performed with a load in the 40–50% range of MVIC force is named ‘task5_45e’, the shoulder ER 
exercise performed with a load in the 50–60% range of MVIC force is named ‘task6_55e’.

The level of difficulty perceived by the participants before the exercises is provided in the ‘before_task’ col-
umn, while the participants’ difficulty level at 10 seconds after the commencement of the exercise is indicated as 
‘10_sec’. Progressing similarly at 20 seconds the label is ‘20_sec’, and so forth until the column named ‘250_sec’ 
Afterward, the column in which the participants reached the level of 20 on the Borg RPE scale was given sepa-
rately as ‘end_of_trial’. Finally, the duration of each exercise is specified as ‘length_of_trial_(sec)’. Table 4 pro-
vides the descriptive statistics for the participants, including the mean, minimum, and maximum duration times 
in seconds for Borg RPE.

KSS data. Information regarding the KSS data of each subject is provided in a folder named ‘KSS data’, in a 
file called ‘KSS.csv’.Information regarding the KSS data of each subject is provided in an file named ‘KSS_data.csv’. 
KSS scores before the exercises are labelled as ‘KSS_before’ and the KSS scores at the very end of the exercises are 
labelled as ‘KSS_after’. Table 5 presents the summary of the participants’ KSS sleepiness levels, detailing the mean, 
min, max scores, and p-value between KSS before and after.
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Wearable data. Figure 4 illustrates the structure of the single folder where EMG, IMU, and PPG data are 
stored. The main folder contains 10 subfolders representing the different exercises, named ‘30–40% external rota-
tion’, ‘40–50% external rotation’, ‘50–60% external rotation’, ‘30–40% internal rotation’, ‘40–50% internal rotation’, 
‘50–60% internal rotation’, ‘MVIC force external rotation first’, ‘MVIC force external rotation second’, ‘MVIC force 
internal rotation first’, and ‘MVIC force external rotation first’, respectively. Every exercise includes information 
for the 34 subjects, and within each subject’s directory, there exist EMG, IMU, and PPG data labelled as ‘EMG 
data’, ‘IMU data’, and ‘PPG data’, respectively. The ‘EMG data’ folders comprise six files named ‘anterior_deltoid.
csv’, ‘infraspinatus.csv’, ‘latissimus_dorsi.csv ‘, ‘pectoralis_major.csv ‘, ‘posterior_deltoid.csv ‘, and ‘upper_trape-
zius.csv ‘ and contain measurements in millivolts (mV); while ‘PPG data’ folders have one single file titled ‘ppg.
csv’ with Volt as metric. PPG data are not included in the exercises related to the MVIC force. Regarding the 
data derived from IMU sensors, every participant includes a directory denoted as ‘IMU data’ that comprises 

Mean ± SD Mean ± SD

Subject 34 FD circumference (cm) 17.01 ± 1.62

Age (years) 26 ± 3.98 FP circumference (cm) 26.37 ± 3.04

Height (cm) 174.97 ± 9.83 H circumference (cm) 21.40 ± 2.01

Body weight (kg) 74.38 ± 18.24 UAM breadth (cm) 8.57 ± 1.26

BMI (kg/m2) 23.99 ± 3.82 UAD breadth (cm) 7.28 ± 1.27

Body fat (%) 25.03 ± 7.07 UAP breadth (cm) 9.04 ± 1.38

Skeletal muscle (%) 34.76 ± 5.74 FM breadth (cm) 7.16 ± 0.86

Visceral fat 5.97 ± 3.36 FD breadth (cm) 5.66 ± 0.52

Upper arm length (cm) 36.96 ± 2.04 FP breadth (cm) 8.79 ± 1.08

Forearm length (cm) 27.11 ± 1.80 H breadth (cm) 8.37 ± 0.81

Hand length (cm) 18.85 ± 1.24 UAM depth (cm) 8.32 ± 1.06

Palmar length (cm) 10.91 ± 0.91 UAD depth (cm) 7.68 ± 1.18

UAM circumference (cm) 29.49 ± 3.45 UAP depth (cm) 9.26 ± 1.30

UAT circumference (cm) 31.93 ± 3.88 FM depth (cm) 8.07 ± 0.98

UAD circumference (cm) 25.94 ± 2.84 FD depth (cm) 4.12 ± 0.48

UAP circumference (cm) 31.14 ± 3.83 FP depth (cm) 8.39 ± 1.06

FM circumference (cm) 26.61 ± 2.84 H depth (cm) 3.43 ± 0.43

Table 2. Demographic and anthropometric information.

Male Female

Mean ± SD Min Max Mean ± SD Min Max

IR MVIC mean (N) 102.22 ± 23.26 68.75 175 62.16 ± 8.96 50 77.5

ER MVIC mean (N) 88.52 ± 13.25 67.50 117.5 53.75 ± 9.19 35 70

Table 3. MVIC force information.

Male Female

Mean ± SD Min Max Mean ± SD Min Max

IR 30–40% (sec) 117.91 ± 29.52 67 180 112.00 ± 56.86 53 250

IR 40–50% (sec) 79.74 ± 25.84 46 152 90.73 ± 50.02 50 202

IR 50–60% (sec) 70.78 ± 27.57 30 125 76.64 ± 45.74 34 210

ER 30–40% (sec) 59.39 ± 10.44 40 81 67.09 ± 18.79 40 108

ER 40–50% (sec) 50.26 ± 9.29 30 67 55.27 ± 11.82 42 78

ER 50–60% (sec) 42.70 ± 10.27 18 60 46.00 ± 12.58 33 70

Table 4. Borg RPE scale information.

Male Female

Mean ± SD p-value Min Max Mean ± SD p-value Min Max

KSS before 4.04 ± 1.74
0.33

1 7 3.82 ± 1.54
0.30

2 6

KSS after 4.52 ± 1.56 1 7 4.55 ± 1.63 2 7

Table 5. KSS information.
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Fig. 5 Accelerometer data from 30–40% internal rotation for hand, forearm, upper arm, shoulder, sternum, and pelvis.

Fig. 4 Structure of the single folder where EMG, IMU and PPG data are stored. * Each exercise includes 
information from the 34 participants. ** PPG data are not included in the exercises related with the MVIC 
force. *** Each body position includes the three.csv file associated with acc, gyr, and mag.

https://doi.org/10.1038/s41597-024-03254-8


9Scientific Data |          (2024) 11:433  | https://doi.org/10.1038/s41597-024-03254-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

six subdirectories corresponding to the forearm, hand, pelvis, shoulder, sternum, and upper arm. Within each 
of these, there exist three.csv files labelled as ‘acc_x,’ ‘gyr_x,’ and ‘mag_x,’ where x represents the specific body 
part (forearm, hand, pelvis, shoulder, sternum, or upper arm), depending on the relative folder. ‘acc_x’ data are 
expressed in meters per second squared (m/s²), ‘gyr_x’ data in radians per second (rad/s), and ‘mag_x’ in arbi-
trary units (a.u.). Figures 5–8 depict a 25-second recording from the ‘30–40% internal rotation’ registration, 
corresponding to acc, gyr, ECG, and PPG data, respectively.

Technical Validation
Sensor placement. The same researcher accurately and consistently positioned the EMG and IMU sensors 
on each participant, adhering to the reference areas specified in the literature and by the manufacturer’s guide-
lines. It was ensured that the sensors were positioned in the same position for each participant and correctly 
aligned. Before and after each measurement, IMU sensor straps were checked for looseness and stability, and 
the EMG electrodes were inspected for surface adhesion to the muscle. Furthermore, prior to every exercise, the 
system’s acquisition software was used to manually confirm the signal accuracy of each IMU sensor. For each 
individual measurement, excluding those associated with the MVIC force, the PPG signal was obtained from the 
participants’ index fingers. This was achieved by meticulously attaching the finger clip sensor to ensure accurate 
data collection.

Comparison with published datasets. There are several available datasets for fatigue measurements 
using wearable sensors. Kalanadhabhatta et al. (2022) created an extensive dataset consisting of PPG, electroen-
cephalography (EEG), electrocardiography (ECG), electrodermal activity (EDA), acc, gyr, and skin temperature 
data to improve the understanding of mental fatigue and exhaustion in daily life44. In a different dataset, the 
authors aimed to understand the relationship between self-reported fatigue and sensor data through machine 
learning approaches. For this purpose, a fatigue questionnaire and a multi-sensor wearable device were used 
which included galvanic skin response electrodes, acc, barometers, and photo and temperature sensors42. Another 
study published a dataset to predict fatigue with machine learning models in the biceps muscle using wearable 
IMU sensors during biceps curl exercise47. Papakostas et al. (2009) published a dataset, consisting of 19 partic-
ipants, designed for machine learning-based experiments to evaluate the effects of cognitive fatigue on human 
performance using EEG, real-time self-reports on cognitive fatigue, facial key points, and details regarding the 

Fig. 6 Gyroscope data from 30–40% internal rotation for hand, forearm, upper arm, shoulder, sternum, and pelvis.

https://doi.org/10.1038/s41597-024-03254-8


1 0Scientific Data |          (2024) 11:433  | https://doi.org/10.1038/s41597-024-03254-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

performance (such as the number of errors)45. Li and Zhang43 published a driving fatigue dataset consisting of the 
heart rate and facial features of 20 drivers43.

Unlike these datasets, our study provides information about fatigue during dynamic shoulder rotation 
movements with different loads. Furthermore, our research contains EMG sensor data which can give valua-
ble information to indicate muscle fatigue74. Jaiswal et al.46 published a large dataset in their study to evaluate 
physical and cognitive fatigue, employing wearable sensors and advanced machine learning techniques dur-
ing treadmill running. The dataset consisted of ECG, EMG, EEG, and EDA data from 32 healthy participants 

Fig. 8 PPG data from 30–40% internal rotation.

Fig. 7 EMG data from 30–40% internal rotation for pectoralis major, deltoideus anterior, deltoideus posterior, 
trapezius ascendens, infraspinatus, and latissimus dorsi.
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and their self-reported fatigue states46. This data collection, unlike the one presented in this paper, assesses 
fatigue during the treadmill run and provides information on overall fatigue. By evaluating fatigue towards tar-
get muscle groups during specific shoulder IR and ER motions, we want to detect fatigue during tasks when the 
upper extremity is primarily utilised. In addition, our data collection contains a wide range of anthropometric 
measurement data, allowing fatigue to be potentially modelled based on physical characteristics or in combi-
nation with machine learning methods. Maman et al.25 used wearable IMU and heart rate sensors to model the 
fatigue of eight participants during simulated manufacturing tasks25. Again, this study’s dataset differs from ours 
because it only measures fatigue during specific industry-related tasks. However, the tasks selected for our study 
include shoulder IR and ER movements that can be applied to a variety of shoulder-dominant contexts includ-
ing sports science, physiotherapy, and industry. The dataset of this study also differs from ours in that it con-
tains fewer participants. The number of volunteers is an important technical component for database selection 
because a large quantity of data is required for machine learning model training42. The size of 34 participants is 
comparable to other dataset articles in the literature that propose building AI-based algorithms, such as machine 
learning models, with wearable sensors42,75.

Limitations. Initially, the dataset comprised 40 subjects; however, the pool was decreased to 34 participants. 
This reduction was required by the discovery of unreliable data corresponding to six individuals. Of these, five 
were omitted due to inaccurate PPG signal, while a single participant was excluded owing to invalid magnetome-
ter readings. Additionally, the acc, gyr, and mag files located within the directory EMG, IMU, and PPG data\30–
40% internal rotation\Subject 3\IMU data\Shoulder are corrupted and cannot be used.

The signal quality for the PPG sensor was evaluated in line with the recommendations of previous studies76 
and manufacturer guidelines77. Due to noisy and unclear signals, five participants had to be excluded from the 
study. The conclusion derived from the weak signal quality is that it correlates with variations in skin tone. This 
phenomenon is consistent with research findings indicating that signal quality decreases in individuals with 
darker skin tones78. The absorption of green light by melanin in those with darker skin tones limits light pene-
tration into the subcutaneous region where blood is present79. In addition, the PPG signals were not hardware or 
firmware synchronized with the data provided by the EMG and IMU sensors. The alignment was accomplished 
by manually halting all data recordings in unison and, subsequently, synchronizing them retroactively. Yet, this 
assumption is constrained by the absence of a hardware or firmware-based approach.

Regarding the data from the inertial sensors, the magnetometer data from IMU sensors may be sensitive to 
an alteration in magnetic fields. Because of this, the testing location was set up in accordance with the guidelines 
from previous studies80 and remained consistent for every participant. Due to magnetic field interference, one 
participant had to be excluded from the study.

This dataset is limited by data collected only from healthy young individuals. Likewise, fatigue could be 
examined across various age categories. For example, Yoon et al.81 reported that for a low-force task, EMG activ-
ity during fatigue contraction was higher in older people81. In another study, variations related to age were found 
to influence postural kinematics and joint kinetics during repetitive lifting82. Further data should be collected 
in future works for monitoring shoulder joint fatigue in upper extremity athletes, industrial employees, and 
physical therapy patients with shoulder discomfort.

Lastly, the present work focuses on physical fatigue measurements during dynamic shoulder rotation 
movements using low-cost movement and EMG sensors. However, as shown in the literature, this is only one 
approach to the problem of fatigue estimation and several other technologies and contexts may have been taken 
into consideration. For instance, Yu et al.83 focused on construction workers using biomechanical analysis car-
ried out on 3D model data gathered from computer vision systems83, Papoutsakis et al.84 looked instead at 
passive cameras sensors in a real manufacturing workplace84, while other studies investigated the impact of car-
diorespiratory and thermoregulatory measurements in firefighters or healthy subjects85,86. Finally, even wearable 
pressure insoles are promising tools to this purpose in laboratory settings87. Hence, future research should be 
focusing towards the publication of data repositories of physical and cognitive fatigue also taking into consider-
ation a broader range of technologies and real-world applications.

Usage Notes
Prior studies have demonstrated the effectiveness of IMUs, EMG, and PPG wearable devices in accurately assess-
ing fatigue, with features extracted to train machine learning models24,25,49,88,89. This study provides information 
on the onset of fatigue during complex shoulder movements with different loads. It provides comprehensive 
anthropometric measurements, allowing the parametrisation of biomechanical models based on individual dif-
ferences. This approach can be applied to workers under various workloads at work so to design AI-based or 
biomechanical-based models (or a combination) able to recognize the onset of fatigue. Workers can be alerted 
to high fatigue levels and encouraged to take proper breaks using real-time wearable sensor inputs (e.g., sound 
alert on phone or wristwatch). Besides that, exceeding a certain threshold in exercise intensity can pose risks to 
the human body. As a result, ensuring athletes’ safety and improving their competitive performance necessitates 
precise regulation and fine-tuning of the exercise load. Deep learning techniques can be used to forecast the state 
of exercise fatigue in the human body by means of data from wearable sensors90. Physical activity is also essential 
in improving individuals’ health in various rehabilitation settings, and careful regulation of exercise intensity 
is important91. These intensity levels can be monitored using a set of wearables proposed in this work, allowing 
exercise intensity to be precisely modulated during treatment sessions22. Finally, suitable AI-based approach can 
provide real-time and personalized fatigue management during the rehabilitation process92.

To facilitate the widespread use of the dataset for fatigue detection algorithms, the raw data is provided in 
easy-to-access.csv format.
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