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High-resolution annual Dynamic 
dataset of Curve Number from 2008 
to 2021 over Conterminous United 
States
Qiong Wu  1,2,3 ✉, Jia Yang3, Cunxiong Ji4 & Shanmin Fang3

the spatial distribution and data quality of curve number (CN) values determine the performance of 
hydrological estimations. However, existing CN datasets are constrained by universal-applicability 
hypothesis, medium resolution, and imbalance between specificity CN tables to generalized land use/
land cover (LULC) maps, which hinder their applicability and predictive accuracy. A new annual CN 
dataset named CUSCN30, featuring an enhanced resolution of 30 meters and accounting for temporal 
variations in climate and LULC in the continental United States (CONUS) between 2008 and 2021, was 
developed in this study. CUSCN30 demonstrated good performance in surface runoff estimation using 
CN method when compared to observed surface runoff for the selected watersheds. Compared with 
existing CN datasets, CUSCN30 exhibits the highest accuracy in runoff estimation for both normal and 
extreme rainfall events. In addition, CUSCN30, with its high spatial resolution, better captures the 
spatial heterogeneity of watersheds. this developed CN dataset can be used as input for hydrological 
models or machine learning algorithms to simulate rainfall-runoff across multiple spatiotemporal 
scales.

Background and Summary
The Curve number (CN) method, initially developed in 1954 by the U.S. Soil Conservation Service (now known 
as USDA NRCS)1,2, serves as an important empirical approach to estimating surface runoff. As a derivative of 
the CN method, CN value is usually developed based on a combination of physical conditions, including the 
hydrologic soil group (HSG) and the land use/land cover (LULC) characteristics within a specific area of inter-
est3. Despite the persistent doubts about the effectiveness of the CN method, CN values have gradually evolved 
into the primary control factor of the pervasive surface runoff simulation approach worldwide2,4–7.

In hydrological estimation, CN values are extensively used by hydrological models (i.e., SWAT, APEX, 
HEC-HMS, SWMM)8–13. They have proved to be an effective way of achieving satisfactory accuracy in the esti-
mation of different hydrological processes and conditions14–16. Additionally, CN values now serve as crucial 
input variables in machine learning approaches for simulating hydrological processes17–21. Given that the CN 
value has played a significant role in various aspects of hydrological modeling for many years, the accurate deter-
mination of CN values holds great potential for enhancing the simulation accuracy of hydrological processes in 
the future.

Driven by the variations in soil hydrological properties, land use, agricultural practices, and antecedent 
rainfall conditions, CN values exhibit significant spatial variations, which further determine the distribution 
of runoff generation3,22. The spatial distribution of CN values is crucial for developing hydrological models23. 
Consequently, enhancing the spatial resolution and accuracy of the CN dataset is an effective way to improve 
the performance of hydrological predictions. Recently, a global Curve Number dataset (GCN250) has emerged, 
offering CN values at a resolution of 250 meters globally5. While GCN250 marks a significant advancement, its 
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moderate resolution hinders the effectiveness of regional hydrology process simulations, particularly in small 
to medium size watersheds. A higher-resolution CN map, essential for detailed hydrological modeling, remains 
unavailable. With the release of multiperiod fine resolution and high-quality land use/land cover (LULC) prod-
ucts, thematic maps, and HSG databases for conterminous United States (CONUS)24,25, the accurate quantifi-
cation of CN values in the CONUS at a higher resolution became achievable. Besides, the topographical slope, 
which is neglected in the derivation of CN maps5,26, requires to be considered for its significant potential to affect 
CN values27. To address the growing demand for accurate assessment of the spatial heterogeneity in hydrolog-
ical processes, a finer resolution CN dataset that affects the quality and credibility of distributed hydrological 
predictions is urgently needed.

Neglecting temporal changes, even high-quality spatial CN datasets could lead to considerable errors in 
hydrologic responses to precipitation events, as the rainfall-runoff relationship dynamically changes over 
time28–30. Previous studies often estimated a single CN map or applied the static CN values in hydrological 
estimation26,31,32. However, the applicability of CN datasets without temporal variations has been questioned 
due to their universal-applicability hypothesis2,4,33. The static functional form of the CN dataset is considered a 
significant impediment to its adaptability33.

The temporal variation of CN patterns is controlled by antecedent runoff conditions and Land Use/Cover 
Change (LUCC). Several efforts have been made to develop dynamic CN values5,34,35. The dynamic variation of 
CN values caused by Antecedent Runoff Conditions (ARC) is classified as dry, average, and wet5,34. A dynamic 
CN dataset was developed by regression analysis integrated with the remotely-sensed Normalized Difference 
Vegetation Index (NDVI) for four small watersheds in Kansas State35,36. This approach is more inclined to reveal 
vegetation changes by adjusting CN values based on phenology, but it has failed to account for LUCC, specif-
ically alterations in the hydrologic soil-cover complex. Given the intensification of human activities in recent 
years37–39, instances of LUCC significantly altering CN values have been scarcely reported. Therefore, it remains 
crucial to create a dynamic CN dataset that comprehensively captures the temporal variability resulting from 
both antecedent runoff conditions and LUCC.

Limitations in existing CN datasets also arise from the imbalance between detailed LULC classifications CN 
Tables in the National Engineering Handbook Part 630 (NEH-630)40 and the more generalized classifications 
in remote sensing LULC products (such as the European Space Agency Climate Change Initiative Land Cover 
Project). Therefore, this disparity introduces considerable uncertainties in existing CN datasets at both national 
and global levels5,26,31,32. With the release of more advanced land cover datasets such as the National Cropland 
Data Layer (CDL), the National Forest Type Dataset (NFTD), and the National Land Cover Database (NLCD) 
in CONUS, the precision of CN values assigned by the NEH-630 CN table is expected to significantly improve.

In this study, we developed the CUSCN30 dataset to characterize the inter-annual changes in CN values 
across the CONUS from 2008 to 2021. This dataset was generated at a spatial resolution of 30 m and incorporates 
a wide range of LULC categories derived from various advanced datasets. We also analyzed the impact of LUCC 
on CN values. This study provided a valuable CN dataset for the CONUS, with the primary goal of enhancing 
the prediction accuracy of hydrological processes and hydrologic modeling. As an essential dataset, CUSCN30 
is expected to be a valuable tool for simulating hydrological processes and advancing the field of hydrology in 
the future.

Methods
Data collection. We compiled various gridded datasets in the CONUS, including LULC, HSG, and digital 
elevation model (DEM), to develop the CUSCN30 dataset. The LULC was from three sources: CDL, NFTD, and 
NLCD. Specifically, the CDL, as a crop-specific annual land cover data layer for the CONUS using moderate res-
olution satellite imagery and extensive agricultural ground (Boryan et al.) 201141. The NFTD dataset, including 
various forest types across the CONUS, was collaboratively developed by the US Forest Service (USFS) Forest 
Inventory and Analysis (FIA) program and the Geospatial Technology and Applications Center (GTAC). The 
dataset delineates 28 distinct forest type groups within the CONUS42. The NLCD databases were produced by the 
Multi-Resolution Land Characteristics (MRLC), a group of federal agencies that coordinate and generate consist-
ent and relevant land cover information at national scale for a wide variety of environmental, land management, 
and modeling applications43.

The HSG data, obtained from 30 m resolution Soil Survey Geographic Database (SSURGO) database, pro-
vides detailed soil information across the United States. It has been collected over a century by the National 
Cooperative Soil Survey partnership44. It is noteworthy that SSURGO has missing data in some areas within the 
CONUS. To address this, the database Global Hydrologic Soil Groups (HYSOGs250m) for USDA-based CN 
runoff modeling was resampled into 30-m grids as supplementary datasets45. The land slope was developed from 
the 30-meter DEM data from the Shuttle Radar Topography Mission (SRTM)46.

Furthermore, we estimated watershed-level CN value based on streamflow and precipitation datasets, 
compiled from the United States Geological Service (USGS) National Water Information System (NWIS)47. 
The Hydrologic Units Code 12 (HUC12) watershed boundary data was extracted from the USGS Watershed 
Boundary Dataset (WBD)48. To compare the CN results, we also acquired the GCN250 dataset from Hadi et al.49.

CN mapping process. Figure 1 illustrates the data processing scheme employed to generate the spatial 
CN distribution for the CONUS from 2008 to 2021. This CN mapping process involves five key steps. Prior to 
these processes, all datasets were preprocessed to ensure data integrity, coordinate systems uniformity, and pixel 
alignment.

Step 1: Hydrologic soil-cover complex. The annual LULC dataset was generated by overlap analysis of culti-
vated land types from CDL (14 scenes), NFTD (1 scene), and NLCD (5 scenes) during 2008 to 2021. To address 
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overlapping and inconsistent types, a priority order of LULC datasets was established as CDL > NFTD > NLCD. 
The CDL data contains 107 types of crops, predominantly corn, soybean, fallow/idle cropland, winter wheat, and 
alfalfa. The NFTD includes 28 forest groups such as western white pine group, oak/pine group, maple/beech/
birch group, and tropical hardwoods. Uncovered areas were filled using the land cover data in the NLCD data-
bases. And HYSOGs250m dataset was used to fill the missing data of SSURGO database. Dual HSGs (A/D, B/D, 
and C/D) were assigned to hydrological group D, following the recommendations of Jaafar et al.5, Victor et al.50, 
and Van et al.51.

Step 2: CNLUT mapping. The CNLUT was created by combing the CN table from NEH-6303 and the NLCD52 
table, based on the hydrologic soil-cover complex data obtained in Step 1 of the study. In accordance with the 
original CN tables, a wide array of specific LULC classifications were consolidated into 28 representative types. 
The combination of these LULC representative types and 4 HSGs (HSGs: A/B/C/D) resulted in a total of 112 
distinct hydrologic soil-cover complex classes (Table 1). This table also provides a comprehensive overview of 
the CN values associated with each hydrologic soil-cover complex.

Step 3: Assigning CN values. In order to create the annual CN maps across CONUS from 2008 to 2021, CN val-
ues were assigned to the annual hydrologic soil-cover complexes using references from the CNLUT developed in 
Step 2. It is worth noting that despite the presence of 112 categories of hydrologic soil-cover complexes, only 46 
unique CN values (CNraw) were derived from the CNLUT due to the duplicated values, as indicated in Table 1. 
This CN value assignment process ensured that the annual LUCC was thoroughly considered and accurately 
reflected in the CN values.

Step 4: Slope-adjusted. Given the potential influence of slope on CN values in finer resolution mapping. 
Therefore, we employed a slope-adjusted formulation of CN values (CNslope), to incorporate terrain variations53. 
The equation is expressed as:

α
α

= . + .
+ .

CN CN 322 79 15 63( )
323 52slope raw

where the slope α (m/m) is considered valid within the range of 0.14 to 1.4 to remain consistent with experi-
mental values. It’s important to note that while CNslope values should never exceed 100, CN values for open water, 

Fig. 1 Data Processing Processes of CUSCN30.
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initially set at 100 for all HSG types, exceeded this limit when the slope α exceeded 0.05. To address this issue, 
any CN values exceeding the limit were adjusted down to 100.

Step 5: ARC. To accommodate climate variability and seasonal fluctuations, we developed three ARC scenarios: 
dry (ARC-I), average (ARC-II), and wet (ARC-III). We utilized the cumulative distributions of CN values for dif-
ferent ARCs: 10% for ARC I, 50% for ARC II, and 90% for ARC III, following the Grabau et al.54 and Donald et al.40.  
The CN values for the ARC-I (CNARCI) and the ARC-III (CNARCIII) scenarios were calculated based on the CN 
values established for ARC-II (CNARCII, following the methodology outlined in refs. 12,55.

=CN CNslopeARCII

= −
× −

− + . − . × −
CN CN

CN
CN CN

20 (100 )
100 exp(2 533 0 0636 (100 ))ARCI ARCII

ARCII

ARCII ARCII

CN CN CNexp(0 00636 (100 ))ARCIII ARCII ARCII= × . × −

Validation. The ‘observed’ surface flow is calculated using the USGS Groundwater Toolbox, based on the 
NWIS streamflow and precipitation dataset from 2008 to 2021. Specifically, the hydrograph separation meth-
ods PART and HySEP (including HySEP-Fixed, HySEP-Slide, and HySEP-LocMin methods) are employed. 
Watershed boundaries were aligned with HUC12 data, and any sites not conforming to the HUC12 boundary 
were delineated using ArcGIS Hydrology Tools based on 30 m SRTM data. The area of all watersheds is required 
to be within an area range of 1 to 500 mi2, due to the limitation of the baseflow separation procedure56. The 10 
watersheds represent a wide geographic and climate distribution within the CONUS (Supplementary Table 1 and 
Fig. 2) and were selected for validating our developed CN data.

LULC

HSG

A B C D

Fair row crops 70 80 87 90

Good row crops mix water 85 90 93 95

Fair CBR 62 75 83 87

Fair small grain 64 76 84 88

Fair CBR mix fair small grain 63 75 84 88

Good meadow 30 58 71 78

Fallow bare soil 77 86 91 94

Open Water 100 100 100 100

Perennial ice/snow 100 100 100 100

Developed, open space 45 65 76 82

Developed, low intensity 60 74 82 86

Developed, medium intensity 77 85 90 92

Developed, high intensity 92 94 96 96

Barren land 77 86 91 94

Brush mixture 48 67 77 83

Pasture 49 69 79 84

Woody wetlands 78 78 78 78

Emergent herbaceous wetlands 85 85 85 85

Poor row crops 72 81 88 91

Fair row crops C 68 77 83 87

Poor row crops mix fair small 
grain SR 67 78 85 89

Poor row crops mix fair CBR 66 77 85 89

Fairly good wood 33 58 72 78

Poor wood 45 66 77 83

Fair wood 36 60 73 79

Good wood 30 55 70 77

Table 1. The specific information of CNLUT, including LULC, HSG, and the referred CN values (adapted from 
NEH-630 and table NLCD). Note: CBR means close-seeded or broadcast legumes or rotation meadow; crop C 
means the contoured crop; small grain SR means straight row of small grain.
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To get the watershed CN value, we employed the rainfall-runoff relationship method as described by Donald et al.40.  
For each event rainfall P, the general conservation of mass statement for a rainstorm is:

P I F Qa= + +

Where P is the rainfall depth (mm), Ia is the initial abstraction of the rainfall (mm), F is the cumulative infil-
tration excluding Ia (mm), and Q is the surface runoff (mm). To establish a proportionality between the runoff 
to rainfall depths ratio and the infiltration depth to potential abstraction ratio, the equation is converted into:

−
=Q

P I
F
Sa

λ=I Sa

Where λ is the initial abstraction ratio, set as 0.2 for this study; S is the potential maximum retention or infiltra-
tion (mm) according to λ. The original formula is defined as follows:

=
− .

+ .
≥ .Q

P S
P S

for P S
( 0 2 )

0 8
0 2

2

Q for P S0 0 2= < .

Here, S is obtained by the following equation:

= + − +S P Q Q PQ5( 2 (4 5 ) )2 1/2

and CN represents the ‘observed’ CN value at the watershed scale, calculated as:

CN S25400/ (254 )= +

Subsequently, we calculated the average CN for each watershed by aggregating the pixel-level CN value from 
our developed dataset. This ‘observed’ CN was then compared with CUSCN30 data to assess the accuracy.

Data Records
The CUSCN30 dataset between 2008 and 2021 is available at Zenodo57 (https://doi.org/10.5281/
zenodo.10474320). It’s important to note that the CUSCN30 dataset is published as a fully open dataset with 
CC-BY licenses.

Fig. 2 Study areas of the Continental United States and the selected watersheds and USGS stations to validate 
the developed curve number data.
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Each zip file contains the CN data for a specific year at a 30-m spatial resolution in TIF format. To access the 
data for a particular year, you can download the corresponding zip file and use unzip software as needed.

technical Validation
Comparison between CUSCN30 with measurements. CN values. To illustrate the accuracy of 
CUSCN30, we compared the CN values derived from observed CN, CUSCN30, and GCN250 datasets across 10 
small watersheds in the CONUS. The average of observed CN values, obtained from 4 different methods (PART, 
fixed-interval HySEP-Fixed, sliding-interval HySEP-Slide, and local minimum HySEP-LocMin), are presented in 
Supplementary Table 2. The variance in observed CN among these methods at each site ranged from 0.01 to 1.45, 
indicating a strong consistency in the observed CN estimates derived from the NWIS dataset.

Generally, the CN values obtained from CUSCN30 were lower compared to observed CN (Fig. 3a,b), indicat-
ing an underestimation of CN values. This finding is consistent with the previous studies32. For stations 1115170, 
8178050, 8178700, 5527800, and 8178700, CUSCN30 provided accurate CN values, as observed CN values 
fell within the range of wet (ARCIII) to dry (ARCI). However, the other sites demonstrated lower estimations 
compared to the observed CN. The underestimation of CUSCN30 CN against observed CN can be attributed to 
the lower CN value associated with ‘Fairly good wood’ in the modified Curve Number look-up table (CNLUT) 
as Table 1. Similar CN underestimations in forestland areas have also been reported by Tedela et al.58 in Eastern 
United States, and by Lal et al.59 in India. Furthermore, as reported by Donald et al.40, the application of the CN 
method in forested areas characterized by HSG A, B, and C is a matter of concern.

River flow. The observed Q value and estimated Q based on CUSCN30 are shown in Fig. 3b. The analysis 
involved a dataset of 23 randomly chosen events for each station. Most of observed Q values fall within the 
range encompassed by CUSCN30 ARCI to ARCIII. For lower observed Q values, the estimated Q values closely 
align with the observed Q values, indicating a better simulation performance. Conversely, for higher observed 
Q values, the CN simulation displays more pronounced variability across events. But these variations typically 
fall within the area of ARCI and ARCIII.

Similar to the result of observed CN values, the Q values from stations 1115170, 8178050, 8178700, 5527800, 
and 8178700 showed a high level of accuracy. Conversely, watersheds with underestimated CN values, such as 
stations 2111180, 3479000, 2111180, and 9419740, are more likely to exhibit underestimated runoff. Notably, 

Fig. 3 Observed and CUSCN30 estimated values from the 10 watersheds: (a) the blue boxplots of observed 
curve number (CN) and estimated CN values of CUSCN30 in dry, average, and wet, (b) estimated surface flow, 
observed surface flow, and precipitation for the random selected events.
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7Scientific Data |          (2024) 11:207  | https://doi.org/10.1038/s41597-024-03044-2

www.nature.com/scientificdatawww.nature.com/scientificdata/

these sites are predominantly covered by ‘Fairly good wood’, with land cover percentages ranging from 66.9% to 
90.1% (Supplementary Table 1).

Comparison between CUSCN30 and other CN datasets. Data resources and methodologies. Table 2 
shows the basic information of three CN datasets: Zeng26, GCN250, and our CUSCN30, which are used for com-
parative analysis in this study. For input HSG data, the Harmonized World Soil Database (HWSD) used by Zeng 
combines regional and national updates of soil information worldwide with the content from the FAO-UNESCO 
Soil Map of the World. And HYSOGs250m dataset employed in the GCN250 CN datasets was generated using 
USDA-based soil texture classes, depth to bedrock, and depth to groundwater table60. In contrast, the Soil Survey 
Geographic Database (SSURGO) was gathered by direct field observations61.

As to input LULC data, the MCD 12Q1 is obtained from the Moderate Resolution Imaging Spectroradiometer 
(MODIS) satellite, and ESA CCI-LC used in GCN250 provided by the European Space Agency’s (ESA) Climate 
Change Initiative (CCI). The CDL and NLCD are derived from the Landsat satellite62,63. However, it’s important 
to note that the LULC data overlap from CDL, NFTD, and NLCD, which offer a higher resolution, is limited to 
the U.S.

In terms of CN table mapping, the lookup table from Zeng was generated based on the CN lookup tables 
from the USDA handbook and National Engineering Handbook Section 43,64. Notably, NEH-4, which under-
went an update in 2004 and evolved into NEH-630, has been embraced by both GCN250 and CUSCN30 mod-
els. Owing to its more detailed LULC classifications, CUSCN30 incorporates an additional CN lookup table 
specifically for NLCD. The improved consistency between the CN lookup tables and LULC within CUSCN30 
potentially enhances its accuracy. While the ARC methodology proposed by Hjelmfelt et al.65 is a component 
of NEH-630, the version developed by Arnold et al.12 and Loucks et al.55 see broader use in the Soil and Water 
Assessment Tool. In addition, CUSCN30 accounts for slope adjustment and LUCC, further enhancing its 
applicability.

CN values of watersheds. The CN value of the CUSCN30 was compared with the previous global CN dataset 
developed by Zeng et al. (2017) and GCN2505 as reported in Table 3. Only three basins were selected due to the 
unpublished CN map from Zeng. However, the Mississippi and Colorado river basins were partially excluded, 
covering 98.80% and 91.45% of their total areas respectively, due to the constraints of the CONUS boundary. 
The CUSCN30 CN value for the Sacramento River Basin was marginally lower by 0.81% and 1.08% compared 
to CN values from Zeng and GCN250. This discrepancy primarily results from the differences in the LULC and 
HSG datasets. The CUSCN30 CN values for the Mississippi and Colorado river basins were 4.97% and 10.79% 
higher than those in the study of Zeng et al.26 but 1.37% to 1.84% lower than those in GCN250, respectively. The 

Zeng CN GCN250 CUSCN30

Basic information

— Available online

Global CONUS

Not mentioned 250 m 30 m

ARCII ARCI, ARCII, ARCIII

Single temporal 
(2013) Single temporal (2015) 14 annual (from 2008 to2021) datasets that consider the 

LUCC of each year

Input Data

HSG The Harmonized World Soil Database 
(HWSD) v1.2 (1000 m) HYSOGs250 (250 m)

SSURGO (domain, 30 m) 
and HYSOGs250 (fill gap, 
250 m)

LULC The Land Cover Yearly L3 Global 500 m 
(MCD 12Q1) of 2013

ESA CCI-LC 2015 
(300 m)

Overlap from CDL (30 m), 
NFTD (250 m), and NLCD 
(30 m)

Methodology

CN Table Proposed by Hong and Adler (2008) Part 630 Hydrology land 
cover classes (NEH-630)

Part 630 Runoff curve 
numbers for urban areas, 
cultivated agricultural lands, 
other agricultural lands 
(NEH-630), CN for NLCD

ARC — Proposed by Hjelmfelt 
(1991)

Proposed by Arnold (1994) 
and Arnold et al. (1990)

Slope Adjusted — Proposed by Huang et al. (2006)

Table 2. Basic information of three CN datasets.

Watershed Proportion

Zeng GCN250 CUSCN30

CN
CN 
(dry)

CN 
(average)

CN 
(wet)

CN 
(dry)

CN 
(average)

CN 
(wet)

Mississippi 98.80% 72 59.3 77 89.3 57.55 75.58 89.08

Colorado 91.45% 66.5 56.5 74.7 87.6 55.32 73.68 87.96

Sacramento 100.00% 74.1 56.2 74.3 87.4 55.12 73.51 87.85

Table 3. The average CN value of Mississippi, Colorado, and Sacramento basins in 3 CN datasets.
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differences in the CN values for dry and wet conditions between CUSCN30 and GCN250 are attributed to the 
different retrieved tables8,40.

Difference between CUSCN30 dataset and GCN250. Predicted runoff. To investigate the differences 
in CN values between CUSCN30 and GCN250 datasets, Fig. 4a shows a comparison of estimated Q values. These 
estimated Q values are calculated based on the respective CN values from each dataset under their corresponding 
ARC. A total of 230 events were selected for the analysis, which was conducted on a set of random selected with 
23 events for each station. These events offer a comprehensive view of hydrological dynamics, covering a spec-
trum of observed Q values from approximately 0 to 120 mm and simulated Q values ranging up to 160 mm. For 
CUSCN30, the R² value was 0.73, with an F-statistic of 629.30, and the Nash-Sutcliffe Efficiency (NSE) was 0.71. 
In comparison, for GCN250, the R² value was 0.70, with an F-statistic of 538.13, and an NSE of 0.68. The result 
indicated that CUSCN30 dataset slightly outperforms GCN250 in Q prediction.

To analyze the estimated Q values from CUSCN30 and GCN250 data under extreme rainfall events, all 
records that P exceed 80 mm from 10 watersheds are shown in Fig. 4b. Generally, the simulated Q is higher 
than the observed Q values over these events. As P increases, there is a corresponding rise in observed Q, but 
the increase in the estimated Q from CUSCN30 and GCN250 is more pronounced. Notably, the estimated Q 
from GCN250 significantly exceeds that from CUSCN30, suggesting that CUSCN30 provides more accurate 
estimates. Additionally, the NSE improved from −5.06 to −3.34, and the Root Mean Square Error (RMSE) 
decreased from 63.96 to 54.24 when using the CUSCN30 dataset. Hence, CUSCN30 demonstrated an improved 
performance in simulating river flow during extreme rainfall events.

Spatial pattern. The CUSCN30 dataset provides a higher spatial resolution compared to the GCN250 (Fig. 5). 
Notably, the CN values showed a significant disparity between the two datasets in watershed 3456500 (Fig. 5e,f). 
In the CUSCN30 dataset, CN values in the southwest part of the watershed 3456500 were dominated ranging 
from 30 to 40. In contrast to the GCN250 dataset, these values were considerably higher, ranging from 50 to 60. 
Watersheds 2111180 and 3568933 exhibited a similar pattern; in the CUSCN30 dataset, CN values spanned from 
30 to 70, whereas in GCN250, they ranged from 70 to 80. In contrast, in watershed 9419740, the CN values in 
CUSCN30 are higher than those in GCN250.

Fig. 4 Comparison of the estimated surface flow from CUSCN30 and GCN250 data with observed surface 
flow: (a) normal precipitation events based on randomly selected. (b) extremely precipitation events, when 
precipitation exceeds 80 mm.
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The primary cause of the discrepancy between the two CN datasets is attributable to differences in the HSG 
dataset. SSURGO data are presented in Fig. 5c,g,k,o,s, and HYSOGs250m data in Fig. 5d,h,l,p,t. There is a sig-
nificant contrast evident between these two datasets. In the case of watershed 5590050, SSURGO identified 
half of the area as HSG D, whereas HYSOGs250m classified the same area into group C. Similarly, in watershed 
9419740, HSGs A and D predominated in CUSCN30, in contrast to HYSOGs250m which classified it as HSGs B 
and C. The minimum CN value linked to HSG A was offset by the maximum value attributed to HSG D, result-
ing in a small difference in the average values between the two datasets. In terms of CN value ranges, SSURGO 
demonstrated a broader diversity in HSGs (A, B, C, D) compared to HYSOGs250m (dominated by HSGs B, C).

Fig. 5 The CN values of CUSCN30 and GCN250 (Legend A) with source dataset of SSURGO and HYSOGs250m 
(Legend B) from 5 watersheds.
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temporal and Spatial variations of CN from 2008 to 2021. CN variation across CONUS. To illus-
trate the variation of the CN map across the CONUS, the coefficient of variation (CV) and ΔCN was used to 
highlight the changes in CN between 2008 and 2021. Figure 6a showed that only 46.67% of the area remained 
unchanged (blank area), while CV in the other areas ranged from 0.00% to 63.58%. Most of the changed areas 
(72.6%) have a small change with CV in the range between 0.00% to 5%. The maximum CV is 63.58%. The areas 
with CV in the ranges of 5–10%, 10–20%, 20–30%, 30–40%, 40–50%, and 50–63.58% represent 17.24%, 6.98%, 
1.35%, 1.32%, 0.50% and 0.01%, respectively, of the study domain CV varies between regions due to the different 
intensities of LUCC. The area close to the Great Lakes and the coastal zone of the CONUS experienced significant 
changes, while the central area exhibited relatively minor alterations.

Fig. 6 The variance of Curve Number (CN) in CUSCN30 dataset from 2008 to 2021: (a) CV, (b) △CN.
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The spatial distribution of ΔCN for the CUSCN30 is displayed in Fig. 6b. Calculations were based on data 
from only the initial and final years, revealing that 53.33% of CN values over CONUS have changed. The average 
CN of the CUSCN30 shows an insignificant increasing trend (0.10/10a) from 2008 to 2021, while in the majority 
of the area (84.3%), the average CN showed a decreasing trend. The majority of ΔCN values fell within the range 
of −5 to 0, accounting for 76.8% of the CONUS. Other ΔCN ranges, including −10 to −5, −10 to −5, −20 
to −10, and −69.88 to −20, represent 4.35%, 2.52%, 0.52%, and 0.18% of the CONUS, respectively. CN values 
increased in only 15.67% of the CONUS area, however, exhibiting a larger variation than the decreased area.

Fig. 7 The CV (Legend A), △CN (Legend B) with source LULC datasets of CUSCN30 and GCN250 (Legend C) 
from 5 watersheds.
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The impact of LUCC on the variation of CN. Figure 7 shows the CV, ΔCN, and different source LULC data-
sets of CUSCN30 for 2008 and 2021 across five selected watersheds. The majority of the LULC area changed 
in watersheds 3479000, 8178700, and 8178050 from 2008 to 2021, while partial changes were observed in 
watersheds 1115170 and 5527800. The average CV in watersheds was ranked as follows: 3479000 > 8178700 
> 8178050 > 1115170 > 5527800. However, the maximum CV in watersheds was ranked as follows: 3479000 
(55.84%) > 1115170 (48.56%) > 5527800 (42.12%) > 8178050 (25.65%) > 8178700 (25.26%). The maximum CV 
indicates the extreme values over the 14 years from 2008 to 2021, while the average CV denotes the typical rep-
resentation for each watershed. The CV ranges of each watershed are primarily in the range of 0–10, however, 
the larger CV also occurred due to the significant LUCC.

The average ΔCN across watersheds was ordered as follows: 3479000 > 8178700 > 8178050 > 5527800 > 11
15170. The maximum ΔCN for watersheds 1115170 and 3479000 were greater than others caused by high CN 
areas (open water, CN = 100 in all HSGs) changing to low CN areas (woodlands, CN = 30 in HSG A), and low 
CN areas (woodlands) converted into high CN areas (high intensity developed areas, CN = 92 in HSG A). The 
average ΔCN on watershed 5527800 was reduced, while other watersheds were increased. Due to the multiple 
hydrologic soil-cover complex mapping to a single CN value (i.e., woody wetland and fairly good wood with 
HSG D have the same CN value), some LULC changed from 2009 to 2020, but CN value remained unchanged.

CN methods in forest-dominated watersheds. The CUSCN30 CN values in watersheds 2111180, 
3456500, 3479000, and 3568933 were underestimated against observed CN values, raising doubts on the effec-
tiveness of CN values in forest-dominated watersheds (Section 3.1). For further validation, we selected estimated 
Q from CUSCN30, GCN250, and observed Q using a randomly chosen dataset consisting of 94 P events for each 
station (Fig. 8). Overall, the estimated Q from CUSCN30 was lower than the observed values, particularly in 
peak observed Q areas. Conversely, estimated Q of GCN250 adequately captures the peak observed Q but tends 
to overestimate Q in some cases. In terms of R2, estimated Q of CUSCN30 showed a decrease from 0.44 (with 
an F-statistic of 288.58) to 0.36 (with an F-statistic of 209.90) compared to GCN250. This suggests that GCN250 
outperforms CUSCN30 in terms of R². However, the NSE decreased from 0.28 to 0.04 when using GCN250, indi-
cating that, in terms of NSE, GCN250 is less effective than CUSCN30.

The performance disparities between CUSCN30 and GCN250 can be attributed to the source HSG dataset. 
Most of the wood areas of CUSCN30 are classified as HSGs A and B (CN = 33 and CN = 58, respectively). 
However, these same areas are categorized as HSGs C and D (CN = 72 and CN = 78, respectively) in GCN250.

In summary, regardless of whether CUSCN30 or GCN250 is used, achieving satisfactory results in estimating 
Q using the CN method in forest-dominated areas presents notable challenges, as indicated by lower R² and 
NSE values. Within the CUSCN30 dataset, Lower CN values generally perform well in most events but struggle 
to fit the variation in Q. Conversely, in the GCN250 dataset the higher CN values are effective in simulating 
extreme Q events but tend to overestimate in most events. Thus, GCN250 can yield better simulation results in 
forest-dominated watersheds with higher runoff. Otherwise, CUSCN30 may be more appropriate. However, 
we do not suggest directly applying the CN method combined with the CUSCN30 dataset for estimating Q in 
forest-dominated watersheds. This stance is supported by findings from previous research40,58,59.

Limitations and uncertainties. The development of CUSCN30 relied on various datasets, with the 
accuracy of input data being a key factor influencing the error margin. The accuracy of the NLCD database is 
over 82%62,66, and the CDL dataset is over 87%67. However, the accuracies of other datasets, such as SSURGO, 
HYSOGs250, and NFTD, were not explicitly documented. SSURGO was reported as a superior soil dataset68–70, 
expected to be more accurate than HYSOGs250m in CONUS. Moreover, NFTD provided by the USDA Forest 
Service has been widely utilized as input data in many studies71,72.

Fig. 8 Comparison of the estimated surface flow using curve numbers from CUSCN30 and GCN250 data with 
observed surface flow based on randomly selected precipitation events.
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Regarding input LULC datasets, disparities exist in their resolution and satellite sources. The CDL and 
NLCD, derived from Landsat satellite62,63, provide a resolution of 30 meters. In contrast, the NFTD based on 
the MODIS data, has a resolution of 250 meters73. Although the Landsat and MODIS images have been fused in 
many studies and show good performance74,75, the distinct data sources inevitably introduce errors due to vari-
ations in sensors and spatial resolutions74,75. As for the HSG datasets, it’s worth noting that SSURGO’s data col-
lection only covers 91.47% of the CONUS. HYSOGs250m, which represented a great distinction from SSURGO, 
was employed to fill the gap. Similarly to LULC datasets, The merged HSG data face limitations due to inconsist-
ency between the two data sources.

Code availability
The code is publicly available at https://github.com/QiongWuChina/CUSCN30Python.
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