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Single-cell transcriptome 
sequencing of plant leaf expressing 
anti-HER2 VHH–FcK cancer 
therapeutic protein
Myung-Shin Kim  1,2,3,7, Seung-Won Lee  4,7, Kibum Kim5, Yerin Kim5, Hyunjoo Hwang5, 
Peter Hinterdorfer6, Doil Choi  1,2 & Kisung Ko  5 ✉

The transgenic plant is a promising strategy for the production of highly valuable biotherapeutic 
proteins such as recombinant vaccines and antibodies. To achieve an efficient level of protein 
production, codon sequences and expression cassette elements need to be optimized. However, the 
systematical expression of recombinant proteins in plant biomass can generally be controlled for the 
production of therapeutic proteins after the generation of transgenic plants. Without understanding 
the transgene expression patterns in plant tissue, it is difficult to enhance further production levels. In 
this study, single-cell RNA-sequencing (scRNA-seq) analysis of transgenic tobacco (Nicotiana tabacum) 
leaf, expressing an immunotherapeutic llama antibody against breast cancer, anti-HER2 VHH–Fc, was 
conducted to obtain data on the expression pattern of tissue-specific cells. These high-quality scRNA-
seq data enabled the identification of gene expression patterns by cell types, which can be applied to 
select the best cell types or tissues for the high production of these recombinant antibodies. These 
data provide a foundation to elucidate the mechanisms that regulate the biosynthesis of recombinant 
proteins in N. tabacum.

Backgrounds & Summary
Breast cancer is globally the most diagnosed cancer in women. Herceptin is an immunotherapeutic mon-
oclonal antibody (mAb) for breast cancer that overexpresses human epidermal growth factor receptor 
2 (HER2)1. However, Herceptin is not always effective in breast cancer patients and could eventually cause 
Herceptin-resistant cancer2. HER2 is a tumor-associated antigen (TAA), which is targeted by antibodies to cause 
an anti-cancer immunotherapeutic effect. Thus, diverse anti-cancer immunotherapeutic antibody forms have 
been designed and expressed in heterologous systems3. Recently, llama heavy chain-only antibody that binds 
to HER2 (anti-HER2 VHH-Fc) has been produced to have several advantages such as small protein size and 
intrinsic stability for enhanced HER2 antigen binding activity3,4.

Plants are considered a heterologous bio-system for the production of valuable recombinant immunother-
apeutic antibody proteins as an alternative to mammalian cell-based systems5. In plant expression system, 
the recombinant antibody genes are controlled by the CaMV35S promoter, which is considered a consistent 
and non-tissue-specific promoter in plant leaf and is mainly used for its stable or transient expression6–8. The 
transgene expression by the cauliflower mosaic virus (CaMV) 35S promoter has been investigated in leaf, root, 
and stem tissues9. Diverse CaMV35S promoter-controlled transgene transcription patterns were determined 
at leaf, root, and stem tissue levels9. However, specific profiles of the transgene expression under the control 
of the CaMV35S promoter have not been revealed at the single-cell level. It is essential to understand how 
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Fig. 1 Workflow of highly efficient leaf protoplast isolation for scRNA-seq analysis. (a) Leaf protoplasts for 
scRNA-seq analysis were isolated from in vitro transgenic tobacco plant leaves using a protoplast isolation buffer 
containing plant cell wall lytic enzymes and a dead cell remover (DCR) kit. The harvested leaves (200~300 mg) 
were infiltrated with enzymes using a 50 mL syringe and incubated in a Petri dish at room temperature for 2 hrs. 
(b) The dead protoplasts and debris were labeled with microbeads and retained in the magnetic field, whereas 
the live protoplasts were rinsed out and collected for the scRNA-seq analysis. (c) The collected protoplasts 
obtained from different isolation protocols. PW, pre-washing group, where the washing step was omitted; W, 
washing group, where the washing step was included; WDCR, dead cell remover group, where the washing 
and dead cell removing steps were included. Microscopic analysis was conducted to count the viable protoplast 
number in the sample obtained using the highly efficient leaf protoplast isolation protocol (WDCR).
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tissue-specific cells perform transgene expression to improve the production of recombinant immunotherapeu-
tic proteins in plant leaves. Recently, plant cell suspension biofactories have become popular in the production 
of biotherapeutic proteins10. Thus, the application of well-characterized leaf cell types and conditions for high 
transgene expression is essential for developing a cell suspension factory system that can efficiently produce 
recombinant proteins11. However, unlike unicellular organisms, each plant tissue consists of a different cell type, 
whereby the leaf is composed of mainly mesophyll, vasculature, and epidermis cells12. It is important to deter-
mine the expression of the CaMV35S promoter-controlled transgene in each leaf type to understand whether 
the transgene has concordant expression levels among the different cell types. This central question in transgenic 
expression patterns at the plant leaf single-cell level has yet to be answered, which is essential to determine how 
to enhance the production of valuable recombinant proteins in plant molecular biopharming system.

Single-cell RNA sequencing (scRNA-seq) technology has been developed to provide unlimited opportuni-
ties to reveal gene expression profiles at single-cell levels13. For successful scRNA-seq-analysis, it is essential to 
generate abundant viable protoplast from cell suspensions. However, the differentiation of plant cell walls by 
variable factors, including plant tissues, and developmental stages, even in a single plant biomass, can ham-
per obtaining cell-type-specific unbiased protoplasts suitable for scRNA-seq14. In general, an insufficient num-
ber of viable, high-quality protoplasts have been applied to scRNA-seq resulting in biased and unreliable data 
interpretations15.

In this study, the protocol for robust protoplast isolation from tobacco (Nicotiana tabacum) expressing 
anti-HER2 VHH-FcK was optimized for scRNA-seq analysis. In our previous study, we generated a transgenic 
tobacco plant, which expressed anti-HER2 VHH–FcK fusion proteins under the control of a CaMV35S pro-
moter3 (Fig. 1a). The transgenic tobacco leaf tissues were confirmed to have the mRNA and protein expression 
of anti-HER2 VHH–FcK gene. The viable protoplasts were isolated and separated from transgenic tobacco leaf 
using enzyme buffer and a magnetic field, respectively, and were counted under a microscope for single-cell 
transcriptome analysis (Fig. 1). In this study, a method that isolated only live protoplasts from a mixed sam-
ple solution of dead and live protoplasts was optimized and established in plant system (Table 1 & Fig. 1). 
Furthermore, the live protoplasts were applied to scRNA-seq analysis (Table 1, Fig. 1, & Fig. S1). The method of 
yielding high numbers of plant protoplasts that could survive from a leaf was followed by an additional isola-
tion step, which used a dead cell removal (DCR) kit (Fig. 1b). The addition of this step both removes unwanted 
components, such as the dead protoplasts and cell debris and allows for the acquisition of high-yield viable plant 
protoplasts, maintaining their intact form and function. Therefore, this method could be effectively utilized in 
various applications that use plant cells and require high cell viability and plant transformation experiments, 
such as single-cell analysis.

Using the 10x genomics scRNA-seq platform, we generated scRNA-seq data containing 7,740 leaf cells 
(Table 2). After quality control, 5,921 high-quality cells with 20,358 expressed genes were grouped into 9 
clusters (Fig. 2a). These clusters were assigned cell types through homology-based marker gene predictions 

Processz
Total protoplast conc 
(cells/mL)

Live protoplast conc 
(cells/mL) Viability (%)y

Final amount of live 
protoplastx

PW 1.6 × 106 7.8 × 105 49% 7.8 × 105

W 2.8 × 105 2.2 × 105 78% 2.2 × 105

WDCR 3.7 × 105 3.4 × 105 92% 0.6 × 105

Table 1. Protoplast viability with different leaf protoplast processing protocols. zPW (Pre-washing): Protoplasts 
isolated from only one step of enzyme infiltration. W (Washing): Protoplasts isolated from two steps of enzyme 
infiltration and enzyme removal by washing. WDCR (Washing with DCR): Protoplasts isolated by washing 
and DCR (dead cell remover) steps. yViability (%) was calculated using a formula: 100 × [live protoplast 
concentration (cell/mL)/total protoplast concentration (cell/mL)]. xFinal amount of live protoplast: The final 
number of live protoplasts obtained from each process group.

HER2

Number of reads 402,787,243

Estimated number of cells 7,740

Median number of genes per cell 1,088

Median number of UMI counts per cell 1,665

Mean reads per cell 52,040

Q30 bases in barcode 97.30%

Q30 bases in RNA read 91.90%

Q30 bases in UMI 97.30%

Reads mapped to genome 93.00%

Reads mapped confidently to genome 58.00%

Reads mapped confidently to exonic regions 50.70%

Reads mapped confidently to transcriptome 49.30%

Table 2. Statistics of scRNA-seq dataset used in this study.
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by PlantscRNAdb16 and previously reported Arabidopsis marker genes17,18 (Fig. 2, Fig. S2 & Table S1). In the 
expression of the anti-HER2 VHH–FcK gene, all the cell-type clusters were evenly expressed, which suggests 
that all cell types are useful for biofactory (Fig. 2b). These data offer precise insights into promoter functions 
within leaf tissues, particularly in specific cell types. Additionally, they provide guidance on identifying leaf 
tissues with high levels of recombinant immunotherapeutic antibodies. Furthermore, the identified cells with 
the highest transgene expressions can be isolated and utilized in the cell suspension factory system to produce 
valuable recombinant proteins.

Materials and Methods
plant leaf sample collection. The anti-HER2 VHH–FcK gene expression was controlled by the CaMV35S 
promoter with which contained duplicated upstream B domains (Ca2 promoter) and the untranslated leader 
sequence of alfalfa mosaic virus RNA4 in the pBI121 plant binary vector. Transgenic tobacco plants expressing a 
llama single-domain anti-HER2 antibody with KDEL (anti-HER2 VHH–FcK) were generated by Agrobacterium-
mediated transformation and in vitro tissue-cultured in MS medium with kanamycin (100 mg/L). Transgenic 
tobacco plants were grown in a plant growth chamber under optimized conditions (130 μmol photons m−2 s−1 at 
23 °C with a relative humidity of 70% and a 16/8 h light/dark cycle). Likewise, the non-transgenic tobacco plants 
were also grown in the same plant growth chamber.

protoplast isolation, library construction, and scRNA-sequencing. Leaf protoplasts were isolated 
from in vitro transgenic tobacco plants (Fig. 1). Leaves were immersed in protoplast isolation buffer [3 mM MES, 
7 mM CaCl2, 0.4 M mannitol, and KOH are used for adjusting buffer pH 5.8] and enzyme buffer [1.5% (w/v) cel-
lulose Onozuka R-10 and 0.5% (w/v) macerozyme in protoplast isolation buffer]. Experiments were performed 
by harvesting 4–5 cm tobacco plant leaves cultured in sterile conditions. The harvested leaves were placed in a 
50 mL syringe with 20 mL enzyme buffer, and the enzyme was infiltrated into the leaves by vacuum evacuation 
(Fig. 1a). The leaves infiltrated with enzyme buffer were shaken at 200 rpm for 2 hours at room temperature with 
5 mL enzyme buffer and filtered through 70 μm and 40 μm filters. The filtered protoplasts were centrifuged at 
500 rpm for 10 minutes and washed with protoplast isolation buffer. The dead protoplasts and debris, labeled 
with microbeads, were retained in the column using a magnetic field, while the live protoplasts were released 
from the columns (Fig. 1b) using the dead cell removal kit (Miltenyi Biotec, Seoul, Korea). The cell concentration 
and viability were calculated using a Cellometer Auto 2000 (Nexcelom Bioscience, USA) with 0.2% trypan blue. 
Subsequently, the buffer was exchanged with the loading buffer and approximately 20,000 transgenic protoplasts 
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Fig. 2 Gene expression landscape of leaf cell populations in transgenic tobacco (Nicotiana tabacum) using 
scRNA-seq. (a) Uniform manifold approximation and projection (UMAP) plot showing the four main cell types 
of leaf cell populations. (b) Violin plot of selected marker genes and anti-HER2 VHH-FcK gene. Each marker 
gene represents, from top to bottom, mesophyll, epidermal, adaxial pavement, vasculature, and guard cell types 
and the anti-HER2 VHH-FcK gene, respectively.
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were loaded into a 10x Chromium Controller (10x Genomics, Pleasanton, CA) to generate single-cell GEMs 
(gel beads in the emulsion). The library was constructed using Chromium Next GEM Single Cell 3’ Kit v3.1 (10x 
Genomics). Sequencing was performed by Illumina HiSeq 4000, according to the manufacturer’s instructions 
(Illumina).

Tissue extraction, library construction, and bulk RNA-sequencing. Leaf tissues were harvested 
from in vitro transgenic plants, ground in liquid nitrogen, and applied to isolate total RNA using TRI Reagent™ 
solution19. One μg of mRNA was applied to construct the cDNA libraries using TruSeq Stranded mRNA Library 
Prep Kit (Illumina). The generated cDNA libraries were quantified using the qPCR Quantification Protocol Guide 
(Illumina). The template size distribution (300~500 bp) was confirmed to verify the PCR-enriched fragment 
sizes using a 2100 Bioanalyzer (Agilent Technologies). The library sequencing was conducted using the Illumina 
NovaSeq 6000.

Generation of single-cell and bulk RNA-seq datasets. For both scRNA-seq and bulk RNA-seq data 
analyses, the reference genome and gene annotation of N. tabacum TN90 were downloaded from the RefSeq 
database (GCF_000715135.1)20. The anti-HER2 VHH gene sequence was obtained from Dr. Brigitte Kerfelec, 
French National Institute of Health and Medical Research. To identify homologous genes between N. tabacum 
and Arabidopsis thaliana, whole protein sequences of N. tabacum TN90 and A. thaliana Araport11 (version 
Jan192022)21 were clustered using OrthoFinder v.2.5.4 (-S blast)22. Using the scRNA-seq data, we performed 
the 10x Genomics Cell Ranger v.6.0.2 pipeline with default parameters23. Sequencing reads were mapped to the 
reference genome with the anti-HER2 VHH–Fc gene sequence and a feature-barcode matrix was generated using 
the count command implemented in Cell Ranger. Using the bulk RNA-seq data, sequencing reads were filtered 
in Trimmomatic v.0.3924 with ILLUMINACLIP:TruSeq 3-PE.fa:2:30:10 TRAILING:3 SLIDINGWINDOW:4:15 
MINLEN:36 parameters. The trimmed reads were aligned to the reference genome using HISAT v.2.2.125 with 
default parameters. The mapped reads were quantified and counted using Stringtie v.2.2.126 with default parame-
ters and prepDE.py3 implemented in Stringtie with –l 100 parameters, respectively.

Fig. 3 Quality control of scRNA-seq data in transgenic tobacco leaves. Scatter plot between the number of 
unique molecular identifiers (nUMI) and genes (nGene) with (a) expressed mitochondrial gene ratio and (b) 
chloroplast gene ratio per cell. The blue line represents the correlation ratio between nUMI and nGene. (c) 
Violin plots representing the nUMI, nGene, and the percentage of mitochondrial and chloroplast genes in 
filtered scRNA-seq data.

https://doi.org/10.1038/s41597-023-02833-5


6Scientific Data |          (2023) 10:911  | https://doi.org/10.1038/s41597-023-02833-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

Quality control of scRNA-seq data. The filtered feature-barcode matrix was imported into Seurat 
v.4.1.127 for all downstream analyses. Quality control was performed to filter out any low-quality cells and genes. 
Only protein-coding genes were kept to filter out the uninformative pseudogenes and non-coding RNAs. To 
eliminate potential doublets, we visualized a boxplot of the number of expressed genes per cell (nGene), and then, 
calculated the upper whisker, which is the maximum value excluding outliers, using the boxplot()$stats function 
in R software v.4.1.3 (https://www.r-project.org/). Since the value of the upper whisker was 2,800, only cells with 
a nGene score of more than 300 and less than 3,000 were retained. We also removed any cells with 1) a mitochon-
drial gene ratio of more than 5%; 2) a chloroplast gene ratio of more than 25%; 3) a log10-transformed ratio of the 
nGene and a number 0.9 or less for the unique molecular identifiers (nUMI). To filter out stress-related genes 
induced by protoplast isolation, we compared the gene expressions between scRNA-seq and bulk RNA-seq data-
sets, similar to previously reported methods28. Pseudo-bulk data were generated using a row-summed scRNA-seq 
counts matrix. Pearson’s correlation coefficient of gene expression between the pseudo-bulk scRNA-seq and bulk 
RNA-seq datasets was calculated. Genes with a log2 fold change greater than 5 in scRNA-seq data than in bulk 
RNA-seq data were considered stress-related genes and removed. Genes less than 50 UMIs in the pseudo-bulk 
scRNA-seq data were defined as lowly expressed genes and also removed.

clustering and gene expression profiling of scRNA-seq data. The gene expression of filtered 
scRNA-seq data was log-normalized by NormalizeData implemented in Seurat27. The cell cycle score for each cell 
was calculated by CellCycleScoring implemented in Seurat27. Cell cycle gene homologs were identified by protein 
clusters generated from OrthoFinder v.2.5.422 and known cell cycle genes in A. thaliana29,30. The normalized 
scRNA-seq data were transformed using SCTransform (vst.flavor = “v2”)31. Mitochondrial and chloroplast gene 
ratios per cell and cell cycle phase were regressed during the transformation step. Principal component analysis 
(PCA) was performed using RunPCA implemented in Seurat27 to calculate 100 principal components (PCs). 
All 100 PCs were used for uniform manifold approximation and projection (UMAP) embedding by RunUMAP 
implemented in Seurat27. Additional potential doublets were identified and removed using DoubletFinder v.2.0.3 
with default parameters32. Clustering was conducted using FindNeighbors (reduction = “pca”, dims = 1:100) and 
FindClusters (resolution = 1.0). The gene expression patterns of nUMI, nGene, mitochondrial, and chloroplast 
gene ratios per cell were visualized using FeaturePlot (reduction = “umap”, min.cutoff = “q10”).
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To assign putative cell types in each cluster, differentially expressed genes (DEGs) per cluster were identified 
using FindAllMarkers (only.pos = TRUE, min.pct = 0.30, logfc.threshold = 0.25). Known marker genes of leaf 
in A. thaliana were collected from PlantscRNAdb16 and previous studies17,18. Homology-based marker genes 
between N. tabacum and A. thaliana were identified from protein clusters generated by OrthoFinder v.2.5.422. 
The homology-based marker genes and the DEGs were combined, and the cell type was assigned for each cluster. 
Representative marker genes were visualized using VlnPlot implemented in Seurat27.

Data Records
The scRNA-seq and bulk RNA-seq data used in this study are available on NCBI under the BioProject accession 
PRJNA970858. The sample descriptions and raw sequencing data for scRNA-seq and bulk RNA-seq are avail-
able under the BioSample accession numbers (SAMN35016658 and SAMN35016659, respectively), and the 
Sequence Read Archive (SRA) accession number SRP436736 (SRR24488786 and SRR24488787, respectively)33. 
The final gene expression profiling and cluster numbers for each cell had been deposited in FigShare34.
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Technical Validation
protoplast viability. After obtaining the plant cells through the methods described above, their survival 
rates were analyzed. Three groups were classified: the pre-washing (PW) group, where the washing step from 
the conventional plant protoplast extraction method was omitted; the washing (W) group, where the washing 
step from the conventional method was applied; the washing with DCR (WDCR) group, where the conventional 
method was applied, followed by washing step and the isolation of the live protoplasts using the DCR kit. To cal-
culate the viability of protoplasts, the total protoplast concentration, viable protoplast concentration, and resus-
pension volume were measured for each group, and the viability was determined using the following formula: 
Viability (%) = 100 x [viable protoplast concentration (cells/mL)/total protoplast concentration (cells/mL)]. The 
results showed that the WDCR group had the highest viable protoplast rate, which was followed by the W and 
PW groups (Table 1). Moreover, the PW group had the lowest total viable protoplast concentration. Furthermore, 
the W group had the highest total protoplast concentration but a moderate concentration of viable protoplasts. 
Finally, although the total protoplast concentration was low in the WDCR group, it exhibited the highest viable 
protoplast concentration. Comparing the viability values, the PW group had a viability of 49%, the W group had 
a viability of 78%, and the WDCR group had a viability of 92%, which was approximately 2.2 and 1.2 times higher 
than the PW and W groups, respectively. Particularly, despite the slightly lower final protoplast amount, the viable 
protoplast concentration was the highest when using the DCR kit, which is ideal for scRNA-seq analysis (Table 1). 
A resuspension buffer solution was used to alleviate the re-aggregation of protoplasts after protoplast extraction. 
In this case, the volume of resuspension buffer used in the DCR group was approximately 1/25 and 1/5 compared 
to the PW and W groups, respectively. This indicates that the viability of protoplasts increased without the need 
for large amounts of reagents to address the re-aggregation of protoplasts after extraction. The method includes 
an additional isolation step, where the dead cell removal kit was used after using conventional methods to extract 
the protoplasts from the plant. This protoplast isolation method was ideally optimized to increase viability of 
protoplasts for scRNA-seq analysis.

Quality assessment of sequencing data. We generated scRNA-seq and bulk RNA-seq datasets for 
anti-HER2 VHH-FcK transgenic and wild type tobacco leaves, respectively. Approximately 402 million read 
pairs were obtained in the scRNA-seq data, of which, a proportion of 93.19% had a quality score of 30 (Table 2 & 
Table S2). These sequencing read pairs were mapped to the N. tabacum genome with a 93% mapping ratio. At the 
single-cell resolution, a total of 7,740 cells were obtained with a median number of 1,088 genes and an average 
of 52,040 reads per cell (Table 2). In the bulk RNA-seq data, about 37 million read pairs were sequenced, with a 
proportion of 94.44% having a higher quality score of 30 (Table S2). After quality trimming, 36 million read pairs 
were retained and mapped to the N. tabacum genome with a 97% mapping ratio (Table S2). Overall, these results 
indicate that high-quality sequencing data were generated in both the scRNA-seq and bulk RNA-seq datasets.

To optimize the quality control cutoff, we visualized the nGene density, the mitochondrial and chloroplast 
gene expression proportions, and the complexity defined by the ratio between nGene and nUMI per cell in the 
scRNA-seq data. Consequently, we identified potential doublet cells and low complexity cells that contained 
high proportions of mitochondrial and chloroplast genes (Fig. 3a,b, and Fig. S3a–c). In addition, we generated 
a pseudo-bulk scRNA-seq dataset that combined the sum of each gene expressed in each cell of scRNA-seq and 
compared the correlation between pseudo-bulk scRNA-seq and bulk RNA-seq datasets to eliminate potential 
stress-responsive genes caused by protoplast isolation and transgene; ultimately, finding that the expression 
patterns between them were highly correlated (Pearson’s correlation, r = 0.72; Fig. S3d). A total of 1,838 genes 
with a log2 fold change greater than 5 in pseudo-bulk scRNA-seq over bulk RNA-seq were removed, including 
ethylene-responsive transcription factors and zinc-finger proteins induced by protoplast isolation28,35 (Table S3). 
Using these stress-responsive genes, we filtered out low-quality cells, genes, and potential doublets, which left 
5,921 cells, with 20,358 expressed genes, and confirmed the expression patterns of the mitochondrial and chlo-
roplast genes, nUMI, and nGene in the filtered scRNA-seq data (Fig. 3c). The median values for nUMI and 
nGene, in the mitochondrial and chloroplast gene percentages, were 1,172 and 859, respectively, and 0.004 and 
0.143, respectively. These results suggest that high-quality scRNA-seq data were obtained to identify the cell-type 
specificity of leaves from N. tabacum.

Gene expression profile and cluster identification of scRNA-seq data. To profile the gene expres-
sion patterns and assign cell types in a leaf cell population, filtered scRNA-seq data were normalized and clus-
tered. Before clustering, cell cycle scoring was performed to reduce biased clustering caused by the cell phase. 
We identified 28 and 10 cell cycle gene homologs for the G1/S and G2/M-phases, respectively, using known cell 
cycle genes in A. thaliana29,30 (Table S4). Cell cycle scoring, PCA, and UMAP analyses revealed that cells were 
evenly distributed without separation by cell cycle phase, reducing the effects of cell-cycle heterogeneity (Fig. 4). 
Subsequent transformation and clustering processes grouped the cells into nine clusters (Fig. 2a). To confirm the 
global gene expression pattern, we visualized the gene expressions of four features (nUMI, nGene, and mitochon-
drial and chloroplast ratios per cell). The two features of nUMI and nGene were differently expressed among clus-
ters, while the other two features (mitochondrial and chloroplast ratio per cell) were expressed relatively evenly 
without a specific cluster containing cells with a high number of expressed genes (Fig. 5). These results indicate 
that potential doublets are successfully removed, and these clusters are sufficient to identify cell-type specificity.

Annotation of cell-type specific clusters. We assigned cell types to nine clusters using homology-based 
markers from A. thaliana (Table S1). Of the nine clusters, six clusters with 5,377 cells and were assigned to mes-
ophyll cells, and the remaining clusters with 490, 41, and 13 cells were assigned to epidermal, vasculature, and 
guard cells, respectively (Fig. 2a). LOC107768773 and LOC107831628 genes, which are homologs of CARBONIC 
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ANHYDRASE 1 (CA1, AT3G01500)17 and SCREAM (SCRM, AT3G26744)18 in Arabidopsis, were specifically 
expressed in the mesophyll and guard cell clusters, respectively. Other cell type clusters also expressed marker 
gene homologs derived from PlantscRNAdb (Fig. 2b & Fig. S2). These results indicate that our scRNA-seq data 
successfully identified clusters by cell type. Successful mapping of a single-cell transcriptomic landscape in plant 
leaf tissue depends on the dissociation of the tissue into live and intact single cells and equal cell separation 
without spatial and morphological bias. In this study, leaf protoplasts were successfully isolated from in vitro 
transgenic tobacco plants to provide crucial insight into the location of specific cells expressing transgenes and 
established a robust cell isolation protocol for scRNA-seq analysis.

code availability
The script used in this study was deposited in GitHub (https://github.com/Myung-ShinKim/scRNA-seq_
pipeline).
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