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GEOWEaLtH-US: Spatial wealth 
inequality data for the United 
States, 1960–2020
Joel Suss1,2, tom Kemeny  2,3 ✉ & Dylan S. Connor4

Wealth inequality has been sharply rising in the United States and across many other high-income 
countries. Due to a lack of data, we know little about how this trend has unfolded across locations 
within countries. Examining the subnational geography of wealth is crucial because, from one 
generation to the next, it shapes the distribution of opportunity, disadvantage, and power across 
individuals and communities. By employing machine-learning-based imputation to link national 
historical surveys conducted by the U.S. Federal Reserve to population survey microdata, the 
data presented in this article addresses this gap. the Geographic Wealth Inequality Database 
(“GEOWEALTH-US”) provides the first estimates of the level and distribution of wealth at various 
geographical scales within the United States from 1960 to 2020. The GEOWEALTH-US database enables 
new lines of investigation into the contribution of spatial wealth disparities to major societal challenges 
including wealth concentration, income inequality, social mobility, housing unaffordability, and 
political polarization.

Background & Summary
Following a four decade period of sustained growth in wealth inequality in the United States, less than 10 percent 
of families now possess 70 percent of national wealth1–3. The trajectory of rising national wealth inequality resem-
bles other unfavorable long-term patterns of income polarization and declining intergenerational mobility4,5.  
For historical income and intergenerational mobility dynamics, there is a growing realization that these prevail-
ing trends have, in fact, arisen from a strongly differentiated subnational geography6–11. In contrast, we still know 
very little about the geography of wealth inequality and how it has changed over time.

This knowledge gap not only limits our understanding of broader societal trends in inequality, but also the 
social, economic, political, and even epidemiological consequences of concentrated wealth12,13. Specifically, 
wealth inequality has previously been linked to the local provision of public goods14,15, social mobility7,16–18, 
support for populism19–21, and the health of local economies22,23. Despite the role of wealth in giving rise to dis-
parities in income24, wealth and income represent distinctive facets of economic inequality25, with potentially 
different roots and implications26,27. New evidence suggests that wealth is, in fact, a primary source of overall 
rising income inequality28. There is therefore a great need for focused investigation into the changing geography 
of wealth within and beyond the United States.

This article presents a new source of information on the long-term geography of wealth in the United 
States: The Spatial Wealth Inequality Database (“GEOWEALTH-US”)29. GEOWEALTH-US provides estimates 
of the level and distribution of wealth at various spatial scales within the United States from 1960 to 2020.  
The GEOWEALTH-US database not only enables new lines of investigation into the causes and consequences of 
wealth inequality in the United States, but also a flexible methodological framework for generating estimates of 
household wealth across space and time.

We overcome sizeable limitations in measurement and data availability to enhance our understanding of 
the changing geography of wealth. The stock of a households’ wealth is typically measured as the value of its 
assets net of total debts, across a range of asset types, such as cash holdings, real estate, and financial invest-
ments. Unlike income flows, which are reported in the census, few public data sources report on personal assets 
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and debts, or on their constituent components. Our understanding of how individuals’ wealth in the U.S. has 
changed over time comes from ‘capitalization’ models of income information in confidential administrative data 
linked to taxes24, or more directly from a range of household surveys26. While each has advantages and disad-
vantages1, concerns around confidentiality and other issues mean that none of these data sources can be used to 
directly describe spatial disparities in wealth. The estimates provided in the GEOWEALTH-US database do not 
face confidentiality constraints and therefore enable the first granular spatiotemporal analyses of wealth for the 
contemporary United States.

The framework used to construct the GEOWEALTH-US database relies on the application of 
machine-learning-based imputation. Using rich survey information from the Federal Reserve’s Survey of 
Consumer Finances (SCF), we generate predictive models of household wealth using ensemble learning.  
We then use these models to impute wealth among households in Census population surveys that include geo-
graphical identifiers. The end result is a dataset that permits description of variation in wealth between places 
(‘geography of wealth’), as well as how wealth is distributed within urban and regional economies (‘local wealth 
inequality’). GEOWEALTH-US enables researchers to track the evolving geography of wealth and wealth ine-
quality in the US between 1960 and 2020, across more than 700 local labor markets that span the entirety of the 
lower 48 states. The underlying imputation framework could be extended to generate estimates at finer spatial 
units (e.g., census tracts, incorporated places), for different countries, or to support efforts to estimate rates of 
intergenerational wealth transmission30.

Importantly, the estimates of wealth inequality provided in the GEOWEALTH-US database are derived from 
multidimensional measures of assets and debts. Our multidimensional approach marks a substantial advance-
ment in the field since, at present, our understanding of the geography of wealth is predominantly limited to 
the housing market31,32. Home values and mortgage information are reported in several public data sources, 
including in tabulations and extracts of the decennial census. But, while important – especially for those who 
are less affluent – home values are only one among several channels through which wealth can vary across 
locations. Notably, both household debt and stock market participation rates in the United States are currently 
at all-time highs. In fact, home values and net wealth are now only moderately correlated across American 
households (r = 0.535, p < 0.001, based on authors’ calculations using Bureau of Labor Statistics’ Survey of 
Consumer Finances 2015–16 data). The GEOWEALTH-US database therefore provides insight on wealth ine-
quality, as measured across a broad, and increasingly diversified, range of assets and liabilities33. More broadly, 
this work contributes to the ongoing efforts to utilize big data and computation to describe, understand, and 
ultimately address patterns of inequality and inequity34,35.

Our initial investigation of the spatial and temporal patterns of the GEOWEALTH-US database reveals three 
key features of the changing geography of wealth in the United States. First, Fig. 1a reveals that the distribu-
tion of wealth between regions has become meaningfully more unequal since 1970. US wealth holdings have 
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Fig. 1 The geography of wealth and local wealth inequality, 1960–2020. For the period 1960–2020, panel (a) 
uses Gini coefficients to describe trends in inter-regional inequality in terms of average household income and 
wealth across U.S. commuting zones, defined using 1990-vintage commuting flow data. Wealth estimates come 
from the GEOWEALTH-US dataset that is the primary output of this study. Income series is from Kemeny and 
Storper8. Note that this panel shows that wealth gaps between places has grown much more sharply than income 
gaps. Panel (b) visualizes the correlation between 1960 and 2020 measures of local wealth inequality – that is, 
levels of household wealth inequality within each commuting zone, again measured using Gini coefficients. The 
positive but only moderately strong correlation between local wealth inequality suggests a mix of continuity and 
turbulence in the ranks of more and less wealth-unequal locations in the United States.
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become increasingly concentrated in a smaller set of regions. Second, inter-regional wealth disparities have 
grown much larger than inter-regional income disparities, with income gaps growing trough-to-peak by 42 per-
cent and wealth by 97 percent. This supports the intuition that spatial wealth inequalities require investigation 
over and above the study of income inequality. The sharp exacerbation of wealth inequality over this period 
make this a particularly urgent topic for further research. Third, Fig. 1b reveals patterns of both turbulence and 
persistence in the distribution of wealth within regions since 1960. Economies in the South are particularly nota-
ble in having high levels of wealth inequality in both 1960 and 2020. In the Midwest, however, wealth in 1960 
was relatively evenly distributed within locations but has become much more unequal over the subsequent six 
decades. The worsening of inequality in the Midwest over this period is consistent with findings from studies of 
regional income inequality8,36 and intergenerational mobility7, suggesting interdependence and common under-
lying sources affecting different facets of spatial inequality. Our publication of the GEOWEALTH-US database 
provides new avenues for investigating the causes, consequences, and common coherence of these patterns.

Methods
We start from the public-release files of the Federal Reserve’s Survey of Consumer Finances (SCF) that span 
the 1989–2019 period. Making use of the multiple household demographic and income attributes present in 
SCF, we predict household total wealth, gross assets and debts for households in successive waves of public-use 
Decennial and American Community Survey (ACS) microdata from the U.S. Census Bureau, obtained from 
IPUMS37. Using Census-derived information on household location, we generate estimates of the sub-national 
geography of residential net wealth and wealth inequality for various spatial units, including metropolitan areas 
and commuting zones.

In the absence of directly-observed, geographically-identified wealth data, our approach provides new oppor-
tunities to draw inferences about the spatial distribution of wealth. Like other surveys that record information 
on wealth, such as the Survey of Income and Program Participation (SIPP), SCF includes relevant demographic 
correlates. Unlike SIPP and other surveys, however, SCF also includes detailed information on household wealth 
and incomes. Crucially, SCF-based variables capture distinct categories of income, including wages, investment, 
and business income, closely matching the information contained in the Decennial Census and the American 
Community Survey. By observing relationships between income and wealth levels in the SCF, our imputa-
tion procedure is not exclusively bound to sociodemographic characteristics, which we know to be limited 
in their predictive power of income and wealth differences across locations. Put another way, the inclusion of 
income data enriches our understanding of wealth differences among individuals with similar demographic 
and educational profiles in different locations38. Thus, by capturing not just demographics, but also detailed 
income information, housing tenure and value, our model is best situated to generate accurate predictions  
of spatial disparities in wealth.

Beyond the SCF’s unparalleled direct detail about joint components of wealth and income, these data offer a 
useful basis for prediction because of their coverage of households across the full range of the wealth distribu-
tion26. Many national household surveys have a missing top wealth problem39, prompting alternative approaches 
that ‘capitalize’ income information in administrative tax data2,40,41. But in the modern (post-1983) SCF, major 
oversampling for rich households has been demonstrated to effectively cover the top of the wealth distribu-
tion42,43. This represents a key difference between the SCF and otherwise comparable surveys for parts of Europe 
and the UK43. Meanwhile, the SCF describes wealth for households whose housing-centered assets are not 
sources of taxable income, as well as low-wealth households that may pay little or no taxes1.

Like the income capitalization method, our approach to estimating wealth inequality relies on first imput-
ing household wealth. However, relative to tax data, coarser categories of income available in the ACS/Census 
make imputation using the capitalization method inefficient. A strength of our approach is that we build a 
sophisticated statistical model of household wealth using all available variables in common between the SCF 
and Census; we therefore sidestep the problem of assuming a fixed rate of return44, which might reasonably 
vary by household characteristics and income level. Given the finer spatial scales at which we are interested in 
estimating wealth inequality, minimizing the prediction error at the household-level is important, whereas, as 
Saez and Zucman2 note, the income capitalization method is noisy at the individual-level, but this matters less 
at when pooling many thousands of families at the country-level. A comparison of the efficacy of our approach 
with the income capitalization method would be enriching, and we encourage this as a point for further research 
with appropriate data.

Our construction of the data comprises four steps: (1) build a model of household wealth using the SCF; (2) 
predict wealth using Census population survey data; (3) address top wealth holders in the Decennial Census 
and American Community Survey using Pareto tail estimation; and (4) estimate wealth and wealth inequality 
for widely used spatial units (e.g., commuting zones).

Step 1: Build a model to predict household wealth. Using the SCF data, we build and combine a set of 
stacked ensemble models (‘ensemble combination’) to arrive at the most accurate available predictions of house-
hold wealth. As a general approach, stacking involves combining a number of predictive models45,46. Typically, a 
set of base (or Level 1) models are trained on a subset of the data. A second-level model is then fit on a separate 
subset of the data, using the Level 1 predictions as inputs. The aim is to garner improvements in prediction that 
result from bringing together a diverse (relatively uncorrelated) and accurate set of models.

We chose to use stacked ensembles based on a careful comparison between different potential approaches. 
We evaluated the ensemble combination relative to alternative treatments of net wealth, including modelling the 
inverse hyperbolic sine transformation of net wealth, and taking the net difference between models separately 
predicting gross wealth and debts. We also evaluated the performance of each ensemble relative to the individual 
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constituent models that comprise it. Details of comparisons between our preferred approach and other models 
are found in the first part of our Technical Validation section; these demonstrate that our stacked ensembles 
jointly outperform available alternatives.

Our stacked ensemble is made up of seven base models: generalized linear regression (GLM), elastic net 
regression (EN), random forest (RF), extreme gradient boosted trees (XGB), neural network (NN), support 
vector machine (SVM), and K-nearest neighbors (KNN). Note that some of these ‘standalone’ models are them-
selves ensembles. In particular, random forests are known as ‘bagged ensembles’ – bootstrapped aggregations of 
individual decision or regression trees, while boosted models are ensembles of sequentially grown trees47,48. For 
the Level 2 model, we estimate a simple linear regression.

To produce a final predicted value of wealth for each household, �Net Wealth, we combine the outputs of four 
separate ensembles. First, we estimate the probability of having positive wealth (P(Wealth > 0)); 8.9% of house-
holds in the SCF sample have either no wealth or are in debt. If the predicted probability is at or above the deci-
sion threshold (which we select based on the maximum Kappa value when varying the threshold from 0 to 1 by 
0.025 on the test sample), the fitted value of a positive wealth ensemble model ( +

�Y ) is chosen, built using only 
data on households with some positive value of wealth. If the predicted probability is below the threshold, a 
further binary stacked ensemble predicts whether the household in question has zero or some quantum of neg-
ative wealth (P(Wealth > 0)). If the latter, a stacked ensemble estimates the quantum (�−Y ), modeled using data 
restricted to households with negative wealth. Formally:
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To fit the ensembles, we train Level 1 models on a random 80% of the SCF data (N = 42,748), and the Level 2 
regression model on a validation set consisting of 10% (N = 5,341). We then evaluate performance on a test set 
consisting of the remaining 10% of data (N = 5,341). For Level 1 models which have hyperparameters to select 
(i.e. EN, RF, XGB, NN, SVM and KNN), in each fold we employ 5-fold cross-validation with random grid search 
(length of 10). For binary classification models - those modelling whether a household has positive wealth 
(P(Wealth > 0)) or no wealth (P(Wealth > 0)) - we up-sample the minority class within each cross-validation 
fold such that there are a balanced number of cases. That is, we sample with replacement from the subset of 
observations with negative or no wealth to ensure a 50/50 split. This up-sampling accounts for the imbalance in 
the outcome classes (e.g., more than 90% have greater than zero wealth). Figure 2 depicts the stacked ensemble 
structure.

Variable selection and transformations. To build the ensembles, we select the set of variables that are available 
in both the SCF and the Decennial Census and ACS. The complete set of variables (the ‘full model’) is available 
from 2008 onwards in the ACS and from 1989 onwards in SCF. Table 1 describes these inputs, listing variable 
names from the ACS, as well as corresponding variables in the 2019 SCF. Since our main estimated results for 
Census years 1960–1980 are based on the model of household wealth using data from 1989 onwards in the SCF, 
as a sensitivity check we also build models based on SCF+1, which harmonizes public-use SCF data with 1949–
1983 SCF surveys. Models using SCF + perform worse on test samples, likely a result of the smaller, less-detailed 
set of variables available consistently from 1949 onwards. We also test whether models fit on data post-1983 data 

Fig. 2 Structure of stack ensemble. The ensemble ‘stacks’ a level 2 (regression) model on top of the predictions of the 
level 1 models. All level 1 models are trained on a random 80% subset of the SCF (matrix X, with rows i and columns 
j, where j is the number of predictors available). Then level 1 predictions ( yi m,� ) are made on a separate 10% of  
the SCF, which becomes training data for the level 2 model (matrix Xl2 with rows i and columns m, where m is  
the number of level 1 models). Finally, performance is evaluated for all level 1 and level 2 models on the remaining 
10% of the SCF (the ‘test’ sample).
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perform worse on a pre-1989 test sample, perhaps because relationships between our predictors and net wealth 
change over time. We find that the performance results are qualitatively similar on this out-of-time sample.

Certain potentially relevant variables were not measured in earlier years of the Decennial Census. For years 
in which the full ensemble cannot be estimated due to variable unavailability, we build unique ensembles using 
the subset of variables that are available in those years. Table 2 provides a breakdown of variable availability over 
the study period.

Before splitting the data between training, validation and test samples, we transform and harmonize a subset 
of the variables in the SCF dataset. In particular, we use the inverse hyperbolic sine transformation for contin-
uous variables which have a pronounced right-skew and contain zeroes. This issue mainly applies to the home 
value and income variables. We also harmonize several of our categorical variables by aggregating values into a 
coarser set of common categories (e.g. education, occupation, and industry). We do not remove any observations  
that might in other circumstances be considered outliers; such extreme values are potentially important in our 
context, particularly for the identification of very wealthy or high-earning households.

Variable importance. Although machine learning approaches to prediction tend to outperform frameworks 
based on simple linear regression, the opacity of the underlying decision process can pose problems. To address 

Category Variable (Decennial/ACS) Variable (SCF) Description

Housing information

VALUEH houses Value of primary residence

OWNERSHP houses, hdebt Housing tenure – own outright, own with a 
mortgage, or rent

MORTAMT1 paymort1 Monthly payment for 1st residential mortgage

MORTAMT2 paymort2 Monthly payment for 2nd residential mortgage

TAXINCL x810 Whether tax is included as part of mortgage 
payment

INSINCL x810 Whether insurance is included as part of 
mortgage payment

PROPTX99 x721 Annual property tax amount

RENT rent Usual monthly rent

Detailed income information

INCWAGE x5702 Wage and salary income

INCBUS x5704 Business income

INCSS x5722 Social security income

INCWELFR x5716, x5720, x5724, x5725 Income from welfare receipts

INCINVST x5706, x5708, x5710, x5714 Investment, interest and dividend income

INCRETIR x5724, x5725 Retirement income, e.g. IRA and 401k

INCOTHER x5712, x5718 Other income not included in available categories

Demographic information

AGE age Age

RACE x6809 Race

EDUC x5901, x5902, x5904, x5905 Educational attainment

SEX hhsex Sex

MARST x8023 Marital Status

FAMSIZE x101 Number of own family members in household

YEAR Year

Employment information

OCC x7401, x7411 Occupation

IND x7402, x7412 Industry

EMPSTAT x4100, x4700 Employment status

CLASSWKR x4106, x4706 Class of worker

UHRSWORK x4110, x4710 Usual hours worked per week

WKSWORK2 x4111, x4711 Weeks worked last year, intervalled

Other information

VEHICLES nvehic Number of vehicles available

HCOVANY x6341 Any health insurance coverage

Table 1. Census and SCF variables and definitions by category. Note: Detailed definitions of variables 
available at https://usa.ipums.org/usa-action/variables/group. Codebook for SCF (2019) found at https://www.
federalreserve.gov/econres/files/codebk2019.txt. Samples in the SCF vary from a low of 3,143 in 1989 and grow 
to a high of over 6,000 from 2010. These figures do not account for the implicates provided for each sampled 
household. For fuller details on the construction of the SCF, consult71,72.
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this issue of ‘weak explainability’, we investigate whether the most influential variables within the models have 
intuitive meaning in terms of predicting wealth. To quantify the importance of each variable, we compute 
Shapley values for each test set observation, a well-known approach to model interpretability that originated 
from research in game theory49. Shapley values provide a local interpretation gauging the relative importance 
of each variable for each specific prediction. We can then take the mean absolute Shapley value per variable to 
make global assessments of importance.

Figure 3 presents these results separately for the dominant model (random forest) for the main components 
of the ensemble combination – the binary, positive wealth, and negative wealth ensembles. The figure rank 
orders the importance of each input variable across our three models. Home values (VALUEH) are the most 
important variable for the binary and positive wealth ensembles followed by investment income (INCINVST). 
However, the variables of importance to the negative wealth ensemble look quite different. Specifically, the year 
of observation in the Census is the single most important predictor, followed by vehicle availability (NVEHIC) 
and again home values (VALUEH). The relationship between year of observation and negative wealth is a reflec-
tion of the rising levels of personal debt over recent decades.

Because Shapley values give us local (i.e. prediction-by-prediction) information on explanatory power, we 
can also investigate how characteristics may contribute differently to wealth and debt depending on a house-
hold’s net worth. This is especially pertinent in our context, as we anticipate substantial variability in the nature 
of asset and debt accumulation across the distribution of wealth. In Fig. 4, we report mean absolute Shapley 
values for high and low net-worth households separately, defined as those with $10 million or more and between 
$0 and $25k respectively. When comparing these two groups, we observe that investment income is of greater 
consequence among high net worth households, whereas home values matter more at lower wealth levels. 
This fits with evidence from Saez and Zucman2 that finds that increases in investment income are primarily 

Variable (Decennial/ACS) 2020 2010 2000 1990 1980 1970 1960

Housing information

VALUEH X X X X X X X

OWNERSHP X X X X X X X

MORTAMT1 X X X X

MORTAMT2 X X X X

TAXINCL X X X X X

INSINCL X X X X X

PROPTX99 X X X X

RENT X X X X X X X

Detailed income information

INCWAGE X X X X X X X

INCBUS X X X X X X X

INCSS X X X X X X

INCWELFR X X X X X X

INCINVST X X X X X

INCRETIR X X X X

INCOTHER X X X X X X X

Demographic information

AGE X X X X X X X

RACE X X X X X X X

EDUC X X X X X X X

SEX X X X X X X X

MARST X X X X X X X

Employment information

OCC X X X X X X X

IND X X X X X X X

EMPSTAT X X X X X X X

CLASSWKR X X X X X X X

UHRSWORK X X X X X

WKSWORK2 X X X X X X X

Other information

VEHICLE X X X X

HCOVANY X X

Table 2. Census variables and availability by year. Note: Detailed definitions of variables in the Decennial and 
American Community Survey available at https://usa.ipums.org/usa-action/variables/groupusa.ipums.org/usa-
action/variables/group.
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responsible for increases in top wealth shares. We also see that rent is an important predictor for only the low 
net-worth households, whereas income derived from other sources is an important predictor for high net-worth 
households.

Step 2: Predict wealth using Census population survey data. Armed with trained stack ensembles, 
for the years 1960-2020, we then impute wealth for each household observed in the Census microdata. As noted 
above, we train year-specific ensembles to impute wealth in order to account for inconsistencies in the availability 
of variables across census years. We first limit the Decennial/ACS data to exclude those who are institutionalized 
or in group quarters. To match SCF, we measure demographic information using the household head. We then 
adjust all income and housing values to account for inflation, matching the SCF by bringing these to 2019 dollars.

Prior to imputation, we address top-coding issues in the Census microdata. These data include many var-
iables that are top-coded to preserve respondents’ anonymity. For our purposes, relevant top-coded variables 
are: MORTAMT1, MORTAMT2, PROPTX, VALUEH, RENT, INCWAGE, INCBUS, INCSS, INCWELFR, 
INCINVST, INCRETIR, INCOTHER. Given the evidence on bias in measuring inequality resulting from such 
censoring50,51, for each of these variables we undertake procedures to adjust top-coded values. In broad terms, 
we take the following steps: i) use the SCF to derive a new maximum value and to estimate Pareto tail param-
eters, and ii) to top-coded census observations, we assign values from the estimated Pareto distribution based 
on the results of a ranking model built using SCF data. More specifically, as the SCF is not top-coded and 
over-samples rich households, we use the maximum value contained therein as an estimate of the maximum 
value in the population. For each decade and top-coded variable, we take the maximum from the combined 
SCF surveys covering the year in question and the preceding five years. For years prior to 1989, we use the max-
imum values from the SCF+1. We also use the SCF to estimate Pareto parameters for the distribution of values 
above the top-code. Using Kolmogorov-Smirnov (KS) statistics, we first test whether the distribution above the 
top-coded value is best approximated as Pareto or some other distribution, either log-normal or generalised 
Beta of the second kind. In all but a few cases, where the sample size used to estimate the Pareto tail parameter is 
small, Pareto distributions are the best fit.
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Fig. 3 Mean absolute Shapley values for ensemble combination. Displayed are mean absolute Shapley values for 
household variables with predictive power on household wealth, with higher Shapley values indicating greater 
predictive power. Here we include Shapley values for separate predictions of the binary ensemble (whether 
positive or negative wealth); and individual models predicting levels of positive or negative wealth.
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From 1990 onward, the Decennial/ACS provides State-specific top-code thresholds for many variables, as 
well as the median or mean value above the listed threshold (or 99.5th percentile, depending on year). Given 
this additional information, we allow the Pareto tail parameter and maximum value to vary by State in order to 
minimize the distance between the mean of the estimated Pareto distribution and the State mean or median.

We then sample from the estimated Pareto distributions to adjust the values that are top-coded in the Census 
data, assigning these conditional on other household characteristics. We build a model using SCF data to rank 
top-coded observations in order of highest value. For this task we use the LambdaMART pairwise ranking 
algorithm, implemented with extreme gradient boosted trees52, which has been shown to perform relatively 
well in other broadly analogous situations, such as information retrieval for internet search53. As we may have 
multiple predictors censored simultaneously, the ranking model is more reliable for our purposes than predicted 
magnitudes exceeding the top-code quantum. In order to account for variability in rank, we take the average 
normalized predicted rank for 10 fits of the ranking algorithm (i.e. 10 configurations of hyperparameters chosen 
at random from a large grid). The highest ranked observation in the Census data is assigned the highest value 
from the estimated Pareto distribution, and so on. The assignment of above-top-code values is thus conditioned 
on the values of the other predictors in the model.

To validate this approach, we regress our imputed rank in the Decennial/ACS on the most granular geo-
graphical identifiers available (PUMA and county groups). The Adjusted-R-squared of these regressions are sub-
stantial, averaging 0.235 for 2020. This implies that there is strong spatial variability in our adjustment of values 
above the top-code, even though the absence of geographic identifiers in the SCF prevents us from incorporating 
them into the fitting of the ranking model.

After adjusting for top-coding, we impute wealth levels for the households in the Census data. To gauge 
the function of these adjustments, for the year 2020, Fig. 5 reports State-specific ACS-based Gini coefficients, 
comparing those in which top-codes are not adjusted, to those obtained by utilizing the Pareto distribution and 
a ranking algorithm for estimating and assigning values at and above the top-codes. As expected, this figure 
demonstrates importance of the top-code adjustment for the predictions of wealth levels and our estimates of 
inequality.

Step 3: Address top wealth holders in the decennial census and american community  
survey. Given their significance to wealth inequality and their rarity in the population, extremely wealthy 
households require focused attention. The main concern is under-coverage at the top of the wealth distribution, 
which has multiple sources54. These include differential unit nonresponse, where wealthy households may be less 
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Fig. 4 Mean absolute Shapley values for high- and low-income households. Displayed are mean absolute 
Shapley values for household variables generated from the positive wealth ensemble on sub-samples of the 
test data. Higher values indicate greater variable importance. The figure compares variable importance for 
households with income between 0 and $25,000, and at and over $10 million.
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likely to participate in surveys regarding their economic circumstances, and systematic underreporting, whereby 
wealthy households may be more likely to underreport the value of their assets39.

In response to such concerns, prior to estimating the geography of wealth and wealth inequality, we replace 
the top tail of the observed wealth distribution with a Pareto distribution43,54–58. We use the imputed Decennial/
ACS wealth data as a basis to estimate year-specific Pareto tail parameters, α, using the maximum likelihood 
estimator58. Because estimates of α depend on the minimum threshold above which the distribution is consid-
ered to follow Pareto, we take an average of the estimated tail parameters across different thresholds43. In par-
ticular, we set thresholds at $500k, $600k, $700k, $800k, $900k, $1mn, $2mn, $3mn, and $5mn. Due to rising 
numbers of wealthy households over time, we use an additional threshold of $10mn for the 2010 and 2020 years 
of observation. We then replace the existing top tail with the estimated Pareto distribution.

Other sources of data on extreme wealth can also be incorporated into our approach. Earlier studies on 
wealth have sought to mitigate differential nonresponse bias by pooling survey data with household informa-
tion drawn from ‘rich lists’ such as the Forbes 400, which comprises the top 0.00025 percent of wealthy house-
holds43,59. These households are excluded from the SCF due to identifiability concerns, and so may limit the 
maximum amount that can be imputed based on models of SCF household wealth, although in practice the 
ensemble models can extrapolate beyond the range of the observed data. For robustness, we added households 

Hawaii
Alaska

New Hampshire
Utah

Maine
Rhode Island

Colorado
Minnesota

Vermont
Idaho

Delaware
Washington

Oregon
Massachusetts

Maryland
California

New Jersey
Wisconsin

South Dakota
Wyoming
Montana

Virginia
West Virginia

Ohio
Pennsylvania

Arizona
Connecticut

Kansas
Iowa

Michigan
Indiana

Nebraska
Kentucky

North Dakota
Tennessee

North Carolina
Alabama

Florida
Missouri
Nevada

South Carolina
Georgia

Illinois
New Mexico

Arkansas
Texas

Louisiana
New York

District Of Columbia
Mississippi
Oklahoma

0.041
0.032
0.034
0.036
0.034
0.034
0.038
0.035
0.031
0.04
0.044
0.034
0.034
0.033
0.031
0.031
0.029
0.029
0.027
0.032
0.029
0.031
0.036
0.03
0.03
0.033
0.025
0.028
0.032
0.03
0.039
0.031
0.033
0.032
0.029
0.029
0.028
0.026
0.031
0.033
0.031
0.029
0.022
0.03
0.029
0.023
0.03
0.022
0.023
0.03
0.026

0.75 0.80
Gini Coefficient

D
ifference in G

ini

Unadjusted topcodes

Adjusted topcodes
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from the Forbes 400 list to our SCF-derived imputed Census data. When we do so, we find that the impact on 
our estimates of α are negligible. This null result is consistent with earlier findings that estimates based on the 
application of Pareto tail procedures to the post-1983 waves of the SCF, where wealthy households are oversam-
pled, yields very similar results to those that include Forbes 400 households43. We conclude that the exclusion of 
these households from the SCF is not a meaningful source of bias in our work.

Step 4: Estimate wealth and wealth inequality at various spatial scales. As a final step, we use the 
imputed Census wealth data to estimate inequality levels at varying levels of geography. When doing so, we use 
Census-provided household weights.

We generate measures of local wealth inequality, including Gini coefficients and wealth shares, as well 
as mean and median wealth per area, at multiple spatial scales: PUMAs, 1990 Commuting Zones (CZs), 
Metropolitan Areas, States, Regions, and the country as a whole. PUMAs or broad equivalents (County Groups, 
State Economic Areas etc.) are available for the 1960 census and from 1990 onwards. We use the crosswalks 
provided by Dorn60 to infer a households’ CZ of residence based on their reported PUMA or equivalent. This 
requires multiplying the household weights by a factor which represents the probability that a household belongs 
to a given CZ (which is 1 where PUMAs or county groups lie entirely within a CZ, and less than 1 when split 
across multiple CZs). Table 3 provides details of data availability at different spatial scales.

Given the imputation procedures used to estimate local wealth levels and distributions, it is appealing to 
capture the uncertainty around these estimates. To do so, we bootstrap a distribution of 100 inequality estimates, 
sampling with replacement from the distribution of imputed household wealth, using a 5% confidence level. A 
main advantage to this simulated approach is that it does not require any assumptions regarding the normality 
of the distribution of inequality estimates61.

Comparisons of the resulting dataset against published information on wealth for the United States are 
reported in the Technical Validation section.

Data Records
Subnational-scale GEOWEALTH-US data29 are available on an open access basis through a Creative Commons 
Attribution 4.0 International (CC BY 4.0) license (https://creativecommons.org/licenses/by/4.0/creativecom-
mons.org/licenses/by/4.0/). The data are hosted by the Inter-university Consortium for Political and Social 
Research (ICPSR) at https://doi.org/10.3886/E192306.

The data are organized into a series of individual comma-separated files (csv), with each file corresponding 
to a particular spatial unit of observation: state; 1990-vintage commuting zone; metropolitan area; PUMA; and 
division. Coverage over time is dependent on spatial units, per Table 3. The data at ICPSR include a brief meta-
data file in pdf format.

The primary variables in each of the GEOWEALTH-US datasets include locational identifiers (unique iden-
tifying codes and names of places); the number of Census households surveyed in that location; measures of 
central tendency (means and medians) for wealth; measures of spread for wealth (standard deviation); ratios of 
wealth at specific percentiles (for instance the ratio of wealth at the 90th/50th percentiles); as well as selected 
key demographic features of locations derived from the Census. For wealth estimates, we also include upper and 
lower bounds, based on the bootstrapping procedure described in Step 4 of the text.

technical Validation
In this section, we present exercises undertaken to validate the technical quality of the dataset. Three kinds of 
validation are reported. First, we describe the performance analysis on the SCF test sample used to arrive at our 
final model of wealth. Second, we conduct out-of-sample validation to verify that our model performs well in 
predicting household wealth using data beyond the SCF. Third, we report comparisons between our national and 
state-level inequality estimates and those obtained from other sources.

performance evaluation, SCF test sample. In order to select our final model of household wealth, 
we run a ‘horse race’ to evaluate competing approaches in terms of predictive performance. The winner is the 
approach which dominates in providing the most accurate predictions, as assessed by the true values observed in 
our SCF hold-out sample – the 10% test sample not used for fitting any model.

As reported in Step 1 of the Methods section, we fit a variety of well-known models and architectures, also 
exploring combinations of these in a stacked ensemble. We also consider the implications of different transfor-
mations of the outcome measure. Specifically, we explore outcomes as follows:

Dataset Name Spatial Units Unique Units Observations Years

puma_wealth_inequality.csv Public Use Microdata Areas 11805 8592 1960–2020

cz_wealth_inequality.csv Commuting Zones 741 5174 1960–2020

metarea_wealth_inequality.csv Metropolitan areas 573 1677 1960–2020

state_wealth_inequality.csv States 51 350 1960–2020

division_wealth_inequality.csv Divisions 9 63 1960–2020

Table 3. Datasets and coverage.
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•	 ‘ENS’: binary model predicting whether a household has positive wealth; a model that predicts positive 
wealth; a model that predicts negative wealth; and a binary model whether a household has zero or some 
negative value of net wealth – see Eq. 1 above.

•	 ‘IHS’: the inverse hyperbolic sine transformation of net wealth
•	 ‘WD’: the net difference of separate models predicting gross wealth and debt

We test these alternative approaches in order to arrive at a final predicted net wealth value that adequately 
captures the proportion of households with zero or negative net wealth, while also accurately predicting quan-
titative values of net wealth.

To compare these permutations, we consider a number of performance metrics. First, we evaluate the ability 
of each approach to discriminate between households with positive, negative and zero net wealth. We do this 
through binary comparisons of households that have positive values of net wealth versus those that do not. In 
terms of the discriminant ability of our models, we focus on three key measures: the Brier score, the Kappa 
statistic, and the Area Under the Receiver Operating Characteristic Curve (AUC). For illustrative purposes, we 
report three further statistics: (1) overall accuracy, which describes the proportion of correct cases; (2) the true 
positive rate (TPR) that captures the proportion of households that are correctly predicted to have positive net 
wealth; and (3) the true negative rate (TNR), which describes the proportion of households that are correctly 
predicted to have negative net wealth. While the accuracy measure is typically used to measure performance, in 
situations where there is a large imbalance between classes – such as our own – it can be misleading. Specifically, 
the result can be high levels of accuracy while the minority class is not well predicted. The TPR and TNR help 
reveal whether there is an imbalance in accuracy across different outcome classes. The Kappa statistic overcomes 
the insensitivity to imbalance, comparing the observed accuracy versus the expected accuracy that would result 
from random change. AUC provides the probability of correctly discriminating between classes for a randomly 
selected observation, and is therefore also sensitive to imbalance. The Brier score – which is simply the difference 
between predicted probability minus the actual outcome (1 or 0) squared – is threshold-agnostic, and therefore 
provides an indication of the quality of a model’s predictions. For continuous predictions, we focus on the root 
mean squared error statistic (RMSE).

Table 4 reports these indicators for the full model. Broadly, we observe the strongest performance for the 
stacked ensemble (ENS) approach. The ENS has the lowest Brier score and the highest Kappa (at the optimal 
decision threshold). The benefits of the ensemble are evident when looking at the performance of the RF and 
XGB models, which are the top performing level one models on the Brier score and Kappa statistic, respectively. 
The binary ensemble encompasses the benefits of these two approaches while also minimizing their respective 
deficiencies (i.e. the poor Brier score for XGB, and relatively low Kappa for RF). We can also observe why the 
ensemble combination outperforms the single ensemble, where net wealth is transformed using the inverse 
hyperbolic sine (IHS) or when gross wealth and debts are modeled separately (WD). In these cases, overall 
accuracy is high but the approaches are insensitive to zero or negative wealth values, with each overlooking true 
negative cases (i.e. TNR = 0%). Note that an ensemble which models the raw, untransformed value of net wealth 
performs similarly to inverse hyperbolic sine approach. Equally, we find a similar pattern of performance when 
we do not transform either the outcome or any of the continuous predictors. Similar patterns are evident for the 
positive wealth models – ENS has the lowest RMSE for positive wealth. The negative wealth ensemble model 
underperforms by comparison to several of the level one learners.

To visually inspect predicted versus actual values, Fig. 6 shows the performance of the full ensemble models 
separately for households with positive and negative wealth in the hold-out SCF data (i.e. 10% of data). These 
figures show the predicted and true values of net wealth for households. A line of symmetry is included for the 
diagonal. There is an evident strong fit for households with positive wealth (91% of the sample; RMSE = 0.99, 

Model Brier Kappa AUC Accuracy TPR TNR RMSE ( + ) RMSE (−)

ENS 0.058 0.426 0.901–0.921 0.887 0.910 0.637 0.999 1.480

IHS 0.282 0.000 0.639–0.686 0.916 1.000 0.000 12.953 15.200

WD 0.078 0.000 0.538–0.566 0.916 1.000 0.000 1.351 19.239

GLM 0.146 0.394 0.884–0.907 0.877 0.900 0.623 1.273 1.475

EN 0.146 0.392 0.883–0.906 0.901 0.939 0.480 1.320 1.457

RF 0.064 0.396 0.887–0.909 0.879 0.903 0.617 1.030 1.457

XGB 0.129 0.420 0.901–0.921 0.887 0.910 0.626 1.003 1.458

NET 0.148 0.384 0.882–0.905 0.863 0.880 0.677 1.064 1.744

SVM 0.145 0.361 0.864–0.89 0.875 0.904 0.558 1.309 1.490

KNN 0.209 0.316 0.84–0.871 0.814 0.821 0.740 1.894 1.505

Table 4. Comparison of performance across models for the full model (i.e. 2010–2020 variables). Note: ENS is 
the full 4-component ensemble model; IHS is the model predicting the inverse hyperbolic sine transformation 
of net wealth; WD is the model predicting the net difference between estimates of gross wealth and debt; GLM 
is the generalized linear model (logistic transformation for binary model); EN is the elastic net model; RF is 
the random forest; XGB is the gradient boosted trees model; NET is the artificial neural network; SVM is the 
support vector machine; and KNN is the K nearest neighbors model.
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r = 0.94) - the stacked ensemble errors are symmetrical and highly accurate at the household-level. Due to a rel-
ative lack of information in the data on liabilities, which can be used to quantify negative wealth, our estimation 
does not perform as well for households with negative wealth (7.5% of sample; RMSE = 1.48, r = 0.38).

Declines in predictive performance are evident in cases where income measures are coarser or when key 
items are missing (for example, from 1960 to 1970, rather than being separately identified, investment income is 
incorporated into ‘other’ income). The relative decline is, however, modest. Table 5 details year-specific perfor-
mance results for our preferred (‘winning’) ensemble approach.

performance evaluation, out of sample dataset (pSID). To further validate the performance of the 
ensemble models, we next evaluate model fit through an independent source of wealth data – the 2019 wave of the 
Panel Study of Income Dynamics (PSID). The PSID provides an identical set of variables to those used to build 
the models that are trained from the SCF. There is one important difference, however – the PSID definition of net 
wealth excludes the value of pensions while SCF includes it62. Figure 7 plots PSID households’ observed wealth 
levels against the levels of wealth predicted by our models. These plots show performance patterns that are con-
sistent with what we observed in the test sample: strong performance in predicting positive wealth and somewhat 
less so for negative wealth. By comparison to the SCF test sample, the PSID-based estimates exhibit higher abso-
lute error levels for positive and negative wealth (RMSE = 1.26 and RMSE = 1.75 respectively). This discrepancy 
is to be anticipated given that the PSID excludes pensions in its definition of net wealth.
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Fig. 6 Test sample performance (SCF), positive and negative wealth stacked ensembles. Separately for 
households with positive and negative wealth in the SCF test-sample data (N = 5,341), this figure describes the 
correlation between actual and predicted values of net wealth. Root mean squared error (RMSE) for positive 
wealth estimate equal to 0.99 and the correlation coefficient is 0.94. RMSE for negative wealth estimates is 1.48 
and the correlation coefficient is 0.38.

Year Brier Kappa AUC Accuracy TPR TNR RMSE ( + ) RMSE (−)

2010–2020 0.058 0.426 0.901–0.921 0.887 0.910 0.637 0.999 1.480

1990–2000 0.058 0.408 0.891–0.913 0.894 0.925 0.554 1.002 1.497

1980 0.063 0.379 0.878–0.901 0.861 0.881 0.653 1.058 1.432

1970 0.063 0.389 0.877–0.9 0.860 0.876 0.685 1.151 1.445

1960 0.063 0.384 0.873–0.897 0.859 0.876 0.679 1.206 1.438

Table 5. Performance of ensemble combination by year. Note: Using performance metrics described in the 
text, this table compares performance of the ensemble combinations across different years, corresponding to 
different variable sets available in the Census/ACS.
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Since PSID includes State identifiers, we can also assess variation in prediction errors across locations. For 
each ensemble, we run a simple linear regression model in which the prediction errors from our models are 
regressed on the state identifiers. For binomial ensemble models, the dependent variable is a binary indicator for 
whether prediction is accurate or inaccurate; for ensembles predicting levels of positive or negative wealth, the 
dependent variable is the residual difference between the predicted and the observed values. In these analyses, 
we find that states explain relatively little of the overall variation in erroneous predictions (adjusted-R-squared 
of less than 1%). Since neither the PSID nor any other known publicly-available data on wealth offers geographic 
identifiers below the level of an individual state, we are unable to directly assess our estimates of inequality 
at finer spatial scales. One of the main contributions of the GEOWEALTH-US database will be in enabling 
research into wealth dynamics at these finer spatial scales.

Validation against aggregate published measures of wealth inequality. As a further validation 
exercise, we compare aggregates of our imputed Census wealth data against widely-recognized published data at 
national and state levels.

Regarding national estimates, Fig. 8 compares our ‘Ensemble’ approach, visualized in orange, against other 
measures of the share of national wealth held by a specific top percentile of wealth holders. Across each of the 
four panels, the other series include: ‘SCF’, estimated directly from the Survey of Consumer Finances; ‘SCF w/
Forbes’, derived from a combination of the SCF and the Forbes 400 list; ‘PSZ (2018)’, referring to the estimates of 
Piketty, Saez and Zucman’s from the distributional national accounts framework24; ‘SZ (2020)’, an updated dis-
tributional macroeconomic accounts series40; and, finally, ‘SZZ (2023)’, which uses income-capitalized estimates 
based on administrative tax data from Smith, Zidar and Zwick44.

Figure 8 indicates that the our estimates of top wealth shares, from the ensemble approach, compare favora-
bly to the main alternatives. There is a strong relationship between our top wealth share estimates and those 
derived from the national distributional accounts method. For the share of wealth held by the top one percent, 
this consistency extends to the SCF, as well as the combined SCF and Forbes 400. When we consider the very 
wealthiest households, our model produces estimates that appear increasingly distinct from the SCF, and to 
some extent both the SCF augmented by the Forbes ‘rich list’ and Smith, Zidar and Zwick44. Such differences 
may reflect the advances made by our approach in estimating how wealth is distributed among the very wealthi-
est households (see Steps 2 and 3 above). They may also result in part from differences in the units of observation 
under study: while SCF-based estimates, including ours, are focused on households, the national distributional 
accounts methods are based on (synthetic) individuals.
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Fig. 7 Out of sample performance (PSID), positive and negative wealth stacked ensembles. Separately for 
households with positive and negative wealth in 2019 Panel Study of Income Dynamics (PSID) data, this figure 
describes the correlation between actual net wealth and predicted values using our ensemble model. Root mean 
squared error (RMSE) for positive wealth estimate equal to 1.26. RMSE for negative wealth estimates is 1.75.
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Over recent years, the U.S. Census Bureau’s Survey of Income and Program Participation (SIPP) – a nation-
ally representative survey tracking household economic outcomes and government program participation – has 
provided estimates of mean and median wealth at the state-level. We can thus compare our state-level estimates 
to those provided by SIPP. The scatterplots in Fig. 9 describe the relationship between SIPP state-level measures 
of mean and median wealth and our Census imputations in 2020. These measures are strongly correlated at both 
the mean (r = 0.86) and the median (r = 0.86). This high level of correspondence provides further validation for 
our imputed estimates, this time at a subnational scale.

Descriptive analysis. Having described the process to build the GEOWEALTH-US database29 and our 
external validation procedures, we conclude this article by presenting an initial overview of some of the key 
patterns in the dataset that can inform future research. We do so by focusing on two separate indicators of wealth 
inequality, one that captures wealth concentration within commuting zones and one that measures wealth differ-
ences between commuting zones.

To examine how wealth levels have changed across commuting zones over the past 60 years, Fig. 10 maps 
average wealth in 1960 and 2020. Given the large increases in average wealth over the study period, we standard-
ize average wealth into period-specific z-scores, which have a mean of zero and a standard deviation of one. This 
metric provides a relative indication of how wealthier and poorer commuting zones deviate from the average 
for each period.

In 1960, commuting zones in traditional urban and industrial regions of the country exhibit the highest 
average levels of wealth. High wealth level are evident across the Northeast, the greater Chicago region, and in 
the Sunbelt in Southern California and Florida. These patterns closely track well known patterns of regional 
development in the early- to mid-twentieth century63.

While patterns of average wealth in 2020 bear some resemblance to those in 1960, several important dif-
ferences are evident. Specifically, the advantages of many once wealthy manufacturing regions have regressed 
toward the mean. This is particularly notable for the metropolitan areas around the Great Lakes such as Buffalo, 
Cleveland, Chicago, and Milwaukee. In their place, Pacific cities such as Seattle, Los Angeles, San Francisco, 
interior regions like Denver, and the major Texan metropolises have decidedly improved their relative wealth 
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Fig. 8 Comparing national top wealth share estimates across different measurement approaches. For six 
different measures, each panel tracks the share of total national wealth held by a specific top percentile of the 
wealth distribution. Across the panels, the different series are: ‘Ensemble’, in orange, which is the estimate 
generated using our ensemble model; ‘SCF’, estimated from the raw Survey of Consumer Finances;‘SCF w/
Forbes’ which adds the Forbes 400 to the raw SCF; ‘PSZ (2018)’ which makes use of Piketty, Saez and Zucman’s 
estimates using the distributional national accounts framework24; ‘SZ (2020)’ which is an updated distributional 
macroeconomic accounts series generated by Saez and Zucman40; and ‘SZZ (2023)’ which uses income-
capitalized estimates based on tax data from Smith, Zidar and Zwick44.
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positions. Although the South as a whole continues to lag the rest of the country in terms of average wealth, 
Savannah (GA), Raleigh (NC), and Nashville (TN) are examples of Southern commuting zones that have seen 
substantial increases in their average wealth levels.

As noted above, the changing geography of wealth over this period is also characterized by an intensification 
of inequality between regions. This is evident in Fig. 11, where we plot the trajectories of relative wealth for com-
muting zones across each decade. Most clearly, this figure exhibits a pattern of fanning out, implying rising levels 
of inter-regional wealth inequality since 1960. This means that the average wealth gaps between the wealthiest 
commuting zones and the average commuting zone are significantly larger in 2020 than they were in 1960. For 
example, Bridgeport and Chicago, which were among the top five wealthiest commuting zones in 1960, had 
average wealth levels that were roughly 4 standard deviations above the average. In 2020, however, the average 
wealth levels of San Jose and San Francisco - two of the wealthiest commuting zones today - are 5 standard devi-
ations above the mean. Preliminary investigation of the GEOWEALTH-US database therefore reveals that the 
wealthiest regions have been pulling away from the rest of the country since 1960.

Finally, we turn our attention to the changing dynamics of wealth inequality within regions over time. 
Figure 12 maps the Gini coefficiens (z-scores) for wealth inequality within commuting zones in 1960 and 2020, 
revealing patterns of change and stability. In 1960, intra-regional wealth was high throughout the South, low in 
the Midwest and Northern Plains regions, and more mixed along the coasts. The main change to this pattern 
up to 2020 has, however, been the dramatic rise in inequality in the Midwest and Plains regions. While the 
South persists as a region that broadly exhibits high inequality, central and formerly manufacturing-dependent 
Midwestern regions have seen a substantial worsening of inequality over this period. This convergence in terms 
of inequality levels between the South and the Midwest is consistent with findings from other studies of earnings 
inequality and intergenerational mobility7,8.

The GEOWEALTH-US database29 is thus a data compendium that can advance the frontier of social science 
of topics relating to economic inequality and prosperity. Over recent years, our ability to study long-term pat-
terns of spatial inequality has been greatly enhanced through an ongoing revolution in historical data. Recent 
studies have generated databases that track leading indicators of inequality such as urbanization, patenting, 
incomes, and intergenerational mobility within consistent spatial units over long periods of time7,64–68. In the 
same vein, complementing new work on the geography of wealth during 19th and early 20th century69, the 
GEOWEALTH-US database provides a major step toward understanding the long-term spatial dynamics of 
wealth inequality.
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Fig. 9 US state-level comparisons, mean and median wealth from imputed estimates and SIPP (2020). Panels 
compare state-level mean and median wealth, using estimates generated from our ensemble model and those 
obtained from the 2020 Survey of Income and Program Participation (SIPP).
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Usage Notes
We view this dataset as a necessary first step towards the study of spatial wealth disparities. While one would 
ideally want directly observed, geocoded data on household wealth in the United States and how it has changed, 
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Fig. 10 Average wealth levels across commuting zones, 1960 & 2020. For 1990-vintage commuting zones (CZs) 
as in Tolbert and Sizer73, this figure maps mean wealth levels in 1960 and 2020. Local average wealth levels are 
converted to z-scores such that the distribution has a mean of zero and a standard deviation equal to one.
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Fig. 11 Relative wealth over time, U.S. Commuting Zones. Each line in this figure represents a particular U.S. 
Commuting Zone (CZ), defined according to 1990 boundaries as per Tolbert and Sizer73. In each observed year, 
the Y-axis measures the ratio of average wealth for a CZ to the all-locations average wealth.
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such data are unlikely to become widely available in the near future. The only known precursor to the data 
described in this article is Chenevert et al.70 which describes preliminary attempts to build State-specific meas-
ures of wealth inequality using regression-based imputation. GEOWEALTH-US data29 could serve as a founda-
tion to explore a wide range of questions on the causes and consequences of changing spatial patterns of wealth 
and wealth inequality, which heretofore have been difficult to explore. Just as there is a growing literature on 
community and spatial effects of differences in income and poverty, these data provide a basis to answer related 
questions around wealth.

Potential users of these data should note that, although the data underlying this study enumerate character-
istics of human subjects and their households, they have been fully anonymized by the agencies responsible for 
the data. The study nonetheless obtained approval from the Social Sciences, Humanities & Education Research 
Ethics Board at the University of Toronto.

Code availability
All replication code is available at https://github.com/jhsuss/wealth-inequality.
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