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Water temperature dynamics in large inland lakes are interrelated with internal lake physics, 
ecosystem function, and adjacent land surface meteorology and climatology. Models for simulating 
and forecasting lake temperatures often rely on remote sensing and in situ data for validation. In situ 
monitoring platforms have the benefit of providing relatively precise measurements at multiple lake 
depths, but are often sparser (temporally and spatially) than remote sensing data. Here, we address 
the challenge of synthesizing in situ lake temperature data by creating a standardized database of 
near-surface and subsurface measurements from 134 sites across 29 large North American lakes, with 
the primary goal of supporting an ongoing lake model validation study. We utilize data sources ranging 
from federal agency repositories to local monitoring group samples, with a collective historical record 
spanning January 1, 2000 through December 31, 2022. Our database has direct utility for validating 
simulations and forecasts from operational numerical weather prediction systems in large lakes whose 
extensive surface area may significantly influence nearby weather and climate patterns.

Background & Summary
Accurately representing spatial and temporal variability of lake surface water temperatures in numerical 
weather prediction (NWP) systems has been shown (particularly for Earth’s largest lakes) to improve short- 
and long-term forecasts of regional precipitation, air temperature, and surface wind velocity1–4. Thus, realistic 
representation of lake conditions is crucial for the development of the next generation of climate and weather 
forecast models5,6. The database we introduce here was developed to support this advancement by providing in 
situ validation data for a broader project sponsored by the National Oceanic and Atmospheric Administration 
(NOAA) through its Joint Technology Transfer Initiative (JTTI). The parallel NOAA JTTI project is designed to 
optimize representation of lake surfaces in the NOAA Unified Forecast System (UFS) by exploring the sensitiv-
ity of UFS lake models to alternative lake bathymetric data sets7. Specifically, the NOAA JTTI project evaluates 
potential impacts of a new global lakes bathymetric dataset (GLOBathy) on simulations of lake surface temper-
ature, and temperature depth profiles, in UFS 1-D lake models8. It is informative to note that these models are 
currently operationalized within NOAA’s High-Resolution Rapid Refresh model, or HRRR9, which simulates 
lake physics using a 1-D lake model included in the Community Land Model v4.510 with a 3-km horizontal 
resolution, and 10 vertical (depth) layers.

Following an iterative in situ monitoring platform selection protocol (details below) we obtained near-surface 
and subsurface lake temperature data from 134 sites across 29 lakes which (through the parallel NOAA study 
referenced above) can be used to validate HRRR lake model simulations. We solicited and stored temperature 
data at the highest temporal resolution available, which varies from site to site; at some sites, data is available at 
sub-hourly resolution and, at others, at relatively coarse (e.g. semi-annual or monthly) resolution. Of the 134 
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sites in our database, 84 include temperature measurements across multiple depths, allowing for comprehensive 
validation of HRRR 1-D lake column model simulations.

While the lakes presented here represent a subset of all lakes in the HRRR model, we believe that, because 
they are among the model domain’s largest lakes (by surface area; see methods below), they might be expected 
to have the most profound impacts on surrounding terrestrial weather and climate dynamics. We note that 
the Laurentian Great Lakes are not included in the NOAA UFS study because they are represented through a 
separate 3-D modeling framework11,12 operated through NOAA’s National Ocean Service (NOS). In situ data 
for validating Laurentian Great Lakes 3-D models is collected and utilized separately and specifically for the 
NOS modeling initiative, and is therefore not addressed here. Ultimately, the goal of our database is to provide 
an organized, easily-accessible aggregation of in situ lake temperature profile data that can be used not only to 
support validation for the NOAA UFS 1-D lake model experiments, but to serve as a resource for related lake 
model validation and empirical data analysis studies as well (see Figs. 1 and 2).

Methods
We collected lake temperature data from a variety of sources, each requiring a different approach, ranging from 
scraping online federal agency repositories to collaborating with and soliciting data from local water qual-
ity monitoring organizations. Federal agency repositories from which we collected data include the NOAA 
National Data Buoy Center (NDBC)13, the United States Geological Survey (USGS) National Water Information 
System (NWIS)14, and the Water Quality Portal (WQP) - a cooperative service maintained and sponsored by 
USGS and the United States Environmental Protection Agency15. The temperature data we collected from local 
organizations is unlikely to be included in the aforementioned federal repositories. It is informative to note that 
any data we have collected for a given lake in our study may be aggregated across one or more of these sources 
(for a summary, see Table 1). It is also informative to note that data quality, spatiotemporal resolution, and tem-
poral continuity can vary greatly from source to source (see Fig. 3); some sources provide quality-controlled data 
throughout a lake’s depth profile at high temporal resolution, while others provide relatively sparse temperature 
data collected by local ad hoc or citizen-based groups with little documentation on quality control methods. 
Feedback from database users has highlighted that direct examination of the data significantly aids in under-
standing its characteristics, especially for individual lakes or sites. Accordingly, we’ve included a script within the 
database repository to facilitate the creation of data plots for each site.

One of the most important design features of the parallel NOAA lake model simulation study made possible 
by our database was a focus on evaluating historical lake temperature simulations in 29 of the largest (by surface 
area) lakes across the continental United States (CONUS). A second important design feature of the NOAA lake 
model study was a focus on assessing lake model simulation results from just one calendar year (following a 

Fig. 1 Map of the coterminous United States indicating the location of all 29 lakes in our study (blue polygons; 
magnified slightly to improve clarity). For 9 representative lakes, we also include an overlay of in situ monitoring 
sites (each represented by a blue ‘x’), lake boundaries, and the corresponding 3 km × 3 km HRRR lake model 
pixels (yellow grids). The 9 representative lakes are, from top left advancing clockwise, Lake Washington, 
Flathead Lake, Devils Lake, Red Lake, Oneida Lake, Lake Okeechobee, Lake Tawakoni, Lake Mead, and Mono 
Lake. See Fig. 5 for corresponding details for all 29 lakes in our study.
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model spin-up period) given the relatively high computational expense of running the HRRR model at CONUS 
scale. Therefore, the collective criteria for including a monitoring platform in our database is that it comes from 
one of the largest lakes across CONUS for which there is at least one in situ temperature observation within a 
recent calendar year. The selection of a common recent calendar year, in turn, is intended to maximize the total 
number of temperature data points across the selected lakes and monitoring platforms.

The results of our manual and iterative selection process identified 2019 as the calendar year that maxi-
mizes the total number of in situ observations across the largest CONUS lakes. Based on our analysis of federal 
databases and conversations with individual (i.e. local) database managers, it is our understanding that 2019 
was (for the purposes of our study) an “optimal” year for aggregating lake temperature data because many in 
situ monitoring platforms were discontinued in 2020 at the onset of the pandemic. As a result of this selection 
criteria, our database includes data from monitoring platforms for which there was at least one measurement 
(and, typically, many more measurements) in 2019. However, in order to support any future related empirical 
and model validation studies we also included any and all data available over a historical period from January 
1, 2000 through December 31, 2022, although data availability may vary greatly for years other than 2019 (see 
Table 2).

We used the R Statistical Software (v4.2.116) to extract and store variables from each monitoring platform 
including sample collection date and time (UTC), coordinate location, depth (m), and water temperature (C). 
Details on our final data formatting are included in the Data Records section. Details on how we extracted data 
from each source are included in the subsections below, with related metadata summarized in Tables 1, 2.

National Data Buoy center (NDBc). The NDBC is located within NOAA’s National Weather Service, and 
is responsible for collecting, managing, and distributing meteorological and oceanographic data from a network 
of buoys and coastal stations located in oceans, coastal waters, and large lakes (including the Great Lakes, which 
are not included in this database). All data is quality controlled and publicly available here: (https://www.ndbc.
noaa.gov/).

National Water information system (NWis). The USGS NWIS is a comprehensive database containing 
a wide range of water-related data including streamflow, groundwater levels, and water quality data including lake 
temperatures. Lakes that met our study’s criteria were found manually using the online NWIS mapper (https://
maps.waterdata.usgs.gov/mapper/), and their data was accessed using the dataRetrieval17 package in R by spec-
ifying site identification numbers, desired date ranges, and the parameter code for water temperature. Note that 
the WQP (described in detail below) includes data from the NWIS, but at a much lower temporal resolution.

Water Quality portal (WQp). The WQP is a centralized repository maintained by the United States EPA 
and the USGS, integrating data from multiple agencies and organizations18. Data from sites in the NWIS are 
included in the WQP, but typically at a lower resolution. Thus data was extracted directly from the NWIS wher-
ever there was overlap with the WQP, and the WQP was instead used to extract data aggregated from other 
sources.
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Fig. 2 Representative example (from Oneida Lake, NY) of the relationship between in situ station locations 
(top subfigure; each represented by a blue ‘x’ and labeled with its site code), HRRR pixels (yellow squares), and 
corresponding temperature data for each station in 2019.
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WQP data can also be accessed in R via the dataRetrieval package, similar to procedures used with the 
NWIS. Due to the immense amount of data provided by the WQP, users can search for sites that meet certain 
criteria before requesting a specific site’s data. We used this functionality to search for all sites of type “Lake”, 
“Reservoir”, or “Impoundment” containing any water temperature data in the year 2019. Once we had a large 
list of sites meeting this criteria, we used ArcGIS to filter out any sites not located on a lake over 30 km2. This 
left us with a much shorter list of site names which we could then use to query the data of each site individually.

The format for reporting depths of observations varies across different sites within the WQP. Some sites were 
not given a depth value and were instead reported as “near-surface”; we recorded these as a depth of 0.1 m. Other 
sites report depth values to a very high precision (<0.1 m). We rounded these depth values to the nearest 1 m for 
sites containing temperature values throughout a profile of 5 m or deeper, and to the nearest 0.5 m for sites with 
a shallower profile of less than 5 m. In either case, values of 0 m were then shifted to 0.1 m as the sensors included 
in the WQP only record bulk temperature.

Other sources. In addition to the well-known and established described in the sections above, we gathered 
data from a multitude of other websites and local sources, including the following:

•	 Flathead Lake - from the Flathead Lake Bio Station (FLBS) site (https://flbs.umt.edu/apps/weather/) which 
includes surface water temperatures at four sites. All sites have downloadable data dating back to 2011, and we 
omitted periods of data reporting extremely egregious lake temperature values ( < −50 C).

•	 Lake McConaughy - provided directly by Nate Nielsen of the Central Nebraska Public Power and Irrigation 
District (CNPPID). While data at Lake McConaughy is available in the WQP, we were able to obtain higher 
spatial and temporal resolution data from the files shared with us directly by the CNPPID.

•	 Lake Mendota - provided online by the Space Science & Engineering Center at the University of Wiscon-
sin-Madison (https://metobs.ssec.wisc.edu/data_download/). We extracted the data at an hourly resolution, 
though other resolutions are available for download as well.

•	 Mono Lake - provided directly by Dr. Robert Jellison of the University of California (UC) Santa Barbara and 
the Mono Lake Committee (https://www.monolake.org/).

Lake Name Latitude Longitude Size (km2)

Data provider

NDBC NWIS WQP Other

Champlain 44.632771 −73.301921 979.6 X X X

Clear 39.048421 −122.808826 136.8 X

Devils 48.049741 −98.978507 311.7 X

Flathead 47.893863 −114.130567 463.1 X

Great Salt 41.169322 −112.539431 3962.2 X X

Houston 29.975492 −95.141341 22.5 X

Lewisville 33.121048 −96.979931 51.4 X

Malheur 43.331553 −118.792309 146.1 X

Marion 33.484218 −80.315048 228.7 X

McConaughy 41.248835 −101.792336 66.3 X X

Mead 36.090574 −114.748057 90.2 X

Mendota 43.108566 −89.419588 33.8 X

Mono 38.011535 −119.015838 174.1 X

Okeechobee 26.949621 −80.802608 1317.4 X

Oneida 43.206771 −75.907717 193.7 X

Pontchartrain 30.18727 −90.119927 1655.3 X X

Red 48.035195 −94.916255 1123.5 X

Sakakawea 47.752826 −102.184397 942.1 X

Sebago 43.861237 −70.551793 105.1 X

Seneca 42.66719 −76.920011 141.2 X

Tahoe 39.100468 −120.034368 483.8 X

Tawakoni 32.881902 −95.987976 111.2 X

Upper Klamath 42.428961 −121.934868 271.4 X X

Utah 40.220629 −111.824294 321.3 X

Walker 38.699737 −118.71699 119.2 X

Washington 47.625051 −122.25055 61.8 X

Winnebago 44.021601 −88.409584 512.4 X

Winnipesaukee 43.609695 −71.341321 116.6 X

Table 1. Metadata associated with each lake included in the database. “Latitude” and “Longitude” indicate the 
center point of the lake and “Size” indicates the surface area as provided by the HydroLakes dataset27. The “Data 
provider” column indicates which data source or sources provided data for each lake; see Table 2 for select 
summary statistics associated with the data for any given lake and data source.
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•	 Oneida Lake - provided by Dr. Lars Rudstam at the Cornell University Biological Field Station19. While 
Oneida Lake temperature data is also available through the Knowledge Network for Biodiversity (https://knb.
ecoinformatics.org/), the high resolution temperature profile data provided by Dr. Rudstam is not available 
online.

•	 Pyramid Lake - provided by Jennessy Toribio, a fisheries biologist at Pyramid Lake Fisheries (PLF). PLF data 
is sampled monthly, and while there is no exact time specified in the raw data, the PLF stated that readings are 
typically taken in the late morning. We therefore assigned a timestamp to each recording of 10am local time.

•	 Sebago Lake - publicly available through the Portland Water District (https://www.pwd.org/
sebago-lake-monitoring-buoy).

•	 Lake Tahoe - provided from two contacts; Dr. Gerardo Rivera at the National Aeronautics and Space Admin-
istration (NASA) Jet Propulsion Laboratory (JPL) provided data from three sites at an extremely high tem-
poral resolution, but only for shallow profiles in September 2019. Dr. Shohei Watanabe of the UC Davis 
Tahoe Environmental Research Center (TERC) provided monthly temperature profiles dating back to 2010 
throughout the entire depth profile of Lake Tahoe, but only at a single site. The original TERC data includes 
temperature measurements at every meter to a depth of 480 m. Our final database includes these temperature 
measurements at meter intervals to a depth of 50 m, and at 10-meter intervals from 50 m to 480 m (the origi-
nal higher resolution data is available in the Raw_data section of our database).

•	 Lake Washington - provided online by King County, WA (https://green2.kingcounty.gov/lake-buoy/Data.
aspx). All values from March 2009 were omitted due to noticably incongruous data.

•	 Lake Winnipesaukee - provided online by the New Hampshire Department of Environmental Services 
(https://www4.des.state.nh.us/rivertraksearch/search.html).

Data records
Our database is deposited in “Deep Blue Data”, the University of Michigan’s institutional data repository20. It 
can be accessed here: https://doi.org/10.7302/7gnd-mj10. The database contains sub-directories for each lake. 
Within the sub-directory for each lake is the R script used to extract all data for that lake, a metadata table with 
the latitude/longitude location and depth of each temperature sensor, and a directory containing the tempera-
ture data for each sensor in csv format with two columns for the date/time (in UTC) and the temperature (C). 
Each sensor’s data filename is formatted as ABCXX_YY.csv where ABC is a three letter code for the lake, XX is 
a unique numerical identifier for the latitude/longitude location of the site, and YY is a numerical identifier for 
the depth of that sensor. A more detailed explanation of the directory structure is included in a README file 
within the database.

technical Validation
The data we collected from federal agency repositories (e.g. NDBC, NWIS, and WQP) and some local sources 
were subjected to repository-specific quality control methods, each of which is described in detail in the respec-
tive repository’s literature and (if available) web-site. Regardless, we visually inspected all data at all depths 
and removed data points or time periods periods with egregiously erroneous values for a very small number 
of sites (as described in the Methods section). Additionally, to ensure overall data reliability, we validated our 
in situ temperatures against remote sensed surface temperature data from the Moderate Resolution Imaging 

Fig. 3 Representative time series (showing only 2018 through 2022 for clarity) of temperature data from five 
surface (or near-surface) sensors in our database. This time series underscores differences in temporal resolution 
and continuity across different sensors and lakes; a more comprehensive summary of temporal and spatial (i.e. 
depth) resolution and continuity is included in Table 2, and the database repository includes a script to visualize 
the data of each individual sensor. Year labels on x-axis are positioned at the beginning of a calendar year.
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Spectroradiometer (MODIS), which has a spatial resolution of approximately 1 km21. We used MODIS Terra 
and Aqua land surface temperature products, which collectively provide up to four surface water temperature 
observations per day, per 1-km grid cell, to validate our in situ observations.

We recognize there are challenges to comparing gridded remote sensing temperature data to in situ data, 
especially along lake shorelines where there is a potential for land contamination22. To address this challenge, 
we filtered (i.e. removed, prior to validation) in situ sites within a 1-km buffer of any lake shoreline, leaving 79 
of our total 134 in situ sites for validation. Then, because the original intent of our database was to validate (in 
the parallel NOAA study) HRRR lake models for only the calendar year 2019, we interrogated surface tem-
perature data for MODIS pixels corresponding to each selected in situ site location in calendar year 2019 via 
NASA’s AppEEARS data portal (https://appeears.earthdatacloud.nasa.gov/). Specifically, the products obtained 
via AppEEARS were MOD21A1D.06123, MOD21A1N.06124, MYD21A1D.06125, and MYD21A1N.06126. It is 
informative to note that the MODIS data obtained through AppEEARS has quality thresholds of 0 (poor), 1 

Lake Name Sites Sensors Observations Depth Coverage Historical Coverage

NDBC data summary

Champlain 3 3 45981 1 m 2019–2020

Mead 2 2 285564 0.5 m 2016–2021

Pontchartrain 1 1 1155458 0.6 m 2008–2022

NWIS data summary

Champlain 1 1 15327 1.5 m 2019–2020

Great Salt 1 1 80214 0.1 m 2018–2022

Houston 1 4 64564 0.9 m–4.3 m 2014–2022

Malheur 1 1 18039 0.5 m 2018–2020

Seneca 1 3 39046 1.8 m–29.6 m 2018–2020

Upper Klamath 1 1 68402 1 m 2007–2022

WQP data summary

Champlain 10 407 4954 1 m–100 m 2000–2021

Clear 6 24 246 0.15 m–10 m 2014–2022

Devils 5 61 228 0.1 m–17 m 2000–2022

Great Salt 4 33 623 0.1 m–10 m 2005–2022

Lewisville 3 46 65 0.1 m–19 m 2006–2022

Marion 7 7 509 0.1 m 2014–2022

McConaughy 1 34 17 0.1 m–33 m 2017–2021

Okeechobee 15 15 1155 0.5 m 2016–2022

Pontchartrain 3 3 305 0.1 m 2008–2021

Red 10 85 1548 0.3 m–9 m 2000–2022

Sakakawea 6 201 431 0.1 m–54 m 2003–2020

Tawakoni 4 56 164 0.3 m–7.9 m 2011–2022

Upper Klamath 6 6 1468 0.1 m 2005–2022

Utah 6 47 457 0.1 m–4 m 2001–2022

Walker 3 52 134 0.1 m–20 m 2006–2022

Winnebago 3 37 197 1 m–21 m 2002–2022

Summary of data from other sources

Flathead 4 4 1864273 0 m 2012–2023

McConaughy 1 32 240 1 m–32 m 2010–2022

Mendota 1 22 20953 0.5 m–20 m 2019–2022

Mono 12 623 553 0.5 m–42 m 2018–2022

Oneida 4 50 1931 0 m–14 m 2000–2020

Pyramid 1 99 76 1 m–99 m 2011–2022

Sebago 1 14 35061 1 m–37 m 2018–2019

Tahoe 4 117 128926 0.5 m–480 m 2010–2021

Washington 1 57 19047 1 m–57 m 2008–2021

Winnipesaukee 1 1 53805 1 m 2016–2022

Table 2. Select summary statistics categorized by data source and then by each lake for which the source has 
provided data. For each specified data source and lake, “Sites” indicates the number of unique monitoring 
platform locations (i.e. latitude and longitude), “Sensors” indicates the total number of temperature sensors at 
any depth across all platforms, “Observations” indicates the number of measurements taken though time across 
all sensors, “Depth Coverage” indicates the shallowest and deepest sensors, and “Historical Coverage” indicates 
the earliest and latest years for which data is available.
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(marginal), 2 (good), or 3 (excellent) for each sensor reading, with each quality threshold corresponding to an 
error of >2.0 K, 1.5–2.0 K, 1.0–1.5 K, or <1.0 K, respectively. We only used MODIS data with a quality threshold 
of 2 or higher (i.e. reported error of <1.5 K) for our validation.

Fig. 4 Comparison between bulk surface (or near-surface) and skin temperature data from in situ platforms 
and (respectively) the nearest MODIS pixel at four representative sites across calendar year 2019. Measurement 
depths for in situ platforms are specified in the legend.
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Fig. 5 For each lake in our study, a summary of the lake’s shoreline, associated HRRR model pixels (yellow 
grids; 3 km × 3 km each), and location of in situ monitoring sites (represented by a blue ‘x’). Some panels (e.g. 
Winnebago, Seneca, Champlain) also show HRRR pixels from adjacent water bodies that are not included in 
our study.
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A visual comparison between our in situ data and data from each corresponding MODIS pixel (see Fig. 4 for 
a representative time series from four sites) suggests that the in situ temperatures are generally consistent with 
MODIS, with minimal pronounced visible bias. To supplement this visual comparison, we calculated the bias 
(relative to MODIS) of each in situ data point, along with the root-mean-square error (RMSE) of each site and 
the RMSE across all sites. Specifically, for each MODIS data point, we identified the closest in situ value that was 
collected within 3 hours of the MODIS observation. If there was no in situ data collected within 3 hours of the 
MODIS observation, then that MODIS observation was not used for validation. This approach resulted in 1,808 
pairs of in situ and MODIS temperatures. The RMSE and bias across all validation data pairs was 2.780 K and 
0.023 K, respectively (with MODIS being slightly warmer on average), and a more detailed assessment of RMSE 
and bias for each monitoring platform (Table 3) indicates that bias is generally low, especially at sites for which 
there is a high number of observations.

code availability
As described in the Data Records section, our database contains the R scripts that we used to extract and format 
data for each lake. Additionally, the database contains example scripts for organizing and visualizing the data.
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CLE02_00 Clear 1.52 −1.4 2 RED05_00 Red 1.64 1.51 9

CLE06_00 Clear 1.09 −1.09 1 RED06_00 Red 6.36 −1.58 8

DEV03_00 Devils 1.41 −1.41 1 RED07_00 Red 7.35 −2.23 7

GSL02_00 Great Salt 1.35 0.64 3 RED08_00 Red 1.83 0.6 5

GSL04_00 Great Salt 2.94 −2.65 4 RED09_00 Red 2.58 −0.11 5

GSL05_00 Great Salt 1.93 −1.68 3 RED10_00 Red 1.59 1.27 4

LEW02_00 Lewisville 1.44 −0.03 3 SAK01_00 Sakakawea 0.7 −0.14 2

MAR05_00 Marion 3.05 2.45 3 SAK03_00 Sakakawea 1.13 −1.13 1

MAR06_00 Marion 2.11 2.11 1 SAK04_00 Sakakawea 2.21 0.81 4

MEA02_00 Mead 3.28 0.61 395 TAH01_00 Tahoe 1.53 −0.4 76

MEN01_00 Mendota 3.28 −0.29 200 TAH02_00 Tahoe 1.53 −0.39 78

MON01_00 Mono 4.37 4.15 4 TAH03_00 Tahoe 1.53 −0.61 84

MON03_00 Mono 2.32 −2.24 3 TAH04_00 Tahoe 1.53 −0.13 3

MON04_00 Mono 2.09 −1.7 2 UPK01_00 Upper Klamath 1.53 0.28 350

MON08_00 Mono 2.97 1.39 2 UPK06_00 Upper Klamath 1.53 0.46 8

MON10_00 Mono 2.16 −1.89 3 UTA01_00 Utah 1.53 −1.49 3

MON11_00 Mono 4.21 0.59 5 UTA03_00 Utah 1.53 −1.64 3

OKE02_00 Okeechobee 0.69 0.68 2 UTA04_00 Utah 1.53 −4.08 3

OKE04_00 Okeechobee 1.96 1.63 2 UTA05_00 Utah 1.53 −1.54 3

OKE06_00 Okeechobee 0.45 0.45 1 UTA06_00 Utah 1.53 −1.87 6

OKE07_00 Okeechobee 0.37 0.37 1 WAL03_00 Walker 1.53 −1.4 2

OKE10_00 Okeechobee 1.26 0.98 3 WIN03_00 Winnebago 1.53 3.45 2

OKE11_00 Okeechobee 1.47 1.47 1

Table 3. Summary of root-mean-squared errors (RMSE) and bias (all in C) at each monitoring station based on 
comparison between in situ and MODIS data. Number (N) of data points used for comparison is included for 
reference. Only stations for which an RMSE and bias value could be calculated (see methods above) are listed.
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