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VISEM-tracking, a human 
spermatozoa tracking dataset
Vajira thambawita  1,3 ✉, Steven a. Hicks1,3, andrea M. Storås1,2,3, thu Nguyen1, 
Jorunn M. andersen2, Oliwia Witczak2, trine B. Haugen2, Hugo L. Hammer1,2,3, Pål Halvorsen  1,2 
& Michael a. Riegler  1,2,3

a manual assessment of sperm motility requires microscopy observation, which is challenging due to 
the fast-moving spermatozoa in the field of view. To obtain correct results, manual evaluation requires 
extensive training. therefore, computer-aided sperm analysis (CaSa) has become increasingly used 
in clinics. Despite this, more data is needed to train supervised machine learning approaches in order 
to improve accuracy and reliability in the assessment of sperm motility and kinematics. In this regard, 
we provide a dataset called VISEM-Tracking with 20 video recordings of 30 seconds (comprising 29,196 
frames) of wet semen preparations with manually annotated bounding-box coordinates and a set 
of sperm characteristics analyzed by experts in the domain. In addition to the annotated data, we 
provide unlabeled video clips for easy-to-use access and analysis of the data via methods such as self- or 
unsupervised learning. as part of this paper, we present baseline sperm detection performances using 
the YOLOv5 deep learning (DL) model trained on the VISEM-Tracking dataset. As a result, we show that 
the dataset can be used to train complex DL models to analyze spermatozoa.

Background & Summary
Machine learning (ML) is increasingly being used to analyze videos of spermatozoa under a microscope for 
developing computer-aided sperm analysis (CASA) systems1,2. In the last few years, several studies have investi-
gated the use of deep neural networks (DNNs) to automatically determine specific attributes of a semen sample, 
like predicting the proportion of progressive, non-progressive, and immotile spermatozoa3–7. However, a major 
challenge with using ML for semen analysis is the general lack of data for training and validation. Only a few 
open labeled datasets exist (Table 1), with most focus on still-frames of fixed and stained spermatozoa or very 
short sequences of sperm to analyze the morphology of the spermatozoa.

In this paper, we present a multi-modal dataset containing videos of spermatozoa with the corresponding 
manually annotated bounding boxes (localization) and additional clinical information about the sperm pro-
viders from the original study8. This dataset is an extension of our previously published dataset VISEM8, which 
included videos of spermatozoa labeled with quality metrics following the World Health Organization (WHO) 
recommendations9.

There have been several datasets released related to spermatozoa, for example, Ghasemian et al.10 have pub-
lished an open sperm dataset called HSMA-DS: Human Sperm Morphology Analysis DataSet with normal and 
abnormal sperms. Experts annotated different features, namely vacuole, tail, midpiece, and head abnormality. The 
availability of abnormalities of these features were marked using binary notations such as 1 or 0, 1 is for abnormal, 
and 0 for normal. In total, there are 1,457 sperm for morphology analysis. These sperm images were captured with 
×400 and ×600 magnification. The Modified Human Sperm Morphology Analysis Dataset (MHSMA)11 consists 
of 1,540 cropped images from the HSMA-DS dataset10. This dataset was collected for analyzing different parts of 
sperm (morphology). The maximum image size in the dataset is 128 × 128 pixels.

The HuSHEM12 and SCIAN-MorphoSpermGS13 datasets consist of images of sperm heads captured from 
fixed and stained semen smears. The main purpose of these datasets is sperm morphology classification into 
five categories, namely normal, tapered, pyriform, small, and amorphous. SMIDS14 is another dataset consist-
ing of 3000 images cropped from 200 stained ocular images from 17 subjects between 19–39 years. From 3000 
images, 2027 patches were manually annotated as normal and abnormal. Another 973 samples were classified 
as non-sperm using spatial-based automated features. McCallum et al.15 have published another similar dataset 
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with bright-field sperm of six healthy participants within 1064 cropped images. The main purpose of this data-
set is to find correlations between sperm images obtained by bright field microscopy and sperm DNA quality. 
However, these datasets do not provide spermatozoa’s motility and kinetics features.

Chen et al.16 introduced a sperm dataset called SVIA (Sperm Videos and Images Analysis dataset), which 
contains 101 short 1 to 3 seconds video clips and corresponding manually annotated objects. The dataset is 
divided into three subsets, namely subset-A, B, and C. Subset-A contains 101 video clips (30 FPS) contain-
ing 125,000 object locations and corresponding categories. Subset-B contains 10 videos with 451 ground truth 
segmentation masks and subset-C consists of cropped sperms for classification into 2 categories (impurity 
images and sperm images). The provided video clips are very short compared to VISEM-Tracking. Our dataset17 
contains 7× more annotated video frames. In addition, VISEM-Tracking contains 2.3× more annotated objects 
compared to SVIA.

Author Name/Title Ground truth # Images # Videos Summary

Ghasemian et al.10 HSMA-DS: Human Sperm 
Morphology Analysis DataSet Classification 1,457 — This dataset is for morphology analysis and the dataset consists of 

captured sperm with ×400 and ×600 magnification.

Javadi et al.11
MHSMA: Modified Human 
Sperm Morphology Analysis 
Dataset

Classification 1,540 —
The dataset is for morphology analysis. This dataset consiss of only 
sperm heads cropped from different samples collected from 235 
participants.

Shaker et al.12 HuSHeM: Human Sperm 
Head Morphology Classification 216 —

HuSHem is for sperm morphology classification. Semen smears were 
fixed and stained. Contain sperm head images of 131 × 131 pixels. 
Four classes: normal, tapered, pyriform, and amorphous.

Violeta et al.13 SCIAN-MorphoSpermGS Classification 1854 — This dataset is for sperm morphology analysis. The data was classified 
into five classes: normal, tapered, pyriform, small, and amorphous.

Ilhan et al.14 SMIDS: Sperm Morphology 
Image Data Set Classification 3,000 —

For morphology analysis. The data was collected from 17 subjects.  
The dataset has manually annotated two classes: normal and abnormal, 
and an automatically extracted class: Non-sperm.

McCallum et al.15 — Classification 1,064 — Bright-field sperm images are 150 × 150 pixels and cropped from 
images of six healthy donors.

Chen et al.16 SVIA: Sperm Videos and 
Images Analysis dataset

Detection, 
segmentation and 
classification

4,041 101 (1–2 seconds)
The dataset consists of 278,000 annotated objects under three subsets. 
The data can be used for object detection (125,000 annotations), 
segmentation (26,000 annotations), and classification (125,880 
cropped objects from the images).

Haugen et al.8 VISEM Regression — 85
The dataset consists of 85 videos of 640 × 480 at 50 FPS. The ground 
truth files have manually assessed semen analysis data, fatty acids, sex 
hormones, and participant-related data.

Ours17 VISEM-Tracking Detection, tracking, 
and regression 29,196 20 (30 seconds) Our dataset contain 656,334 annotated objects with tracking 

details. More details about our dataset is discussed below.

Table 1. Overview of existing sperm datasets.

Fig. 1 Video frames of wet semen preparations with corresponding bounding boxes. Top: large images showing 
different classes of bounding boxes, red - sperm, green - sperm cluster, and blue - small or pinhead sperm. 
Bottom: presenting different sperm concentration levels from high to low (from left to right, respectively).
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VISEM-Tracking offers annotated bounding boxes and sperm tracking information, making it more valu-
able for training supervised ML models than the original VISEM dataset8, which lacks these annotations. This 
additional data enables a variety of research possibilities in both biology (e.g., comparing with CASA track-
ing) and computer science (e.g., object tracking, integrating clinical and tracking data). Unlike other datasets, 
VISEM-Tracking’s motility features facilitate sperm identification within video sequences, resulting in a richer 
and more detailed dataset that supports novel research directions. Potential applications include sperm tracking, 
classifying spermatozoa based on motility, and analyzing movement patterns. To the best of our knowledge, this 
is the first open dataset of its kind.

Methods
The videos for this dataset were originally obtained to study overweight and obesity in the context of male repro-
ductive function18,19. In the study, male participants aged 18 years or older were recruited between 2008 and 
2013. Further details on the recruitment can be found in8. The study was approved by the Regional Committee 
for Medical and Health Research Ethics, South East, Norway (REK number: 2008/3957). All participants pro-
vided written informed consent and agreed to the publication of the data. The original project was finished in 
December 2017, and all data was fully anonymized.

The samples to be recorded were placed on a heated microscope stage (37° C) and examined under a 400× 
magnification using an Olympus CX31 microscope. The videos were recorded by a microscope-mounted UEye 
UI-2210C camera made by IDS Imaging Development Systems in Germany. According to the WHO recommen-
dations9 light microscope equipped with phase-contrast optics is necessary for all examinations of unstained 
preparations of fresh semen. The videos are saved as AVI files. Motility assessment was performed based on the 
videos following the WHO recommendations9.

The bounding box annotation was performed by data scientists in close collaboration with researchers in the 
field of male reproduction. The data scientists labeled each video using the tool LabelBox (https://labelbox.com), 
which was then verified by the three biologists to ensure that the annotations were correct. Moreover, in addition 
to the per sperm tracking annotation, we also provide additional labels per spermatozoa, which are: ‘normal 
sperm’, ‘pinhead’, and ‘cluster’. The pinhead category consists of spermatozoa with abnormally small black heads 
within the view of the microscope. The cluster category consists of several spermatozoa grouped together. 
Sample annotations are presented in Fig. 1. The red boxes represent normal spermatozoa which constitute the 

Fig. 2 Splitting videos into 30 seconds clips. Green color represents the split used to manually annotate sperms 
using bounding boxes. Orange color represents the rest of 30s splits included in unlabeled dataset. Purple color 
section represents the last part of a video which does not have 30s long clip. Therefore, we do not include these 
endings in our dataset to maintain the consistency of 30s clips.

Description # Count

# annotated 30 s video clips 20

# frames per second (FPS) per video 45-50

# of annotated frames 29,196

# frames with at least one sperm 28,974

# frames with at least one cluster 10,199

# frames with at least one small or pinhead sperm 13,532

# bounding boxes 656,334

# classes 3 (sperm-0, cluster-1, 
small or pinhead-2)

# unique sperms (with tracking IDs) 1,121

# unique clusters (with tracking IDs) 20

# unique small or pinheads (with tracking IDs) 35

# unlabeled 30 s video clips 336

# remaining 30 s video clips from the 20 annotated videos 166

Table 2. Summary of quantitative information about the VISEM-Tracking dataset.
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majority of this dataset and are also biologically most relevant. The green boxes represent sperm clusters where 
few spermatozoa are clustered together, making it hard to annotate sperm separately. The blue color boxes rep-
resent small or pinhead spermatozoa which are smaller than normal spermatozoa and have very small heads 
compared to a normal sperm head.

Data Records
VISEM-Tracking is available at Zenodo (https://zenodo.org/record/7293726)17 and the license for the data is 
Creative Commons Attribution 4.0 International (CC BY 4.0). This dataset contains 20 videos (collected from  
20 different patients), each with a fixed duration of 30 seconds with the corresponding annotated bounding 
boxes. The 20 were chosen based on how different they are to all the videos in the dataset in order to obtain as 
many diverse tracking samples as possible. Since each video from the original dataset lasts for more than 30 
seconds we also provide, in addition to the annotated video clips, the remaining video as 166 (30 seconds) video 
clips for the 20 annotated videos and 336 (30 seconds) video clips for all unlabelled videos of the VISEM dataset8 
that were not used to provide tracking information. This was done to make it easy to use for future studies that 
aim to explore more advanced methods such as semi- or self-supervised learning20.

A length of 30 seconds was chosen to make it easier to annotate and process the video files. These videos can 
also be used for a possible extension of the tracking data in the future. The splitting process of the long videos is 
presented in Fig. 2. More details about the dataset itself are summarized in Table 2.

The folder containing annotated videos has 20 sub-folders with annotations of each video. Each folder of 
videos has a folder containing extracted frames of the video, a folder containing bounding box labels of each 
frame, and a folder containing bounding box labels and the corresponding tracking identifiers. In addition to 
these, a complete video file (.mp4) is provided in the same folder. All bounding box coordinates are given using 
the YOLO21 format. The folder containing bounding box details with tracking identifiers has ‘.txt‘ files with 

Fig. 3 Illustration of how the bounding box area changes over time for a given sperm head.

Fig. 4 Statistics about bounding box coordinates and area. (a) - 2D histogram on the center coordinates of the 
bounding boxes of the sperm class. (b) - 2D histogram on the center coordinates of the bounding boxes of the 
cluster class. (c) - 2D histogram on the center coordinates of the bounding boxes of the small and pinhead class. 
(d) - 2D histogram on the height and width (normalized values) of the bounding boxes of sperm class. (e) - 
2D histogram of the height and width (normalized values) of the bounding boxes of the cluster class. (f) - 2D 
histogram on the height and width (normalized values) of the bounding boxes of the small or pinhead class.
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unique tracking ids to identify individual spermatozoa throughout the video. It is worth noting that the area of 
the bounding boxes of the same sperm changes over time depending on its position and movement in the vid-
eos, as depicted in Fig. 3. Moreover, the text files contain class labels, 0: normal sperm, 1: sperm clusters, and 2:  
small or pinhead sperm. Additionally, the sperm_counts_per_frame.csv file provides per frame sperm count, 
cluster count, small_or_pinhead count.

In most of the labeled videos, each frame contains bounding box information (1,470 frames on average per 
video). The video titled video_23 has 174 frames without spermatozoa. Furthermore, some videos are recorded 
at different frame rates (videos video_35 and video_52 have 1,440 total frames, and video video_82 has 1,500 
total frames). The distribution of the bounding boxes is reflected in Fig. 4a, and the 2D histogram of the height 
and width of the bounding boxes is shown in Fig. 4b. Fig. 4a shows that the bounding boxes tend to be evenly 
distributed across the video frames, with a higher concentration of bounding boxes in the upper left of the video 
frames. According to Fig. 4b, the variation in bounding box size is quite small.

In addition to the bounding box details, several .csv files taken from the VISEM dataset8 are provided with 
additional information. These files include general information about participants (participant_related_data_
Train.csv), the standard semen analysis results (semen_analysis_data_Train.csv), serum levels of sex hormones 
(sex_hormones_Train.csv: measured from blood samples), serum levels of the fatty acids in the phospholipids 
(fatty_acids_serum_Train.csv: measured from blood samples), fatty acid levels of spermatozoa (fatty_acids_sper-
matoza_Train.csv). The summary of the content of these files is listed in Table 3.

technical Validation
We divided the 20 videos into a training dataset of 16 videos and a validation dataset of 4 videos (video IDs of 
the validation dataset are provided in the GitHub repository). The training set was used to train baseline deep 
learning (DL) models, and the validation dataset was used to evaluate our DL models. YOLOv521 was selected 
as the baseline sperm detection DNN model. This version of YOLO consists of five different models, namely, 
YOLOv5n (nano), YOLOv5s (small), YOLOv5m (medium), YOLOv5l (large), and YOLOv5x (XLarge). All 
models were trained using the training dataset with a number of class parameters of 3, which include normal 
sperm, cluster, and small or pinhead categories.

In the training process, we provided extracted frames and the corresponding bounding box details to the 
YOLOv5 models. We set the image size parameter to 640, batch size to 16, and the number of epochs to 300. All 
other hyperparameters, such as learning rate, batch size, and optimizer, were kept with default values of YOLOv5 
(https://github.com/ultralytics/yolov5). Furthermore, all experiments were performed on two NVIDIA GeForce 
RTX 3080 graphic processing units with a total of 20GB memory (10GB per each GPU) with AMD Ryzen 9 
3950X 16-Core Processor. The best model was found using the performance on the validation dataset.

File name File headers

participant_related_data_Train.csv ID, Abstinence time(days), Body mass index (kg/m2), Age (years)

semen_analysis_data_Train.csv

ID, Sperm concentration (x 106/mL), Total sperm count (x 106), Ejaculate volume (mL), Sperm vitality 
(%), Normal spermatozoa (%), Head defects (%), Midpiece and neck defects (%), Tail defects (%), 
Cytoplasmic droplet (%), Teratozoospermia index, Progressive motility (%), Non-progressive sperm 
motility (%), Immotile sperm (%), High DNA stainability, HDS (%), DNA fragmentation index, DFI 
(%)

sex_hormones_Train.csv
ID, Seminal plasma anti-Müllerian hormone (AMH) (pmol/L), Serum total testosterone (nmol/L), 
Serum oestradiol (nmol/L), Serum sex hormone-binding globulin, SHBG (nmol/L), Serum follicle-
stimulating hormone, FSH (IU/L), Serum Luteinizing hormone, LH (IU/L), Serum inhibin B (ng/L), 
Serum anti-Müllerian hormone, AMH (pmol/L)

fatty_acids_serum_Train.csv

ID, Serum C14:0 (myristic acid), Serum C16:0 (palmitic acid), Serum C16:1 (palmitoleic acid), Serum 
C18:0 (stearic acid), Serum C18:1 n-9 (oleic acid), Serum total C18:1, Serum C18:2 n-6 (linoleic 
acid, LA), Serum C18:3 n-6 (gamma-linoleic acid, GLA), Serum C20:1 n-9, Serum C20:2 n-6, Serum 
C20:3 n-6, Serum C20:4 n-6, Serum C20:5 n-3 (eicosapentaenoic acid, EPA), Serum C22:5 n-3 
(docosapentaenoic acid, DPA), Serum C22:6 n-3 (docosahexaenoic acid, DHA)

fatty_acids_spermatoza_Train.csv

ID, Sperm C14:0 (myristic acid), Sperm C15:0 (pentadecanoic acid), Sperm C16:0 (palmitic acid), 
Sperm C16:1 n-7 (palmitoleic acid), Sperm C17:0, Sperm C18:0 (stearic acid), Sperm C18:1 trans n-6 
to n-11, Sperm C18:1 n-9 (oleic acid), Sperm C18:1 n-7 to n-11, Sperm C18:2 n-6 (Linoleic acid, LA), 
Sperm C20:0, Sperm C18:3 n-6 (gamma-linoleic acid, GLA), Sperm C18:3 n-3 (a-linoleic acid, ALA), 
Sperm C20:1 n-9, Sperm C20:2 n-6, Sperm C22:0, Sperm C20:3 n-6, Sperm C20:4 n-6 and C22:1 n-9 
combined, Sperm C20:5 n-3 (eicosapentaenoic acid, EPA), Sperm C24:0, Sperm C24:1 n-9, Sperm 
C22:5 n-3 (docosapentaenoic acid, DPA), Sperm C22:6,n3 (docosahexaenoic acid, DHA)

Table 3. Summary of content of CSV files included in the VISEM-Tracking dataset.

YOLO model Precision Recall mAP_0.5 mAP_0.5:0.95 Fitness value

YOLOv5n 0.4120 0.2380 0.2046 0.0567 0.0715

YOLOv5s 0.4292 0.2560 0.2102 0.0703 0.0843

YOLOv5m 0.5712 0.2279 0.2216 0.0655 0.0811

YOLOv5l 0.4323 0.2550 0.2231 0.0775 0.0920

YOLOv5x 0.3093 0.2517 0.1995 0.0630 0.0766

Table 4. Different evaluation metrics and corresponding values with the five different YOLOv5 models  
(mAP = mean average precision).
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Precision, recall, mAP_0.5, mAP_0.5:0.95, and fitness value, as calculated by Jocher et al.21, were used to 
measure the performance of different YOLOv5 models. The results are listed in Table 4, showing that YOLOv5l 
performs best with a fitness value of 0.0920. The fitness value presented in the table is calculated using the 
following equation, which is used in the YOLOv5 implementation to compare model performance.

= . × . + . × .Fitness value mAP mAP_ (0 1 _0 5 0 9 _0 95)

Samples for visual comparisons of predictions from the five models are shown in Fig. 5. These predictions are 
from the first frame of the selected four validation videos.

Usage Notes
To the best of our knowledge, this is the first dataset containing long video clips of human semen sam-
ples (30 seconds with 45–50 FPS) that are manually annotated with bounding boxes for each spermatozoon. 
The performance of our DL experiments for detecting spermatozoa shows that the training data provided in this 
dataset is diverse and can be used to train advanced DL models.

The data enables different future research directions. For example, it can be used to prepare more labeled data 
using strategies like semi-supervised learning. Researchers can use the labeled data to train a DL model (such as 
YOLOv5) and predict bounding boxes for the unlabeled data. Then, those pseudo-labeled data can be passed to 
the experts in the domain to verify them. This method can make the data annotation process easier and produce 
accurate labeled datasets faster than manual annotations.

Sperm tracking is necessary to determine sperm dynamics and motility levels. We provide tracking IDs to 
identify the same spermatozoa throughout the video. Using this data, one can train sperm tracking algorithms, 
and the results of the tracking algorithms can help to identify different biomedical relevant parameters such as 
velocity and kinematics. Additionally, it is difficult to determine which spermatozoa in a semen sample have the 
highest motility, which is of clinical importance. The dataset can be used to train such algorithms for finding 
spermatozoa with the highest motility.

In addition to the sperm tracking annotations, we also provide additional metadata for the sperm samples. 
Using this data, researchers can train models that combine the metadata with the tracking information to obtain 
more accurate predictions of, for example, motility levels.

There is also a growing interest in exploring synthetic data to address data deficiencies and timely and costly 
data annotation problems in the medical domain22. Researchers can use the dataset to train deep generative 
models23,24 to generate synthetic data, which then can be used to train other ML models and achieve better gen-
eralizable performance. Furthermore, one can train conditional deep generative models25,26 to generate synthetic 
sperm data with the corresponding ground truth (bounding boxes) using our dataset to overcome the costly 
problem of getting annotated data.

Another hot topic in AI and medicine is simulating biological organs or creating digital twins. The dataset 
can, for example, be used to extract features of sperm motility to simulate spermatozoa and their behaviors. 
Simulations of spermatozoa can potentially lead to more accurate models than current solutions in the field.

Fig. 5 Predicted bounding boxes from the different models created with YOLOv5 for the first frames of the 
validation data. Video IDs 82, 60, 54 and 52 were used as validation videos.
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Code availability
The code repository with the scripts of data preparations and technical validations (models and pre-trained 
checkpoints) is available at https://github.com/simulamet-host/visem-tracking. The original YOLOv5 code is 
available at https://github.com/ultralytics/yolov5.
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