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HaLD, a human aging and 
longevity knowledge graph 
for precision gerontology and 
geroscience analyses
Zexu Wu1,4, Cong Feng1,2,4, Yanshi Hu  1, Yincong Zhou1,3, Sida Li1, Shilong Zhang1, 
Yueming Hu1, Yuhao Chen1, Haoyu Chao1, Qingyang Ni1 & Ming Chen1,2,3 ✉

Human aging is a natural and inevitable biological process that leads to an increased risk of aging-
related diseases. Developing anti-aging therapies for aging-related diseases requires a comprehensive 
understanding of the mechanisms and effects of aging and longevity from a multi-modal and multi-
faceted perspective. However, most of the relevant knowledge is scattered in the biomedical literature, 
the volume of which reached 36 million in PubMed. Here, we presented HALD, a text mining-based 
human aging and longevity dataset of the biomedical knowledge graph from all published literature 
related to human aging and longevity in PubMed. HALD integrated multiple state-of-the-art natural 
language processing (NLP) techniques to improve the accuracy and coverage of the knowledge graph 
for precision gerontology and geroscience analyses. Up to September 2023, HALD had contained 
12,227 entities in 10 types (gene, RNA, protein, carbohydrate, lipid, peptide, pharmaceutical 
preparations, toxin, mutation, and disease), 115,522 relations, 1,855 aging biomarkers, and 525 
longevity biomarkers from 339,918 biomedical articles in PubMed. HALD is available at https://bis.zju.
edu.cn/hald.

Background & Summary
Aging is a natural biological process accompanied by a gradual decline of physiological functions and associated 
with an increased risk of aging-related diseases1. Longevity refers to the extension of an individual’s lifespan 
and the sustained maintenance of their health status. Research into human aging and longevity aims to explore 
the mechanisms of human health and life, with the hope of discovering approaches to slow down aging and 
increase lifespan. Human aging and longevity are mainly influenced by a wide range of genetic, epigenetic, 
and environmental factors2. As the global population continues to age, the study of aging and longevity at the 
molecular level has become a hot topic in the field of gerontology and geroscience. Precision gerontology aims 
to provide predictions regarding the individuals’ lifespan under various treatment scenarios3, while the main 
objective of geroscience is to devise novel, biologically-driven therapeutic and preventive strategies that address 
fundamental aging mechanisms4. Understanding the molecular basis of human aging and longevity is vital for 
the development of therapies to prevent aging-related diseases and extend healthspan and lifespan.

The published literature is one of the most accessible data sources of molecular and disease information 
related to aging and longevity. However, due to the huge amount of biomedical literature, it is time-consuming 
and inefficient for researchers to conduct information retrieval from the major databases of medical journals 
like PubMed. In recent years, deep learning (DL) models have achieved great success for automated extrac-
tion in named entity recognition and relation extraction from the biomedical literature5. Besides, several 
web-based applications for automated text mining such as PubTator6 and pubmedKB7 provide information 
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about biomedical entities including gene, disease, chemical, mutation, species, and cell line from all published 
biomedical literature.

Integrated datasets with comprehensive knowledge are crucial for researchers to leverage existing resources. 
Currently, there are some publicly online manually curated databases related to human aging and longevity, such 
as Aging genes/interventions database (AGEID)8, Human Ageing Genomic Resources (HAGR)9, JenAge Ageing 
Factor Database (AgeFactDB)10, Aging Atlas11, and AgingBank12 (Table 1). AGEID is a database of experimental 
results that provides formatted gene/intervention reports related to aging8. HAGR includes the GenAge, AnAge, 
GenDR, LongevityMap, DrugAge and CellAge databases that are manually curated by experts and regularly 
updated9. AgeFactDB is aimed at the collection and integration of aging-related data including genes, chemical 
compounds, and other environmental cues10. Aging Atlas is a manually curated biomedical database comprising 
a range of aging-related multi-omics datasets and bioinformatics tools11. AgingBank documents high-quality 
aging-related associations in more than 50 species by manually reviewing more than 20,000 publicly published 
papers12. However, to the best of our knowledge, these databases are all manually curated, making it difficult to 
incorporate comprehensive knowledge of human aging and longevity. It is also difficult to obtain the latest bio-
medical knowledge from manually curated databases as their services are out of maintenance or not updated in 
time. In addition, although human nucleic acids information is generally involved in these studies, knowledge 
of other important organic compounds like carbohydrate, lipid, and protein is not yet fully integrated. Relation 
extraction between these entities is also indispensable for researchers to facilitate integrative and comprehensive 
analysis. Associations between molecular markers and diseases also must be clarified to illuminate the mecha-
nisms and effects of anti-aging therapies on aging-related diseases13.

A knowledge graph (KG) is widely used for knowledge domain visualization or knowledge domain mapping 
graphs in the library and information industry14. In the field of life sciences, a biomedical KG can not only link 
biomedical entities through certain relations, but also predict the potential relationships between existing enti-
ties and discover new relational facts15. Such characteristics can facilitate the understanding of relations between 
biomedical entities, which is crucial for researchers to refine their research scope.

In this paper, we presented HALD, a human aging and longevity dataset of the biomedical KG from human 
aging and longevity-related literature in PubMed. Figure 1 illustrates the workflow of biomedical literature 
mining using multiple NLP techniques. First, we used the Bio.Entrez16 python package to conduct literature 
retrieval. Then, we took web-based (PubTator6), dictionary-based (Python re module), rule-based (Stanford 
CoreNLP17), and DL-based (ScispaCy18 and BERN19) methods to conduct named entity recognition (NER) for 
better accuracy. Next, we combined NetworkX, OpenIE, and AllenNLP tools to conduct relation extraction 
(RE) for wider coverage. Finally, the entities were further identified as human aging and longevity biomarkers 
according to their relationships with aging-related diseases. Up to September 2023, we had annotated 339,918 
abstracts from PubMed and curated 12,227 entities in 10 types (gene, RNA, carbohydrate, peptide, lipid, protein, 

Databases Aging/Longevity Data Last Update*
AGEID (2002)8 Aging and longevity Genes and interventions Not available

AnAge (2013)9 Aging and longevity Aging and life history Build 15 (July 3, 2023)

GenAge (2013)9 Aging Genes Build 21 (August 28, 2023)

LongevityMap (2013)9 Longevity Genetic variants Build 3 (June 24, 2023)

AgeFactDB (2014)10 Aging Genes, chemical compounds and other environmental cues Not available

Aging Atlas (2020)11 Aging Multi-omics datasets January 10, 2023

Table 1. Summary of human aging and longevity-related databases. *Note: The accessed date for all databases 
is October 26, 2023.

Fig. 1 The workflow of HALD. (1) In the Literature Retrieval phase, we collected abstracts, PMIDs, and other 
information from PubMed. (2) In the Named Entity Recognition phase, we employed PubTator, Python’s re 
Module, Stanford CoreNLP, ScispaCy, and BERN methods to identify and normalize named entities. (3) In 
the Relation Extraction phase, we used NetworkX, OpenIE, and AllenNLP tools to extract relations, in which 
Main Verbs Formation and Negation Detection were included. (4) In the Biomarkers Identification phase, 
we classified the relationships into positive, association, and negative ones based on their types. Further 
identification as biomarkers for human aging and longevity was performed.
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pharmaceutical preparations, toxin, mutation, and disease entities), 115,522 relations, 1,855 aging biomark-
ers, and 525 longevity biomarkers in HALD. The distributions of entities and relations are shown in Fig. 2a,b.  
The contributions of HALD are listed as followings:

•	 HALD is the first human aging and longevity knowledge dataset of the biomedical knowledge graph mined 
from published literature using NLP technologies.

•	 HALD provides 10 types of credible human aging and longevity biomedical entities.
•	 HALD links biomedical entities through certain relations and predicts the potential relationships.
•	 HALD identifies aging and longevity biomarkers from curated entities and elucidates their associations with 

aging-related diseases.

Methods
Literature retrieval. A search for (“aging” [Title/Abstract] OR “ageing” [Title/Abstract] OR “longev-
ity” [Title/Abstract] OR “centenarian” [Title/Abstract] OR “the elderly” [Title/Abstract] OR “the aged” [Title/
Abstract] OR “old people” [Title/Abstract] OR “older people” [Title/Abstract] OR “old age” [Title/Abstract] OR 
“gerontology” [Title/Abstract] OR “geroscience” [Title/Abstract] OR “lifespan” [Title/Abstract] OR “healthspan” 
[Title/Abstract] OR “life expectancy” [Title/Abstract] AND “Journal Article” [ptyp] AND “humans” [MeSH 
Terms] AND “English” [lang]) was used to retrieve PubMed biomedical journal articles related to human aging 
and longevity directly with the Bio.Entrez python package. Bio.Entrez python package can translate a standard set 
of input parameters into the values necessary for various National Center for Biotechnology Information (NCBI) 
software components to search for and retrieve the requested data16. In addition, we retrieved the full names, 
abbreviations, journal impact factors (IF), and five-year journal impact factors (IF5) of these journals from JCR 
(https://jcr.clarivate.com). JCR provides various indicators including IF, which is mainly used to evaluate the 
influence and academic quality of journals. The magnitude of IF is considered one of the important metrics for 
measuring a journal’s influence in the academic community.

Fig. 2 The distribution and evaluation of HALD. (a) The pie chart of entity distribution. (b) The Sankey 
diagram of relation distribution. (c) The comparison of aging-related gene counts among HALD, Aging Atlas, 
GenAge and AgingBank (Pro). (d) The comparison of longevity-related gene counts among LongevityMap, 
HALD, and AgingBank (Pro).

https://doi.org/10.1038/s41597-023-02781-0
https://jcr.clarivate.com


4Scientific Data |          (2023) 10:851  | https://doi.org/10.1038/s41597-023-02781-0

www.nature.com/scientificdatawww.nature.com/scientificdata/

Named entity recognition. We combined web-based, dictionary-based, rule-based, and DL-based meth-
ods to conduct NER, and recognized 10 types of entities including gene, RNA, protein, carbohydrate, lipid, pep-
tide, pharmaceutical preparations, toxin, mutation, and disease.

Web-based method. PubMed unique identifiers (PMIDs) were submitted to the web-based method PubTator 
to get the annotations of 5 types of entities (gene, disease, chemical, mutation, and species). PubTator provides 
state-of-the-art performance on generating automatic computer pre-annotations in computer-assisted bioc-
uration6. Multiple text-mining tools are integrated in PubTator, including GNormPlus for identifying gene/
protein entities20, TmVar for identifying gene variants21, and DNorm for identifying disease entities22. PubTator 
is updated with new PubMed articles daily, which is a great library for biomedical literature text mining.

Dictionary-based method. We used Python re module to conduct the dictionary-based method NER by match-
ing words or phrases in the sentences with the items in human gene, RNA, carbohydrate, peptide, lipid, protein, 
pharmaceutical preparations, toxin, mutation, and disease dictionaries. HUGO Gene Nomenclature Committee 
(HGNC) is responsible for approving unique symbols and names for human loci, including protein-coding 
genes and non-coding RNAs23. Medical subject headings (MeSH) is a comprehensive controlled vocabulary for 
indexing journal articles and books in the life sciences24. Each MeSH record consists of one or more concepts, 
and each concept consists in one or more synonymous terms. The single nucleotide polymorphism database 
(dbSNP) is a public database within NCBI that documents single nucleotide polymorphisms and other types 
of genetic variation in the human species25. Therefore, we downloaded and pre-processed the files of genes and 
RNA in HGNC as the standard human gene and RNA dictionaries, including the information about approved 
symbol, approved name, previous symbols, alias symbols, previous name, alias names, and NCBI gene ID. We 
queried the concepts and terms of biochemical molecules in MeSH, and collated the entry information of the 
following six categories as dictionaries: carbohydrate, peptide, lipid, protein, pharmaceutical preparations, and 
toxin. Similarly, we built disease dictionaries according to disease heading in MeSH. We collected mutation 
information about alleles and position in dbSNP and organized them into mutation dictionaries. Subsequently, 
we used the regular expression matching operations provided by Python re module (https://docs.python.org/3/
library/re.html) to match these ten types of entities in each sentence annotated by Pubtator according to the 
dictionaries. The entities that did not match the dictionaries would not be retained.

Rule-based method. The rule-based method was added using regular expression patterns to match rules for 
miRNA and lncRNA entities as a complement to the RNA entities. miRNA and lncRNA entities have relatively 
fixed naming rules. For instance, miRNA entities always begin with “MIR”, “microRNA”, “MIRN”, and “hsa-miR”, 
while lncRNA entities usually begin with “linc”. Stanford CoreNLP, a set of natural language analysis tools written  
in Java17, was applied to RNA entity recognition through the rule-based method.

DL-based method. The DL-based methods ScispaCy and BERN were employed for more accurate recog-
nition of gene entities. ScispaCy, a specialized NLP library for processing biomedical texts building on the 
robust spaCy26 library, provides the models of the JNLPA corpus (F1-score = 72.28%), the BC5CDR cor-
pus (F1-score = 84.53%) and the BIONLP13CG corpus (F1-score = 76.57%) for gene entities recognition18. 
Besides, BERN, a biomedical text mining tool that uses neural network-based high-performance BioBERT27 
NER models for recognizing known entities and discovering new entities19, was also used to recognize gene 
entities.

Relation extraction. Once two entities co-exist in one sentence, and a main verb lies between the 2 entities 
at the meanwhile, there is likely to be some relationship between these two entities. We selected sentences with no 
less than two entities to conduct RE through the following three methods.

NetworkX. NetworkX (https://networkx.org) was used to select the main verb with the shortest distance 
between two entities in a sentence. NetworkX is a Python package for the creation, manipulation, and study of 
the structure, dynamics, and functions of complex networks, which can compute the shortest paths and path 
lengths between nodes in the graph.

OpenIE. Open Information Extraction (OpenIE) was introduced to extract open-domain relation triples with 
no schema input for relations in advance. OpenIE has been a critical NLP method for extracting structured 
relational tuples (subject, relation, object) from unstructured text independently28. In addition, OpenIE can 
express the complete relationship from a sentence to the greatest extent. For example, OpenIE can annotate 
the relationship as a phrase “be potential targets for” rather than a single verb “be”, which may lose or obscure 
relational information.

AllenNLP. The DL-based method AllenNLP was applied for enriching the relation library. AllenNLP is a com-
plete platform for solving natural language processing tasks in PyTorch, and has developed state-of-the-art deep 
learning models on a wide variety of linguistic tasks29.

Human aging and longevity biomarkers identification. We further identified human aging and 
longevity biomarkers by investigating the characteristics of the relationships between gene, RNA, protein,  
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carbohydrate, lipid, peptide, pharmaceutical preparations, toxin, mutation entities and disease entities. The rela-
tionships between the potential human aging and longevity biomarkers and disease entities were divided into 
three classes as follows:

•	 Positive relationship. Positive relationships like “lead” and “cause” were considered aging-promoting 
relationships.

•	 Association relationship. Relationships that can indicate an association like “associated” and “related” were 
considered aging-promoting relationships.

•	 Negative relationship. Negative relationships like “prevent” and “ameliorate” were considered longevity-pro-
moting relationships.

Data Records
The dataset is available at Figshare30. HALD includes seven sets of files in JSON and CSV formats: (1) The 
“Literature_Info.json” file containing the human aging and longevity-related literature information about PMID, 
title (TI), abstract (AB), IF, IF5, author (AU), full author (FAU), affiliation (AD), publication type (PT), date of 
publication (DP), place of publication (PL), journal title (JT), journal title abbreviation (TA), and source(SO). 
(2) The “Entity_Info.json” file containing the information of the entities appearing in the literature about entity, 
type, official full name, PMID, sentence, number of articles, JT, TA, IF, IF5, year, date, alias names, description, 
url, mutation position, mutation alleles, MeSH ID, relation, external links, aging biomarker, and longevity bio-
marker. (3) The “Relation_Info.json” file containing the triples information about source entity, relationship, 
target entity, method, sentence, source, target, source type, target type, PMID, DP, date, TI, TA, IF, and IF5.  
(4) The “Aging_Biomarkers.json” file containing the aging biomarkers information about source entity, relation-
ship, target entity, sentence, source, target, source type, target type, PMID, DP, date, TI, TA, IF, and IF5. (5) The 
“Longevity_Biomarkers.json” file containing the longevity biomarkers information about source entity, relation-
ship, target entity, sentence, source, target, source type, target type, PMID, DP, date, TI, TA, IF, and IF5. (6) The 
“Entities.csv” file containing the entities information for Neo4j. (7) The “Roles.csv” file containing the relations 
information for Neo4j. The details are presented in Table 2.

technical Validation
Literature selection. After retrieving the literature, we selected literature with available abstracts in 
PubMed. While using PubTator, we selected literature with at least one identifier of species equaling “9606”  
representing Homo sapiens. Abstracts were then split into sentences by NLTK31.

Entities normalization. The process of entity normalization is to convert 10 types of entities into corre-
sponding unified standard formats according to the constructed dictionaries. Gene and RNA entities were all con-
verted into approved symbols provided by HGNC, and linked to NCBI gene dababase and HGNC. Carbohydrate, 
peptide, lipid, protein, pharmaceutical preparations, toxin, and disease entities were all converted into MeSH 
concepts and terms, and linked to MeSH through a Mesh unique ID. Mutation entities were also linked to dbSNP.

Main verbs formation. The active or passive form of the verb directly affects the directionality of the rela-
tionship, so we performed part-of-speech formation for the main verbs in the sentence. We conducted word 
segmentation, part-of-speech tagging, and dependency parsing on the sentences with relations. We first removed 
headings before a colon (such as “INTRODUCTION:”, “METHOD:”, “RESULT:”, and “CONCLUSION:”) in the 
sentences as they affected the dependency parsing for main verbs formation. Stanza is an NLP library based 
on PyTorch’s DL framework and neural network algorithms, providing many NLP functions like lemmatiza-
tion, part-of-speech tagging, NER, and syntactic analysis32. Genia is one of the biomedical treebanks for better 
performing biomedical syntactic analysis from biomedical texts33. Therefore, we used the Genia tool provided 
by Stanza to perform word segmentation, part-of-speech tagging, and dependency syntax analysis on these 
sentences. Word segmentation was to divide sentences into individual lexical units, while part-of-speech tag-
ging marked the parts of speech of verbs. Verb part-of-speech taggings included verb base (VB), verb past tense 
(VBD), verb present participle (VBG), verb past participle (VBN), verb non-3rd person singular present (VBP), 
and verb 3rd person singular present (VBZ). Since the verbs in VB, VBD, VBG, VBP, and VBZ tenses must 
express the active relationship, we directly transformed them into the original form of the verb to represent the 
active form of the main verb. However, verbs whose part of speech was VBN may express either an active rela-
tionship or a passive relationship, and it was necessary to further study the grammatical relationship between 
different words through dependency syntactic analysis. A relationship is passive if the past participle of the verb is 
preceded by the verb “be” or its conjugations, or as a complement to modify the subject or object in the sentence. 
After the above steps, the main verbs were all transformed into the original form expressing the active relation-
ship and the past participle form expressing the passive relationship, so that they could accurately reflect the 
directionality of the relationship.

Negation detection. The presence of negation greatly affects the meaning of sentences, so negative rela-
tions were detected and filtered out. Part-of-speech tagging also marked the parts of speech of adverbs including 
adverbs (RB), adverb comparative (RBR), and adverb superlative (RBS). Negative words (such as “no”, “not”, 
“never”, “hardly”, “barely”, “scarcely”, “rarely”, “few”, “little”, “seldom”, “neither”, and “nor”) whose part of speech 
was adverb were detected and such relations were excluded while conducting RE.

https://doi.org/10.1038/s41597-023-02781-0
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Framework of KG. Generally, resource description framework (RDF) and graph database are two main stor-
age forms of KG. RDF is convenient for designers to publish and share data, while graph dababase provides a 
user-friendly interface to browse data. Thus, we developed the graph database-based HALD to explore the human 
aging and longevity-related KG. The front end was built with React (https://react.dev/) and Elasticsearch (https://
www.elastic.co/) was used to realize a real-time search and management. We employed Neo4j (https://neo4j.
com/) to offer an intuitive network demonstration of the entities and relations knowledge. All analyses in this 
study were done inside JupyterLab (https://jupyter.org/) notebooks with the Python kernel. Automatic updates 
would be executed monthly to keep the KG up-to-date.

Evaluation of HaLD. Since genes make up the largest proportion of entities in HALD, we compared genes 
documented in HALD with those manually curated in GenAge9, LongevityMap9, Aging Atlas11 and AgingBank12. 
GenAge collects genes that are possibly related to human aging9. LongevityMap is a database of human genetic 
variants associated with longevity9. Aging Atlas provides a section of aging-related genes that can be regarded as 
aging biomarkers11. AgingBank is a manually curated knowledgebase of aging offering a table that can be filtered 
by “Pro/Anti” tags to classify the genes into aging and longevity groups12.

For aging-related genes, we compared HALD with the other three databases GenAge, Aging Atlas and 
AgingBank (Pro) (Fig. 2c). HALD contained the most aging-related genes, which provided a rich resource for 
aging biomarkers. 54.2%, 47.6%, and 58.2% of the aging-related genes in GenAge, Aging Atlas, and AgingBank 
(Pro) overlapped with aging-related genes in HALD respectively (Table 3). For longevity-related genes, we com-
pared HALD with the other two databases LongevityMap and AgingBank (Anti) (Fig. 2d). HALD collected 396 
longevity-related genes compared with 766 in LongevityMap and 99 in AgingBank (Anti). 10.4% and 27.3% of the 
longevity-related genes in LongevityMap and AgingBank (Anti) overlapped with genes in HALD (Table 3). It may 
be because HALD only extracted longevity-related entities with negative relationships mentioned in the title and 
abstract, while LongevityMap and AgingBank primarily curated entities from the full text manually. Furthermore, 
the top 10 aging and longevity-related genes in HALD were used to compare with the other databases (Table 3). 
These genes in HALD had high coverage with all the other databases except AgingBank (Pro). Considering that 
limited words extracted from a sentence might not accurately divide the entities into aging and longevity-related 
biomarkers, we also considered combining the biomarkers of aging and longevity in HALD together and compare 
them with the other five databases. We found that approximately 50% of genes overlapped except LongevityMap, 
and the proportion of the top ten overlapping genes has shown a significant increase in AgingBank.

In addition to comparing with known databases on human aging and longevity, we have also chosen two 
related studies for further evaluation1,34. López-Otn et al. proposed nine tentative hallmarks of aging to rep-
resent common factors of aging in different organisms, particularly in mammalian organisms1. We filtered all 
biomedical entities related to mammals from the literature and compared them with the entities collected in 
HALD. Apart from the telomere attrition feature, the other eight aging features all contained a certain number of 
entities. This is mainly because entities of telomere attrition tend to relate to the length of telomeres. In total, we 
extracted 37 different entities from the articles, all of which were found to match the entities in HALD after nor-
malization (Table S1). We predicted the relationships of these entities (Fig. 3) and found that all the entities were 
connected through the network except HSPA1A. Furthermore, we compared these entities with the biomarkers 
for aging and longevity identified in HALD and found that 33 out of 37 matched, except for HP1α35, Hsp7236, 
PGC-1α37,38, and PGC-1β38. We checked these articles manually and discovered that they were all related to 
mouse organisms and may not have been extensively studied in the context of human aging and longevity.

We also downloaded 258 potential aging biomarkers provided by the TAME Trial investigators34. 
Measurements like height and CD4/CD8 T cell ratio have less responsiveness to intervention, while biologi-
cal small molecules typically exert their biological functions by participating in the formation and regulation of 

File Objects Articles Variables Short Description

Literature_Info.json 339,145 339,145

PMID, title (TI), abstract (AB), IF (Journal Impact Factor), 
IF5 (Five-year Journal Impact Factors), author (AU), full 
author (FAU), affiliation (AD), publication type (PT), date 
of publication (DP), place of publication (PL), journal title 
(JT), journal title abbreviation (TA), and source(SO).

JSON file containing the information of human aging and 
longevity-related literature with abstracts

Entity_Info.json 12,227 181,924
entity, type, official full name, PMID, sentence, number of 
articles, JT, TA, IF, IF5, years, alias names, description, url, 
mutation position, mutation alleles, MeSH ID, relation, 
external links, aging biomarker, and longevity biomarker.

JSON file containing the information of the entities 
appearing in the literature

Relation_Info.json 115,522 50,191
source entity, relationship, target entity, method, sentence, 
source, target, source type, target type, PMID, DP, date, TI, 
TA, IF, and IF5.

JSON file containing the triples information

Aging_Biomarkers.json 1,855 1,502
source entity, relationship, target entity, sentence, source, 
target, source type, target type, PMID, DP, date, TI, TA, IF, 
and IF5.

JSON file containing the aging biomarkers information

Longevity_Biomarkers.json 525 494
source entity, relationship, target entity, sentence, source, 
target, source type, target type, PMID, DP, date, TI, TA, IF, 
and IF5.

JSON file containing the longevity biomarkers information

Entities.csv 6,906 50,191 ID, name, type, frequency, label CSV file containing the entities information for Neo4j

Roles.csv 115,514 50,191 start_ID, end_ID, relation, weight, method, type CSV file containing the relations information for Neo4j

Table 2. Dataset details.
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macromolecules. Therefore, we filtered out the entities under the situations of biological measurement, cell, 
medical measurement, physical measurement, questionnaire, amino acid, nucleotide, and radical. In this way, 
108 entities were left and we found that all of them matched the HALD dataset (Table S2). Justice et al. also 
applied four strict selection criteria to TAME and proposed the following ten biomarkers: IL-6, TNFÎ ± - 
receptor I or II, CRP, GDF15, insulin, IGF1, cystatin C, NT-proBNP, and hemoglobin A1c34. HALD not only 
comprehensively documented these ten entities but also accurately identified them as human aging and longevity  
biomarkers, which once again demonstrated the reliability of HALD.

Usage Notes
We designed HALD with four critical components, including (1) 339,918 articles related to human aging and 
longevity, (2) 10 types of entities (gene, RNA, carbohydrate, peptide, lipid, protein, pharmaceutical prepara-
tions, toxin, mutation, and disease), (3) 115,522 relations, and (4) 1,855 aging biomarkers and 525 longevity 
biomarkers. The presentation of the HALD dataset aimed to provide significant convenience to researchers in 
the field of human aging and longevity and reduce the workload of further sifting through vast amounts of data. 
Additionally, HALD predicted biomarkers of aging and longevity from published literature, making it a valu-
able reference for precision gerontology and geroscience analyses. HALD is publicly available at Figshare30, an 
open scientific data repository. For scientific researchers who want to explore the dataset intuitively, please visit 
https://bis.zju.edu.cn/hald for user-interactive browsing.

Below we demonstrate two use cases of how HALD may be used by researchers from different fields.
For researchers in the field of molecular biology, their primary concern lies in the biomarkers associated with 

human aging and longevity. For those without the programming background, directly using the online website 
can be more convenient. For example, they may want to first explore the genes most studied in the past decade. 
They can do this by using the website’s Search module, selecting “gene” as the entity type, specifying the year 
range from 2013 to 2023, and setting the filter mode to “Most”. The page will display information about the top 
ten genes, which currently are “INS, CRP, IL6, APOE, CD4, TNF, MAPT, ALB, SIRT1, and CD8A.” They can also 
search for the gene names of interest, and the auto-complete input box will suggest the most relevant entities. 
After searching, normalized entity names and related information will be displayed, including official full name, 
alias, summary, external links, and the number of related articles. External links can directly navigate to other 
databases, including NCBI, GenAge, LongevityMap, Aging Atlas and AgingBank. Furthermore, to the right of 
each gene label in the first row, there are tags for Network, Aging, and Longevity modules. Clicking on these 
tags allows them to access the corresponding pages. For detailed information about these top ten genes, they can 
click on the gene label to navigate to more specific tabular data, which includes details like PMID, source, type, 
JT, TA, DP, year, IF, IF5, and the sentences in which the entity is mentioned. In the table, each column is filtera-
ble, allowing them to easily filter results based on factors such as DP, IF and IF5. Additionally, the table supports 
the ability to download filtered results.

For clinical doctors, the focus lies in understanding the mechanisms underlying aging and longevity-related 
diseases, with a particular emphasis on the relationship between biological molecules and diseases. They can 
navigate to the Network module, filter the target entity type as “disease”, enter “Alzheimer Disease” in the input 
box, and limit the quantity to 50. Specifically, they can query direct or indirect relationships between nodes by 
setting the minimum and maximum number of relationships. Direct relationships are manifested as a triple 
present in a single sentence, while indirect relationships involve two or more sentences and are a form of pre-
dicted relationships. After clicking the “Load Network” button, a network graph composed of nodes and edges 
will be displayed in the lower left corner. When hovering the mouse over a node, a tooltip will display the entity’s 
name, frequency, and type. When hovering the mouse over an edge, it will show the relationship, weight and 
method. Weight for all the edges is the sum of the occurrences of that relation in various literature. Clicking on 
nodes or edges will display corresponding reference information on the right half of the webpage, including 
the sentence, source, relationship, target, method, relationship, JT, IF, IF5, DP, PMID, and TI. These details also 
support filtering and downloading based on date, IF, and IF5. Furthermore, the Aging and Longevity modules 
provide detailed information about the entities predicted as biomarkers of aging and longevity in this dataset, 
along with filtering and downloading capabilities.

HALD Other databases
Genes in 
HALD

Genes in other 
databases

Overlapping 
genes

Percentage in 
other databases

Top 10 
overlapping genes

Aging biomarkers

GenAge 1353 306 166 54.2% 7

Aging Atlas 1353 500 238 47.6% 8

AgingBank (Pro) 1353 55 32 58.2% 3

Longevity biomarkers
LongevityMap 396 766 80 10.4% 7

AgingBank (Anti) 396 99 27 27.3% 7

Aging and longevity 
biomarkers

GenAge 1473 306 173 56.5% 7

LongevityMap 1473 766 235 30.7% 7

Aging Atlas 1473 500 247 49.4% 8

AgingBank 1473 144 77 53.5% 7

Table 3. Comparisons of gene count between GenAge, LongevityMap, Aging Atlas, AgingBank and HALD.
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Further data analysis can be expanded by directly downloading the HALD dataset. Users are welcome to con-
tribute data and give suggestions in the Feedback module on the website at any time, by directly filling the form 
and click the “FEEDBACK” button to submit it. We will promptly check all the feedback, respond via email, and 
make necessary adjustments as soon as possible.

Code availability
All code used in this paper can be downloaded on GitHub at https://github.com/zexuwu/hald.
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