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A Prolonged Artificial Nighttime-
light Dataset of China (1984-2020)
Lixian Zhang1,2,11, Zhehao Ren3,4,11, Bin Chen  5,6,7, Peng Gong  3,8, Bing Xu2,3,4 ✉  
& Haohuan Fu2,8,9,10 ✉

Nighttime light remote sensing has been an increasingly important proxy for human activities. Despite 
an urgent need for long-term products and pilot explorations in synthesizing them, the publicly 
available long-term products are limited. A Night-Time Light convolutional LSTM network is proposed 
and applied the network to produce a 1-km annual Prolonged Artificial Nighttime-light DAtaset of 
China (PANDA-China) from 1984 to 2020. Assessments between modeled and original images show that 
on average the RMSE reaches 0.73, the coefficient of determination (R2) reaches 0.95, and the linear 
slope is 0.99 at the pixel level, indicating a high confidence in the quality of generated data products. 
Quantitative and visual comparisons witness PANDA-China’s superiority against other NTL datasets 
in its significantly longer NTL dynamics, higher temporal consistency, and better correlations with 
socioeconomics (built-up areas, gross domestic product, population) characterizing the most relevant 
indicator in different development phases. The PANDA-China product provides an unprecedented 
opportunity to trace nighttime light dynamics in the past four decades.

Background & Summary
Spaceborne sensors with nighttime light (NTL) capabilities have served as an effective measure of various 
human activities over the past years1–3. In recent years, the NTL data has provided a unique perspective on the 
intensity of lighting, which is related to the dynamics of socioeconomic activities and urban development. The 
availability of long-term NTL data has triggered extensive efforts in multiple long-term research frontiers1–3. 
For instance, mapping long-term urbanization processes benefits from the unique advantage of the NTL obser-
vations spanning a relatively long period, including urban extent4,5, urban boundary6,7, impervious surface 
areas8,9, urban land use8,10,11, and built-up infrastructure12–14. Furthermore, long-term NTL datasets have proved 
to successfully estimate the population15,16, the gross domestic product (GDP)17 and income18–20, but also the 
poverty21–23 and freight traffic24.

NTL datasets supporting the application above mainly derive from two groups. The first group is a pri-
mary NTL data source from the Defense Meteorological Satellite Program - Operational Linescan System 
(DMSP-OLS), which provides valuable records of global nightscape from 1992 to 2013. It has been widely used 
in socioeconomic fields even though suffering from the brightness saturation in urban centers1,25 and the bloom-
ing effect near the urban-rural transitions26,27 regarding its relatively long-term historical records. However, it is 
no longer available after 2013, which defines its time period as permanent 1992 ~ 20132,28–31. The second group 
of NTL dataset derived from satellites on track mostly started working since then, including Suomi National 
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Polar-Orbiting Partnership-Visible Infrared Imaging Radiometer Suite (NPP-VIIRS), Luojia 1-01 satellite32, 
and Jilin1-03b (Jilin-1) satellite33 and SDGSAT34. As new generations of global NTL composites, they provided 
higher spatial resolution and fewer over-glow effects of the recorded radiance of NTL data compared to that of 
DMSP28,35,36. However, their time spans are only available since 2012 at the earliest, resulting in a relatively short 
period for mapping the dynamics of human activities8,9,27,37,38.

In all, even usable satellite NTL data has been publicly available since 1992, there is, unfortunately, no such 
dataset with high temporal consistency that spans from 1992 till now. The quality39 and the available time span3 
of existing NTL datasets limited their capability to reflect long-term spatiotemporal dynamics of human behav-
iour. Per these shortcomings and urgent needs, several attempts have been made to synthesize consistent night-
light time series across different platforms and sensors, which can be classified into a new third group. Li et al.37 
proposed an inter-calibration model to simulate DMSP/OLS composites from the VIIRS day-and-night band 
(DNB) composites by using a power function for radiometric degradation and a Gaussian low pass filter for 
spatial degradation (RMSE:5.00, R2:0.92). Zhao et al.40 conducted a sigmoid function model for generating a 
temporally consistent NTL dataset from 1992 to 2018 in Southeast Asia (R2: 0.91 in 2012, 0.94 in 2013). Li et al.3  
generated an integrated and consistent NTL dataset using a sigmoid function at the global scale (1992-2018). 
Despite similar pilot efforts39,41,42, it still lacks comprehensive and systematic evaluation frameworks for assessing 
the quality and reliability of the generated NTL dataset. Although statistical errors have been calculated, the tem-
poral consistency of these datasets has been seldom checked and assumed in good accordance by default, which 
is not the case. Neither DMSP-OLS nor NPP-VIIRS has high temporal accordance owing to its manual-like 
pre-process recorded in official documents43, let alone that of a synthesized dataset deriving from these satellite 
datasets with different passing times.

To produce a longer-period NTL dataset as well as develop higher temporal consistency, we recommend 
the potential of historical records of DMSP be fully explored, with the help of newly adopted deep learning 
methods followed with a temporal consistency correction model. The recent rapid development of deep learn-
ing approaches44–46 has provided a targeted and promising method in modeling the dependencies between the 
spatiotemporal dynamics of the DMSP-OLS. The LSTM architecture hereby has proved its capability in several 
spatiotemporally dependent applications47–49, which is promisingly helpful in modeling the spatial and temporal 
dependencies of NTL data.

Considering the abilities of existing deep learning approaches in capturing the long-range spatial and tem-
poral dependencies of NTL data remain to be improved50,51, in this study, we propose a space- and time-aware 
approach named nighttime light convolutional long short-term memory network (NTLSTM) for modeling the 
relationship between dynamic changes of the long-term DMSP data followed with a temporal consistency cor-
rection method adapted from Robust LOcally WEighted Scatterplot Smoothing (RLOWESS) (Cleveland 1979). 
With the newly proposed method, we achieve the time series of NTL data in China spanning 1984 to 2020 for 
the first time, affirm its temporal consistency, name it a prolonged artificial nighttime-light dataset of China 
(PANDA-China), and analyze the spatiotemporal urbanization process at both national and regional scales 
using PANDA-China.

Methods
Study area and used data. In this work, we focus on China as the study area, which has experienced 
different levels of fast urban development in different regions over the past four decades. The relatively different 
levels of development in China are suitable for assessing both the proposed method as well as the newly generated 
PANDA-China.

DMSP-OLS time-series data from 1992 to 2012 is retrieved from the National Geophysical Data Center 
(NGDC) at the National Oceanic and Atmospheric Administration (NOAA) website (https://www.ncei.noaa.
gov/products/dmsp-operational-linescan-system). In brief, DMSP-OLS sensors have a unique capability to 
detect visible lights from country-sides, towns, cities, and other sites with persistent lighting and exclude the 
effect of accidental noise such as stray light, lightning, lunar illumination, and cloud cover. Their digital number 
(DN) values range from 0 to 63. Before the experiments, the temporal consistency has been improved through 
ridgeline regression, and DMSP-2013 is excluded considering its quality50,51.

As for the training and evaluation period of deep learning, the training and evaluation material is generated 
by randomly cropping the raw DMSP NTL images into patches with the size of 1,024 × 1,024 pixels. The gener-
ated patches are divided into training, validating, and testing materials in a proportion of 7:2:1.

Nine ancillary data sets are collected to help validate the accuracy or performance of PANDA-China, includ-
ing six other existing global nighttime-light products, and Population (POP), Gross Domestic Products (GDP), 
built-up areas (BUA), as shown in Table 1.

implementation tasks. Two targets for PANDA-China are longer-period and higher consistency. The first 
part, aiming at target one, is to demonstrate NTLSTM routes and illustrates its process and components. The sec-
ond part, aiming at target two, is to adapt RLOWESS to correct the temporal consistency of PANDA-China and 
systematically describes the assessments of NTLSTM and PANDA-China.

As illustrated in Fig. 1(a), we develop a stepwise method to achieve the extended NTL datasets consisting of 
the following five steps: 

•	 Step 1: The raw DMSP NTL data is preprocessed by inter-calibration using methods proposed by41, followed 
by normalization. Then NTL training datasets and validation datasets are generated by randomly cropping 
and spatially splitting.

•	 Step 2: A nighttime light convolutional long short-term memory network (NTLSTM) is developed to model 
the inherent mechanism of dynamic changes of NTL datasets.

https://doi.org/10.1038/s41597-024-03223-1
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•	 Step 3: We utilize several assessment criteria for evaluating the performance of the proposed model in vali-
dation datasets.

•	 Step 4: The simulated NTL images of China (1984-2020) are generated using our properly trained NTLSTM.
•	 Step 5: The generated NTL data is temporally adjusted into a more consistent version of PANDA-China using 

MODEST (an adapted RLOWESS method).

We design two tasks in the training period (Fig. 1(b)). One is to backtrack the NTL data of the year 1984-
1991, and the other is to forecast the NTL data of the year 2013-2020. The year 1984 is chosen as the end 
point of the backtracking task because Landsat-5, one of the most commonly used remote sensing imageries for 

Data Description
Temporal 
range Source

Population The residential population in China. 1984-2020 China Statistical Yearbook 1984-2019

GDP Gross domestic products in China. 1984-2020 China Statistical Yearbook 1984-2019

Built-up area Annual built-up areas in China, including both urban and rural areas. 1978-2017 http://data.ess.tsinghua.edu.cn/urbanRuralChina.html

NTL data of Chen’s Deep learning generated nighttime light dataset 2000-2020 https://doi.org/10.7910/DVN/YGIVCD

DMSP Version 4 DMSP-OLS Nighttime Lights Time Series 1992-2012 https://eogdata.mines.edu/products/dmsp/#v4_dmsp_download

DMSP Extension DMSP Nighttime Lights Extension 1992-2021 https://eogdata.mines.edu/wwwdata/dmsp/extension_series

DVNL DMSP-like Nighttime Lights Derived from VNL (DVNL) 1992-2019 https://eogdata.mines.edu/wwwdata/viirs_products/dvnl/

NTL data of Li’s A harmonized nighttime light dataset. 1992-2018 https://doi.org/10.6084/m9.figshare.9828827.v2

NTL data of Zhang’s DMSP-OLS data calibrated by ridged-line regression. 1992-2012 https://urbanization.yale.edu/data

Table 1. Data used to derive and validate PANDA-China with their sources.

Fig. 1 The proposed stepwise method. (a) The overall workflow of the proposed approach. (b) The two tasks 
designed in this study.
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early-year research, is mostly considered usable since circa 1984. The year 2020 is chosen as the end point of the 
forecasting task for the availability of other NTL datasets. The NTL data of 1992-2012 is split into two periods, 13 
years of data for input and 8 years of data for supervision. Specifically, for the backtracking task, the deep learn-
ing network is supposed to be capable of utilizing the NTL data of the year 2000-2012 as input and backtrack-
ing the NTL data of the year 1992-1999. On the contrary, in the forecasting task, the deep learning network is 
designed to use the NTL data of the year 1992-2004 as input and to forecast the NTL data of the year 2005-2012.

Nighttime light convolutional long short-term memory network. We apply tensor T y
1  with shape 

y × h × w to represent the input NTL patch sequence and tensor Ty z
y 1
+
+  with shape z × h × w to represent the target 

NTL patch sequence, where y denotes the length of inputted years, z represents the length of target year sequence, 
h and w denote the height and weight of each patch respectively: 
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The In represents the NTL image patch at the n-th year, which is a h × w tensor: 

=



















i i

i i
I

(2)
n

n n
w

n
h

n
hw

11 1

1

�
� � �

�

Our ultimate goal is to learn a mapping function F(•) that can forecast the corresponding NTL sequence 
+Ty z
y  via taking full use of the inputted T y

1 . As illustrated in Fig. 2(a), we propose a nighttime light convolutional 
long short-term memory network (NTLSTM), which is regarded as our target mapping function F(•), consists 
of two main components: the spatiotemporal attention module and the convolutional LSTM unit. Other details 
of NTLSTM can be found in the supplementary material.

The spatiotemporal attention module. The attention module has been proposed to enhance the inherent fea-
ture representation capability of the networks and proved to be effective in quantities of previous studies52–54. 
Considering the information provided by the input NTL patches at different times and regions are unequally 
important for prediction performance, we propose a spatiotemporal attention module to implicitly learn spa-
tiotemporal matrixes, which worked as weighting masks for further prediction. As illustrated in Fig. 2(2), the 
proposed spatiotemporal attention module consists of a spatial attention submodule and a temporal attention 
submodule, which automatically exploit different levels of importance of each NTL image patch sequence to 
generate spatiotemporally weighted feature maps Y.

The proposed spatial attention submodule is designed to adjust the input spatial features via calculating an 
attention matrix βs. This operation enhances or attenuates certain regions of the feature map based on their 
estimated attention weight. Here, we use two convolutional layers to learn the spatial attention matrix βs. 
Specifically, given the kth patch feature, the spatially weighted feature �Ik is computed as a weighted summation 
using Ik and attention matrix βs

k as follows: 

� β=I I (3)k s
k

k

β ρ= Φ Φ I( ( )) (4)s
k

S S k1 2

where the ρ represents the softmax function, ΦS1 and ΦS2 are feed-forward neural networks with trainable 
parameters. Note that the learned spatial attention matrix βs has the same height and width of the size of the 

Fig. 2 The overall methodology. (a) The structure of the proposed NTLSTM network. (b) The proposed 
spatiotemporal attention module. (c) The sketch of MODEST, of which 1) shows randomly generated time 
series, 2) shows the first-order difference of raw time-series (in magenta) and the RLOWESSed results (in green), 
and 3) cumulative sum time-series when replacing abrupt changing point value with RLOWESSed values.

https://doi.org/10.1038/s41597-024-03223-1
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input feature Ik. While each input feature is attended over spatially via the spatial attention module, the temporal 
attention module is designed to calculate the temporal weight matrix βt at each year. This temporal weight 
matrix βt decides which year of the NTL patch sequence to pay attention to. Given spatially attended frames 
T I I I I[ , , , , ]y y
1

1 2 3= …∼ ∼∼ ∼∼
 and corresponding hidden state at (k − 1)th of ConvLSTM Hk−1, the temporal 

weight matrix at k-th βt
k is calculated as follows: 

H T( ( ) ( )) (5)t
k

H k I y1
1β ρ= Φ + Φ

∼
−

where the ρ represents a softmax function, ΦH and ΦI are feed-forward neural networks that are jointly trained 
with all other components of the proposed NTLSTM. Note that the temporal attention matrix βt has the same 
length of input 

∼
T y

1 .

The convolutional LSTM unit. The convolutional LSTM (ConvLSTM)48 captures spatiotemporal dependency 
in each NTL data sequence. Given the kth spatiotemporally attended NTL patch features �Ik in the inputted NTL 
feature maps Y, the input gate Gk

i, forget gate Gk
f  and output gate Gk

o of the Convolutional LSTM (ConvLSTM) 
(please refer to the supplementary material for more details and illustrations) are calculated using following 
equations: 

�σ= ∗ + ∗ +−G W W H bI( ) (6)k
i
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where σ is the sigmoid function, (*) represents convolutional operator, and (•) is the Hadamard product. The W 
represents the weight matrix, each subscript has an obvious meaning. For example, Whi is the hidden-input gate 
matrix, and Who is the input-output gate matrix, etc. The bi, bf, bo and bc are bias terms.

As shown in the above formulas, the ConvLSTM is a modification of LSTM, which replaces the 
fully-connected operators with convolutional operators. A ConvLSTM unit contains several ConvLSTM layers, 
each of which can extract the spatiotemporal features of certain frame �Ik. Thus, the ConvLSTM unit is capable 
to handle the inputted NTL sequence Y.

The proposed NTLSTM consists of two subnetwork structures: one is the encoding subnetwork fenc (left part 
of Fig. 2(a)), and the other is the decoding subnetwork fdec (right part of Fig. 2(a)), both of which are formed  
by stacking three ConvLSTM units. The initial states and cell outputs of the decoding subnetwork are copied 
from the last state of the encoding subnetwork. As shown in Fig. 2(a), the encoding subnetwork of NTLSTM 
extracts and compresses the spatiotemporal features from the input tensor = …T I I I I[ , , , , ]y y

1
1 2 3 ; the  

decoding subnetwork of NTLSTM unfolds the extracted features and predicts the final sequence 
T I I I I[ , , , , ]y z
y

y y y y z
1

1 2 3= …+
+

+ + + + .

Adjustment of outlier phases. Maximum-selection Of the Difference Enlarged by Smoothed Timeseries 
(MODEST) is proposed to adjust the inconsistency in marginal years between backward, original, and forward 
phases in raw PANDA-China. The challenge is to smooth the raw time-series while maintaining potentially help-
ful signals without ground truth. Therefore, MODEST is applied to PANDA-China pixel-by-pixel, followed by 
a spatially median smoothing window after its successful experiments on the basis of randomly generated time 
series data with a known shift up or down.

In general, MODEST includes two parts: detection and correction. To maintain potential valuable signals of 
raw PANDA-China (Fig. 2c-1), RLOWESS is applied to its first-order difference (in pink in Fig. 2c-2) instead 
of its raw time series and gets an RLOWESSed time series (in green dashed line in Fig. 2c-2). Values exceeding 
the three-standard deviation range are labeled as outliers (examples in black dashed line in Fig. 2c-2), where the 
highest and lowest values are detected as the start and end timestamp of the first outlier phase. It is then corrected 
by replacing values on detected start and end time with respective RLOWESSed values, and cumulatively sum-
ming the corrected first-order difference time series. This can be accepted as the final adjusted time series when 
the standard deviation of the corrected time series is lower than the results from the previous loop (Fig. 2c-3);  
otherwise, proceed to select the second pair of outliers and repeat the previous progress above. Further detailed 
processes and illustrations of MODEST and its results can be found in the supplementary information.

Model assessment and product evaluation. Technical validation of PANDA-China mainly focuses on 
three parts: model assessment, product comparison with other existing datasets, and taking product correlation 
with socioeconomics as both the application and the assessment of PANDA-China.

https://doi.org/10.1038/s41597-024-03223-1
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We first assess the model based on the testing material, which can be divided into two phases: 1992-1999 
from the backtracking task, and 2005-2012 from the predicting task. Widely adopted Root Mean Square Error 
(RMSE), linear regression determination coefficient R2 and its slope k are adopted to assess the accuracy, accord-
ance, and over-/under-estimation, respectively. Multiple RMSE, R2, and k can be calculated between each pair of 
modeled and original patches, where temporal trend and annual uncertainties can be obtained and visualized. 
Secondly, our assessment focuses on differences between modeled and original summed values in the built-up 
areas (including both urban and rural areas). Temporally, 34 values are recorded in each year so that the accu-
racy of modeled results in previously and newly built-up areas can be measured annually. Spatially, differences in 
1992-1999 and 2005-2012 in each China province are also used to evaluate the results of the model.

On the other hand, PANDA-China is compared with similar products by Li et al.3 and Zhang et al.41, on their 
spatiotemporal performance. Visual interpretation and correlation between NTL products and socioeconomic 
metrics are compared. More comparisons with other datasets can be found in the supplementary information.

Correlations between PANDA-China and socioeconomic variables are also calculated, as an assessment and 
an application. Since there is no ground truth for DMSP in 1984-1991 and 2013-2020, Pearson’s correlation R is 
calculated between PANDA-China and built-up areas (BUA), GDP, and population (POP) respectively, to build 
a consistent evaluation during the whole study period. For a better command of data performance, spatiotem-
poral evaluations are based on three manually selected phases: 1984-1991 (backtracked), 1992-2012 (modeled 
and original), and 2013-2020 (predicted).

Data Records
PANDA-China is a prolonged artificial nighttime-light dataset of China ranging from 1984 to 2020, which has 
been produced using the developed Night-Time light convolutional Long Short-Term Memory network on the 
basis of DMSP-OLS. Model assessment shows the low error (RMSE: 0.73) and high accordance (R2: 0.95, linear 
slope: 0.99) at the pixel level, and well captures the temporal trends at newly-built urban areas while it slightly 
underestimates the intensity within older core urban areas. Pearson’s Rs are calculated between socioeconomic 
variables (BUA, GDP, POP) and PANDA-China in three phases, where reasonable values are presented and 
explained by history. PANDA-China provides consistent temporal trends, shows high accordance with socio-
economics, delineates road network, and thus is precious especially before 1992 and after 2013. PANDA-China 
helps to better demonstrate the dynamics of human activities in the long run and offers unprecedented opportu-
nities to investigate economic or energy-related topics since 1984. PANDA-China is freely accessible at https://
doi.org/10.11888/Socioeco.tpdc.27120255.

The data is stored in independent TIF format, each representing the night-time light data for a specific year, 
named PANDA_China_Year.tif. These files are organized in the following folder structure and are compatible 
with software such as ArcGIS. 

Technical Validation
Analysis of NTLSTM results. Temporal error distribution of modeled results. Temporally, the annual aver-
age RMSE of cropped patches reaches 0.47 with original data ranging from 0 to 63. By excluding the patches that 
contain only zero values, the average RMSE notably rises to 0.73. Inter-annual dynamics of RMSE, R2, and k with 
their uncertainty of backtracking and predicting models are visualized in boxplots in Fig. 3a1–a3 respectively, 
and the dots indicate the data distribution. These trends fluctuate with uncertainty in each period, but variances 
are still quite small. Data for each cropped patch are visualized in Fig. 3b1–b3. Note that different numbers of 
cropped patches here in predicting (126) and backtracking model (79) result from different numbers of cropped 
patches with all zero values.

Spatial error distribution of modeled results. To further test the model’s ability to depict night-time light var-
iances, we investigate the built-up areas, known as the ad hoc areas of the NTL study. Temporally, the average 
of simple differences in all built-up areas throughout the whole of China is calculated annually, as shown in 
Fig. 4b2. Apparently, backtracking modeled results generally outperform predicting modeled results in highly 
developed areas, with the former within 0 to -1 and the latter exceeding -2 in 2011. Spatially, deeply investigat-
ing into areas with different built-up areas, we found older built-up areas are much underestimated (painted 
as deeper blue), while simple differences of newly-built areas or areas to be built keep closer to zero, as Fig. 4a 
shows. The results indicate that models are more powerful in describing the decreasing or increasing trend but 
limited in depicting variances in the established built-up areas. Apart from the underestimation in Fig. 4a, b2,  
there are still some slight overestimations when referring to spatial heterogeneity, such as that in Guizhou 
and Hunan provinces, as shown in Fig. 4b1. North-western China undergoes higher underestimation, while 
south-eastern China shows less underestimation.

Comparison between PANDA-China and previous NTL datasets. Statistic comparison between seven 
datasets. Direct comparisons are posted in Fig. 5. It provides two kinds of temporal dynamics of seven datasets, 
one is the averaged value of province-wise time-series with its temporal variance (Fig. 5b1), and the other is the 
summed value of the whole country (Fig. 5b2), both of which share the same figure legend. Besides, we also 

https://doi.org/10.1038/s41597-024-03223-1
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Fig. 3 Temporal assessment of modeled results in randomly sampled cropped patches. The temporal trend 
of statistics of 79 and 126 cropped patches with all-zero ones excluded are shown: (a1) RMSE, (a2) R2, (a3) k; 
dots in each panel indicate data distribution. Statistic values from patch to patch: (b1) RMSE, (b2) R2, (b3) k, 
where colors indicate different years; note that the different numbers of cropped patches in backtracking and 
predicting model results from different patches with all zero values.

Fig. 4 Spatiotemporal assessment of modeled results in urban areas. (a) Annual average of simple differences in 
areas with different built-up years. The upper one indicates older built-up areas and deeper blue indicates higher 
underestimation. (b) temporal and spatial heterogeneity of the averaged simple difference: (b1) spatial pattern 
of both underestimation and overestimation at the provincial level, and (b2) trend of averaged simple difference 
throughout the whole of China within built-up areas only.
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visualize the dynamics of POP, GDP, and BUA (Fig. 5a1–a3) for further indirect comparison. Black bold lines show 
the summed value of the whole country, and red bold ones show their respective averages, with pink areas indi-
cating its temporal variance. Grey dashed lines in the background represent variable values in different provinces.

First, the most eye-catching advantage of PANDA-China is the time range prolonged by NTLSTM, compared 
to the other six sets of NTL datasets. It provides unique resources to understand social activities at night. Second, 
PANDA-China achieves high temporal consistency throughout its whole time-range both in average time-series 
and sum time-series, and its temporal trend cohorts with that of most datasets. Significant fluctuation mainly 
occurs around 2012 in other NTL datasets, like DE, DVNL, and Li’s, due to sensor degradation or the incorpora-
tion of cross-sensor information. Note that although the DN range of Chen’s seems much lower than DMSP-like 
datasets including PANDA-China in both average and sum time-series, its trend also shapes alike. Comparison 
of NTL temporal trends would be more helpful in comparing or applying NTL datasets since DN of DMSP-like 
NTL changes represents no explicit physical meaning (unitless).

To quantitatively compare NTL datasets against different socioeconomic variables, Pearson’s correlation 
analysis has been conducted on their same period, from 2000 to 2012, where seven datasets were further reduced 
to five types here since DE and DVNL share the same value with DMSP during this period. Major results have 
been summarized in Table 2. Two kinds of comparison are conducted. In the first type, the correlation between 
summed NTL and socioeconomic parameters (SOEC Param.) among all provinces has been calculated every 
year; and the results have been reported in Table 2 “By Year”. In the other type, the temporal correlation has 
been calculated in each province from various NTL sources, as listed in Table 2 “By Province” row. The average 
correlation of each and both types were calculated and reported as AVG shows.

Judging from the reported correlation, different kinds of NTL datasets emphasize various connections between 
night-time activities and socioeconomic development. From the profile’s view ("By Year” row), local night-time 
light mostly represents GDP and BUA in Chen’s and Li’s datasets, while it correlates well with all three param-
eters in DMSP, Zhang’s, and our PANDA-China datasets. From the perspective of time-series correlation ("By 
Province” row), it correlates higher with GDP and BUA than with POP in Chen’s and Zhang’s datasets, higher 
with POP and GDP than with BUA in DMSP, and higher with POP and BUA than with GDP in Li’s and our 
PANDA-China. Generally, an agreement would be reached on their correlation extent, no matter from the profile’s 
view or from time-series’ view; that is its stronger correlation with POP in the profile should persist in time-series. 
Chen’s, DMSP, and our PANDA-China meet this principle. PANDA-China also reaches the second-highest aver-
age correlation. More and thorough comparisons in detail can be found in the supplementary information.

Apart from the comparison of NTL values, that of spatial pattern should also be uncovered. Zhang’s and 
Li’s NTL datasets are selected as examples to be compared with the PANDA-China hereafter, since they share 
the same spatial resolution, and represent DMSP-based information and VIIRS-incorporated information, 
respectively.

Spatiotemporal comparison between representative datasets. Temporal consistent products derived from Li’s 
and Zhang’s methods are compared to PANDA-China in Shanghai- and Beijing-centred regions visually and 
throughout the whole China statistically. PANDA-China outperforms both of them in proper estimation and 
the description of road networks.

Fig. 5 PANDA-China comparison with different socioeconomic variables and other datasets. Temporal 
dynamics of POP, GDP, and BUA have been shown in a1–a3, where black and red bold lines indicate their 
respective sum and average time-series, and grey dashed lines represent variables of each province. Seven NTL 
datasets have been summarized into province-wise average time-series (b1) and sum time-series (b2).
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In 1992, the earliest year of DMSP-OLS, our back-modeled result well captures the spatial pattern and the 
light intensity in both Shanghai and Beijing as Li’s (Fig. 6a1–a3,e1–e3). In contrast, slight overestimation exists 
at the fringe of urban areas resulting from the blooming in Zhang’s products. In 2012, which is a fast-developing 
period in both Shanghai and Beijing, PANDA-China delineates the road network much clearer than both Li’s 
and Zhang’s products. Specifically, the connection between Hangzhou and the city west to it is well reflected in 
the lower-left corner in Fig. 6b1, but not shown explicitly in Li’s and Zhang’s results, as shown in Fig. 6b2–b3. 
Similar situations can be seen in upper left corner of Fig. 6f1–f3.

Compared to adjustment of observations in Li’s and Zhang’s products, PANDA-China is not good at foresee-
ing light change. However, if we include such changes in the training process, such a capability to foresee light 
change can be maintained. As the lower-right corner of Fig. 6b1,c2 show, for the year of 2012, PANDA-China 
fails to predict the expressway between Shanghai and Hangzhou, while for the year of 2013, PANDA-China 
succeeds in bridging them. Similar phenomenon occurs in the west of Beijing (upper-left corner) in Fig. 6f1–g2. 

NTL Name SOEC Param. Chen DMSP Li PANDA-China Zhang

By Year

POP 0.5018 0.8403 0.6093 0.8692 0.7453

GDP 0.8091 0.8788 0.7576 0.7510 0.8154

BUA 0.8802 0.7535 0.8157 0.8093 0.8734

AVG 0.7303 0.8242 0.7275 0.8099 0.8114

By Province

POP 0.5447 0.7889 0.7974 0.8866 0.6137

GDP 0.8985 0.9085 0.5704 0.6083 0.8662

BUA 0.8678 0.6062 0.8601 0.7960 0.7859

AVG 0.7703 0.7679 0.7426 0.7637 0.7553

AVG 0.7503 0.7960 0.7351 0.7868 0.7833

Table 2. Correlation analysis between NTL products and socioeconomic parameters.

Fig. 6 Comparison between PANDA-China and products from Li’s and Zhang’s methods (Li’s and Zhang’s 
hereafter) in Shanghai-centred and Beijing-centred regions. (a1–a3) and (e1–e3) show the spatial pattern of 
PANDA-China, Li’s and Zhang’s in 1992, the first year of published DMSP-OLS data; (b1–b3) and (f1–f3) show 
that in 2012, the last year of Zhang’s products. (c1–c2), (g1–g2) and (d1–d2), (h1--h2) compare PANDA-China 
and Li’s in 2013 and 2018, respectively.
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Products Socioeconomic variables 1992 2012 2013 2018

PANDA-China

BUA 0.8576 0.8745 0.8703 0.8488*

GDP 0.7833 0.7485 0.7322 0.5982

POP 0.6378 0.7588 0.7446 0.7286

Li’s

BUA 0.8677 0.8657 0.8843 0.3997*

GDP 0.7787 0.7343 0.7566 0.2809

POP 0.6464 0.7213 0.7568 0.4632

Table 3. Correlation between different NTL products and socioeconomic variables. * Correlation between 
products and BUA here is calculated in 2017 rather than 2018, owing to the data availability.

Fig. 7 Spatial pattern of PANDA-China in the Guangzhou-centred region from 1984 to 2020.
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Surprisingly, Li’s product disconnects this road in Fig. 6g2 compared to Fig. 6g1. Besides, PANDA-China also 
shows a good capability to maintain the increasing spatial pattern, i.e. spatial consistency. As Fig. 6d1–d2,h1–h2 
show, urban areas expanding from north-east to south-west in Shanghai-centred region, and from north to 
south in Beijing-centred region, inherit the pattern from Fig. 6c1–c2,d1–d2. In contrast, observations in Li’s 
product tend to underestimate the light intensity surrounding the urban areas, to overestimate at distant regions, 
and to obscure the road networks, as Fig. 6d1–d2,h1–h2 show. As Li’s product is considered to be better than 
Zhang’s in the literature2, we only perform the whole-China quantitative comparison between PANDA-China 
and Li’s product. As listed in Table 3, statistics of PANDA-China and Li’s product in these four years show close 
performance from 1992 to 2013, but PANDA-China outperforms Li’s product since then, which agrees with 
visual validation in Fig. 6. Please refer to the supplementary material for detailed annual statistics of the whole 
study period.

With an unprecedented long time-span, PANDA-China helps to witness the connection between cities and 
villages during early years and project future expansion types. Taking the Guangzhou-centred region as an 
example, villages are nearly singly located around Guangzhou-centred urban agglomeration in 1984, and con-
nections are gradually built between villages and between villages and cities during 1984 to 1992, as shown in 
the northern part of Fig. 7. Besides, PANDA-China manages to identify the major characteristics of the urban 
expansion. The urban area generally expands from urban fringe in Guangzhou during 1984 to 2020, but some-
times leaves a “hole” behind, mainly due to demographic reasons, such as mountainous or estuary regions, as 
shown in the southern part of Guangzhou from 2013 to 2020. Also, the comparison between PANDA-China 
with Landsat composites in this same area are shown (Figs. S7 ~ S8) in supplementary information.

Spatiotemporal analysis of 37-year China nighttime light using PANDA-China. Three phases are 
selected accordingly: 1984-1991, 1992-2012, and 2013-2020, to excavate the controlling socioeconomic parame-
ters of night-time light in different periods. Generally, PANDA-China is capable of characterizing the dynamics of 
BUA, GDP, and POP in each phase although their correlation varies in different provinces and phases.

In the first phase (1984-1991), NTL intensity is positively correlated with BUA, GDP, and POP to a large 
extent in all provinces (no GDP and POP statistical data available in Hongkong, Macau and Taiwan). This also 
indicates that urbanization, economic development and population increase all contribute to NTL in this phase 
throughout the whole China (Fig. 8a). While in the second phase (1992-2012), the situation changed. Generally, 
BUA and GDP still correlate well with NTL in all provinces except some in Hongkong, Macau, and Taiwan 

Fig. 8 Spatiotemporal correlation between NTL and BUA, GDP, POP by provinces in each phase. 1984 to 2020 
are divided into three phases according to model setting: (a) 1984-1991; (b) 1992-2012; (c) 2013-2020. The 
colors of provinces indicate the average value of three Pearson’s R.
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due to lack of statistic data. However, interaction between POP and NTL in each province varies largely. In 
Guizhou and Hunan provinces, their correlations reach a lower level (<0.5); and most notably, in Sichuan and 
Chongqing, there even exists negative correlation in the second phase (Fig. 8b). Most variances occur in the 
third phase. In this phase, NTL in each province results from different contributions. In south-eastern China, 
the relationships between BUA, GDP, POP, and NTL reach similar strong intensity as in first phase. In western 
China, NTL correlates well with GDP development and POP variances but shows lower relationship with BUA, 
especially in Xinjiang and Tibet. Not surprisingly, NTL correlates negatively to GDP and POP in north-eastern 
China, whose major contribution is BUA, as Fig. 8c shows.

Code availability
The programs used to generate all the results were Python 3.7, MATLAB (R2018b), and ArcGIS (10.4). The code 
and scripts used for training, testing, and predicting the NTL data are available in the open GitHub repository 
“https://github.com/xian1234/NTLSTM”, and the code for calibrating and validating the data is available at 
“https://www.mathworks.com/matlabcentral/fileexchange/119308-modest”.

Received: 6 September 2023; Accepted: 3 April 2024;
Published: xx xx xxxx

References
 1. Elvidge, C. D., Baugh, K. E., Kihn, E. A., Kroehl, H. W. & Davis, E. R. Mapping city lights with nighttime data from the dmsp operational 

linescan system. Photogrammetric Engineering and Remote Sensing 63, 727–734, https://doi.org/10.1016/S0924-2716(97)00008-7 
(1997).

 2. Li, X. & Zhou, Y. Urban mapping using dmsp/ols stable night-time light: a review. International Journal of Remote Sensing 38, 
6030–6046, https://doi.org/10.1080/01431161.2016.1274451 (2017).

 3. Li, X., Zhou, Y., Zhao, M. & Zhao, X. A harmonized global nighttime light dataset 1992-2018. Sci Data 7, 168, https://doi.
org/10.1038/s41597-020-0510-y (2020).

 4. Small, C., Pozzi, F. & Elvidge, C. D. Spatial analysis of global urban extent from dmsp-ols night lights. Remote Sensing of Environment 
96, 277–291, https://doi.org/10.1016/j.rse.2005.02.002 (2005).

 5. Zhou, Y. et al. A global map of urban extent from nightlights. Environmental Research Letters 10, 054011, https://doi.
org/10.1088/1748-9326/10/5/054011 (2015).

 6. Feng, Z., Peng, J. & Wu, J. Using dmsp/ols nighttime light data and k-means method to identify urban-rural fringe of megacities. 
Habitat International 103, 102227, https://doi.org/10.1016/j.habitatint.2020.102227 (2020).

 7. Henderson, M., Yeh, E. T., Gong, P., Elvidge, C. & Baugh, K. Validation of urban boundaries derived from global night-time satellite 
imagery. International Journal of Remote Sensing 24, 595–609, https://doi.org/10.1080/01431160304982 (2003).

 8. Zhang, Q. & Seto, K. C. Mapping urbanization dynamics at regional and global scales using multi-temporal dmsp/ols nighttime light 
data. Remote Sensing of Environment 115, 2320–2329, https://doi.org/10.1016/j.rse.2011.04.032 (2011).

 9. Zhao, M. et al. Mapping urban dynamics (1992-2018) in southeast asia using consistent nighttime light data from dmsp and viirs. 
Remote Sensing of Environment 248, 111980, https://doi.org/10.1016/j.rse.2020.111980 (2020).

 10. Huang, X., Schneider, A. & Friedl, M. A. Mapping sub-pixel urban expansion in china using modis and dmsp/ols nighttime lights. 
Remote Sensing of Environment 175, 92–108, https://doi.org/10.1016/j.rse.2015.12.042 (2016).

 11. Imhoff, M. L. et al. Using nighttime dmsp/ols images of city lights to estimate the impact of urban land use on soil resources in the 
united states. Remote Sensing of Environment 59, 105–117, https://doi.org/10.1016/S0034-4257(96)00110-1 (1997).

 12. Chowdhury, P. R. & Maithani, S. Monitoring growth of built-up areas in indo-gangetic plain using multi-sensor remote sensing data. 
Journal of the Indian Society of Remote Sensing 38, 291–300, https://doi.org/10.1007/s12524-010-0019-5 (2010).

 13. Ma, X., Li, C., Tong, X. & Liu, S. A new fusion approach for extracting urban built-up areas from multisource remotely sensed data. 
Remote Sensing 11, 2516, https://doi.org/10.3390/rs11212516 (2019).

 14. Ma, X. et al. Optimized sample selection in svm classification by combining with dmsp-ols, landsat ndvi and globeland30 products 
for extracting urban built-up areas. Remote Sensing 9, 236, https://doi.org/10.3390/rs9030236 (2017).

 15. Sutton, P. Modeling population density with night-time satellite imagery and gis. Computers, Environment and Urban Systems 21, 
227–244 (1997).

 16. Xu, H., Yang, H., Li, X., Jin, H. & Li, D. Multi-scale measurement of regional inequality in mainland china during 2005-2010 using 
dmsp/ols night light imagery and population density grid data. Sustainability 7, 13469–13499, https://doi.org/10.3390/su71013469 
(2015).

 17. Fu, H., Shao, Z., Fu, P. & Cheng, Q. The dynamic analysis between urban nighttime economy and urbanization using the dmsp/ols 
nighttime light data in china from 1992 to 2012. Remote Sensing 9, 416, https://doi.org/10.3390/rs9050416 (2017).

 18. Ebener, S., Murray, C., Tandon, A. & Elvidge, C. C. From wealth to health: modelling the distribution of income per capita at the 
sub-national level using night-time light imagery. international Journal of health geographics 4, 5, https://doi.org/10.1186/1476-
072X-4-5 (2005).

 19. Elvidge, C. D., Baugh, K. E., Anderson, S. J., Sutton, P. C. & Ghosh, T. The night light development index (nldi): a spatially explicit 
measure of human development from satellite data. Social Geography 7, 23–35, https://doi.org/10.5194/sg-7-23-2012 (2012).

 20. Shao, X. et al. Radiometric calibration of dmsp-ols sensor using viirs day/night band. In Earth Observing Missions and Sensors: 
Development, Implementation, and Characterization III, vol. 9264, 92640A, https://doi.org/10.1117/12.2068999 (International 
Society for Optics and Photonics).

 21. Elvidge, C. D. et al. A global poverty map derived from satellite data. Computers and Geosciences 35, 1652–1660, https://doi.
org/10.1016/j.cageo.2009.01.009 (2009).

 22. Jean, N. et al. Combining satellite imagery and machine learning to predict poverty. Science 353, 790–794 (2016).
 23. Wang, W., Cheng, H. & Zhang, L. Poverty assessment using dmsp/ols night-time light satellite imagery at a provincial scale in china. 

Advances in Space Research 49, 1253–1264, https://doi.org/10.1016/j.asr.2012.01.025 (2012).
 24. Tian, J., Zhao, N., Samson, E. L. & Wang, S. Brightness of nighttime lights as a proxy for freight traffic: A case study of china. IEEE 

Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7, 206–212, https://doi.org/10.1109/
JSTARS.2013.2258892 (2013).

 25. Abrahams, A., Oram, C. & Lozano-Gracia, N. Deblurring dmsp nighttime lights: A new method using gaussian filters and 
frequencies of illumination. Remote Sensing of Environment 210, 242–258, https://doi.org/10.1016/j.rse.2018.03.018 (2018).

 26. Wei, Y., Liu, H., Song, W., Yu, B. & Xiu, C. Normalization of time series dmsp-ols nighttime light images for urban growth analysis 
with pseudo invariant features. Landscape and Urban Planning 128, 1–13, https://doi.org/10.1016/j.landurbplan.2014.04.015 (2014).

 27. Zhou, Y., Li, X., Asrar, G. R., Smith, S. J. & Imhoff, M. A global record of annual urban dynamics (1992-2013) from nighttime lights. 
Remote Sensing of Environment 219, 206–220, https://doi.org/10.1016/j.rse.2018.10.015 (2018).

https://doi.org/10.1038/s41597-024-03223-1
https://github.com/xian1234/NTLSTM
https://www.mathworks.com/matlabcentral/fileexchange/119308-modest
https://doi.org/10.1016/S0924-2716(97)00008-7
https://doi.org/10.1080/01431161.2016.1274451
https://doi.org/10.1038/s41597-020-0510-y
https://doi.org/10.1038/s41597-020-0510-y
https://doi.org/10.1016/j.rse.2005.02.002
https://doi.org/10.1088/1748-9326/10/5/054011
https://doi.org/10.1088/1748-9326/10/5/054011
https://doi.org/10.1016/j.habitatint.2020.102227
https://doi.org/10.1080/01431160304982
https://doi.org/10.1016/j.rse.2011.04.032
https://doi.org/10.1016/j.rse.2020.111980
https://doi.org/10.1016/j.rse.2015.12.042
https://doi.org/10.1016/S0034-4257(96)00110-1
https://doi.org/10.1007/s12524-010-0019-5
https://doi.org/10.3390/rs11212516
https://doi.org/10.3390/rs9030236
https://doi.org/10.3390/su71013469
https://doi.org/10.3390/rs9050416
https://doi.org/10.1186/1476-072X-4-5
https://doi.org/10.1186/1476-072X-4-5
https://doi.org/10.5194/sg-7-23-2012
https://doi.org/10.1117/12.2068999
https://doi.org/10.1016/j.cageo.2009.01.009
https://doi.org/10.1016/j.cageo.2009.01.009
https://doi.org/10.1016/j.asr.2012.01.025
https://doi.org/10.1109/JSTARS.2013.2258892
https://doi.org/10.1109/JSTARS.2013.2258892
https://doi.org/10.1016/j.rse.2018.03.018
https://doi.org/10.1016/j.landurbplan.2014.04.015
https://doi.org/10.1016/j.rse.2018.10.015


13Scientific Data |          (2024) 11:414  | https://doi.org/10.1038/s41597-024-03223-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

 28. Elvidge, C. D., Baugh, K. E., Zhizhin, M. & Hsu, F.-C. Why viirs data are superior to dmsp for mapping nighttime lights. Proceedings 
of the Asia-Pacific Advanced Network 35, 62, https://doi.org/10.7125/APAN.35.7 (2013).

 29. Hsu, F.-C., Baugh, K. E., Ghosh, T., Zhizhin, M. & Elvidge, C. D. Dmsp-ols radiance calibrated nighttime lights time series with 
intercalibration. Remote Sensing 7, 1855–1876, https://doi.org/10.3390/rs70201855 (2015).

 30. Li, X. & Zhou, Y. A stepwise calibration of global dmsp/ols stable nighttime light data (1992-2013). Remote Sensing 9, 637, https://
doi.org/10.3390/rs9060637 (2017).

 31. Yang, M., Wang, S.-x, Zhou, Y. & Wang, L.-t Review on applications of dmsp/ols night-time emissions data. Remote Sensing 
Technology and Application 26, 45–51, https://doi.org/10.3724/SP.J.1011.2011.00403 (2011).

 32. Jiang, W. et al. Potentiality of using luojia 1-01 nighttime light imagery to investigate artificial light pollution. Sensors 18, 2900, 
https://doi.org/10.3390/s18092900 (2018).

 33. Guk, E. & Levin, N. Analyzing spatial variability in night-time lights using a high spatial resolution color jilin-1 image-jerusalem as a 
case study. ISPRS Journal of Photogrammetry and Remote Sensing 163, 121–136, https://doi.org/10.1016/j.isprsjprs.2020.02.016 (2020).

 34. Guo, H. et al. Sdgsat-1: the world’s first scientific satellite for sustainable development goals. Science Bulletin 68, 34–38, https://doi.
org/10.1016/j.scib.2022.12.014 (2023).

 35. Chen, Z. et al. An extended time-series (2000-2018) of global npp-viirs-like nighttime light data from a cross-sensor calibration. 
Earth System Science Data Discussions 1–34, https://doi.org/10.5194/essd-2020-201 (2020).

 36. Jeswani, R., Kulshrestha, A., Gupta, P. K. & Srivastav, S. Evaluation of the consistency of dmsp-ols and snpp-viirs night-time light 
datasets. J. Geomat 13, 98–105 (2019).

 37. Li, X., Li, D., Xu, H. & Wu, C. Intercalibration between dmsp/ols and viirs night-time light images to evaluate city light dynamics of 
syria’s major human settlement during syrian civil war. International Journal of Remote Sensing 38, 5934–5951 (2017).

 38. Xie, Y. & Weng, Q. Detecting urban-scale dynamics of electricity consumption at chinese cities using time-series dmsp-ols (defense 
meteorological satellite program-operational linescan system) nighttime light imageries. Energy 100, 177–189, https://doi.
org/10.1016/j.energy.2016.01.058 (2016).

 39. Levin, N. et al. Remote sensing of night lights: A review and an outlook for the future. Remote Sensing of Environment 237, 111443, 
https://doi.org/10.1016/j.rse.2019.111443 (2020).

 40. Zhao, M. et al. Building a series of consistent night-time light data (1992-2018) in southeast asia by integrating dmsp-ols and npp-
viirs. IEEE Transactions on Geoscience and Remote Sensing 58, 1843–1856, https://doi.org/10.1109/TGRS.2019.2949797 (2019).

 41. Zhang, Q., Pandey, B. & Seto, K. C. A robust method to generate a consistent time series from dmsp/ols nighttime light data. IEEE 
Transactions on Geoscience and Remote Sensing 54, 5821–5831, https://doi.org/10.1109/TGRS.2016.2572724 (2016).

 42. Chen, Z. et al. An extended time series (2000–2018) of global npp-viirs-like nighttime light data from a cross-sensor calibration. 
Earth System Science Data 13, 889–906, https://doi.org/10.5194/essd-13-889-2021 (2021).

 43. Group)., E. E. O. DMSP Documents (https://eogdata.mines.edu/products/dmsp, 2023).
 44. LeCun, Y. & Bengio, Y. Convolutional networks for images, speech, and time series. The handbook of brain theory and neural 

networks 3361, 1995 (1995).
 45. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. nature 521, 436–444 (2015).
 46. Goodfellow, I., Bengio, Y., Courville, A. & Bengio, Y.Deep learning, vol. 1 (MIT press Cambridge, 2016).
 47. Srivastava, N., Mansimov, E. & Salakhudinov, R. Unsupervised learning of video representations using lstms. In International 

conference on machine learning, 843–852.
 48. Shi, X. et al. Convolutional lstm network: A machine learning approach for precipitation nowcasting. Advances in neural information 

processing systems 28, 802–810, https://doi.org/10.1007/978-3-319-21233-3_6 (2015).
 49. Lotter, W., Kreiman, G. & Cox, D. Deep predictive coding networks for video prediction and unsupervised learning. arXiv preprint 

arXiv:1605.08104 (2016).
 50. Wang, Y., Long, M., Wang, J., Gao, Z. & Yu, P. S. Predrnn: Recurrent neural networks for predictive learning using spatiotemporal 

lstms. Advances in Neural Information Processing Systems 30, 879–888 (2017).
 51. Wang, Y. et al. Memory in memory: A predictive neural network for learning higher-order non-stationarity from spatiotemporal 

dynamics. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 9154–9162, https://doi.org/10.1109/
cvpr.2019.00937.

 52. Meng, L. et al. Interpretable spatio-temporal attention for video action recognition. In Proceedings of the IEEE international 
conference on computer vision workshops, 0–0.

 53. Vaswani, A. et al. Attention is all you need. In Advances in neural information processing systems, 5998–6008, https://doi.org/10.504
0/9781350101272.00000005.

 54. Zheng, J. et al. Cross-regional oil palm tree counting and detection via a multi-level attention domain adaptation network. ISPRS 
Journal of Photogrammetry and Remote Sensing 167, 154–177 (2020).

 55. Zhang, L. et al. A prolonged artificial nighttime-light dataset of china (1984-2020). National Tibetan Plateau/Third Pole Environment 
Data Center https://doi.org/10.11888/Socioeco.tpdc.271202 (2021).

Acknowledgements
Bing Xu, Zhehao Ren, Bin Chen, and Peng Gong were partially supported by the the Open Research Program 
of the International Research Center of Big Data for Sustainable Development Goals (CBAS2022ORPO2), the 
National Natural Science Foundation of China (No. U1839206, 41871331, 41801343), the National Key Research 
and Development Plan of China (No. 2022YFE0209300). Haohuan Fu and Lixian Zhang were partially supported 
by the National Natural Science Foundation of China (Grant No. T2125006), Jiangsu Innovation Capacity 
Building Program (Project No. BM2022028).

Author contributions
Lixian Zhang: Conceptualization, Methodology, Software, Validation, Formal analysis, Visualization, Writing 
Zhehao Ren: Conceptualization, Methodology, Resources, Validation, Formal analysis, Writing, Visualization Bin 
Chen: Review & Editing Peng Gong: Review & Editing Haohuan Fu: Review, Editing, Formal analysis, Funding 
acquisition, Supervision. Bing Xu: Review, Editing, Formal analysis, Funding acquisition, Supervision.

Competing interests
The authors declare that they have no known competing financial interests or personal relationships that could 
have appeared to influence the work reported in this paper.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/ 
10.1038/s41597-024-03223-1.

https://doi.org/10.1038/s41597-024-03223-1
https://doi.org/10.7125/APAN.35.7
https://doi.org/10.3390/rs70201855
https://doi.org/10.3390/rs9060637
https://doi.org/10.3390/rs9060637
https://doi.org/10.3724/SP.J.1011.2011.00403
https://doi.org/10.3390/s18092900
https://doi.org/10.1016/j.isprsjprs.2020.02.016
https://doi.org/10.1016/j.scib.2022.12.014
https://doi.org/10.1016/j.scib.2022.12.014
https://doi.org/10.5194/essd-2020-201
https://doi.org/10.1016/j.energy.2016.01.058
https://doi.org/10.1016/j.energy.2016.01.058
https://doi.org/10.1016/j.rse.2019.111443
https://doi.org/10.1109/TGRS.2019.2949797
https://doi.org/10.1109/TGRS.2016.2572724
https://doi.org/10.5194/essd-13-889-2021
https://eogdata.mines.edu/products/dmsp
https://doi.org/10.1007/978-3-319-21233-3_6
https://doi.org/10.1109/cvpr.2019.00937
https://doi.org/10.1109/cvpr.2019.00937
https://doi.org/10.5040/9781350101272.00000005
https://doi.org/10.5040/9781350101272.00000005
https://doi.org/10.11888/Socioeco.tpdc.271202
https://doi.org/10.1038/s41597-024-03223-1
https://doi.org/10.1038/s41597-024-03223-1


1 4Scientific Data |          (2024) 11:414  | https://doi.org/10.1038/s41597-024-03223-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

Correspondence and requests for materials should be addressed to B.X. or H.F.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2024

https://doi.org/10.1038/s41597-024-03223-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A Prolonged Artificial Nighttime-light Dataset of China (1984-2020)
	Background & Summary
	Methods
	Study area and used data. 
	Implementation tasks. 
	Nighttime light convolutional long short-term memory network. 
	The spatiotemporal attention module. 
	The convolutional LSTM unit. 

	Adjustment of outlier phases. 
	Model assessment and product evaluation. 

	Data Records
	Technical Validation
	Analysis of NTLSTM results. 
	Temporal error distribution of modeled results. 
	Spatial error distribution of modeled results. 

	Comparison between PANDA-China and previous NTL datasets. 
	Statistic comparison between seven datasets. 
	Spatiotemporal comparison between representative datasets. 

	Spatiotemporal analysis of 37-year China nighttime light using PANDA-China. 

	Acknowledgements
	Fig. 1 The proposed stepwise method.
	Fig. 2 The overall methodology.
	Fig. 3 Temporal assessment of modeled results in randomly sampled cropped patches.
	Fig. 4 Spatiotemporal assessment of modeled results in urban areas.
	Fig. 5 PANDA-China comparison with different socioeconomic variables and other datasets.
	Fig. 6 Comparison between PANDA-China and products from Li’s and Zhang’s methods (Li’s and Zhang’s hereafter) in Shanghai-centred and Beijing-centred regions.
	Fig. 7 Spatial pattern of PANDA-China in the Guangzhou-centred region from 1984 to 2020.
	Fig. 8 Spatiotemporal correlation between NTL and BUA, GDP, POP by provinces in each phase.
	Table 1 Data used to derive and validate PANDA-China with their sources.
	Table 2 Correlation analysis between NTL products and socioeconomic parameters.
	Table 3 Correlation between different NTL products and socioeconomic variables.




