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Large-scale genotyping and 
phenotyping of a worldwide winter 
wheat genebank for its use in pre-
breeding
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Maximilian Rembe1, Norman Philipp1, Fang Liu1,10, Ulrike Beukert2, Albrecht Serfling2, 
axel Himmelbach1, Markus Oppermann  1, Stephan Weise  1, Philipp H. G. Boeven3, 
Johannes Schacht3, C. Friedrich H. Longin4, Sonja Kollers5, Nina Pfeiffer6, Viktor Korzun5, 
anne Fiebig1, Danuta Schüler1, Matthias Lange  1, Uwe Scholz  1, Nils Stein  1,7, 
Martin Mascher  1,8 & Jochen C. Reif  1 ✉

Plant genetic resources (PGR) stored at genebanks are humanity’s crop diversity savings for the future. 
Information on PGR contrasted with modern cultivars is key to select PGR parents for pre-breeding. 
Genotyping-by-sequencing was performed for 7,745 winter wheat PGR samples from the German 
Federal ex situ genebank at IPK Gatersleben and for 325 modern cultivars. Whole-genome shotgun 
sequencing was carried out for 446 diverse PGR samples and 322 modern cultivars and lines. In 19 
field trials, 7,683 PGR and 232 elite cultivars were characterized for resistance to yellow rust - one 
of the major threats to wheat worldwide. Yield breeding values of 707 PGR were estimated using 
hybrid crosses with 36 cultivars - an approach that reduces the lack of agronomic adaptation of PGR 
and provides better estimates of their contribution to yield breeding. Cross-validations support the 
interoperability between genomic and phenotypic data. the here presented data are a stepping 
stone to unlock the functional variation of PGR for European pre-breeding and are the basis for future 
breeding and research activities.

Background & Summary
Common wheat (Triticum aestivum L.) is one of the ‘big three’ crops supplying most of the calories for the 
world population1. Urban expansion at expenses of agricultural areas2–4, climate change4–6, environmental 
pollution and agroecosystem degradation3,4,6 threaten future food security. Furthermore, wheat yield improve-
ments showed a significant stagnation during the last decade6 which can be attributed to an eroded diversity 
in elite breeding7–9. Historically, we have learned the ‘hard way’ that a narrow genetic basis in cultivated plants 
increases the risk of crop pandemics10–12. For instance, Puccinia striiformis f. sp. tritici, - the causal agent of yel-
low rust (YR) - causes severe yield losses13 and its recent pandemics broke down several resistance genes (Yr) 
that are widely deployed in modern wheat cultivars10,14–16. Pandemic races ‘PstS7’ and ‘PstS8’, a.k.a. ‘Warrior’ 
and ‘Kranich’, respectively, originated in the near-Himalayan region10,15 and spread worldwide during the last 
decade10,15,16. During 2020, ‘Warrior’ and ‘Kranich’ lost importance in Europe, where ‘PstS10’ was the most 
prevalent race group16, thus illustrating how fast YR populations can evolve in the field. Paving the way towards 
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a more sustainable agriculture, the management and diversification of resistant mechanisms17 will be the ‘main 
weapon’ to confront the increased risk of YR infection occurrence expected for Europe and other temperate 
regions in a climate change context18.

Decreased genetic diversity of cultivated wheat could be boosted by rescuing the abandoned or unexplored 
diversity treasure hidden in the ~800 K wheat plant genetic resources (PGR) stored at Genebanks worldwide19,20. 
In this respect, the Nagoya Protocol of the Convention of Biological Biodiversity was conceived to promote 
the use and equitable sharing of benefits from PGR for sustainable development (https://www.cbd.int/abs/
about/). In addition, genebank genomics have already demonstrated how ‘molecular passports’ create value in 
genebank management by providing precise knowledge that goes beyond the boundaries of classical descrip-
tors20,21. Nevertheless, due to the scarcity of agriculture-relevant information available for PGR, breeders often 
end up randomly choosing PGR as parents in crosses: an untargeted approach with low return of investment22. 
Furthermore, the value of PGR for agriculture and breeding is always relative to what can be found in modern 
cultivars. On the one hand, PGR characterizations should be put into this context by doing side-by-side com-
parisons between PGR and the modern gene pool23,24. On the other hand, PGR-versus-cultivar comparisons are 
biased for complex traits such as yield, where PGR are at disadvantage for their general lack of agronomic adap-
tation. This lack of adaptation is corrected by evaluating hybrid crosses between PGR and modern cultivars14,25,26 
– an intermediate background that allows the estimation of the yield breeding value of PGR14,27.

Our study relies on the winter wheat collection hosted at the German Federal ex situ Genebank of 
Agricultural and Horticultural Crops in Gatersleben (IPK genebank). With ~ 27 K Triticum sp. PGR, the IPK 
collection is one of the largest among EU-27 countries19. Genotyping-by-sequencing (GBS) was carried out for 
7,745 PGR samples of the IPK genebank and 325 modern cultivars. Whole-genome shotgun sequencing (WGS, 
3-fold coverage) was performed for 446 diverse PGR samples, 191 modern cultivars and 131 advanced breeding 
lines. YR resistance was scored across 19 field experiments for 7,683 PGR and 232 elite cultivars. A total of 26 
yield experiments allowed the evaluation of the contribution of 707 diverse PGR to yield improvement using 
‘Elite × PGR’ bridging crosses. To the best of our knowledge, no large-scale datasets have been made publicly 
available so far that contain interoperable genomic and agriculture-relevant information on wheat PGR. Raw 
and processed data as well as phenotypic- and genomic-based approaches to prove data quality and interop-
erability are made available here following the FAIR principles of data publication28. In our main companion 
study14, genomic data was used to study crop genetic diversity as well as to detect duplicates, mislabeling of PGR, 
gaps between European genebank collections, selective sweeps and alien introgressions introduced by breeding. 
Mining YR and genomic data identified potential PGR donors of new sources of resistance not yet used in breed-
ing. Yield breeding values guided early pre-breeding activities and allowed the obtention of PGR-derived lines 
with competitive yield levels in field experiments. We expect that these data incentive additional data science 
and breeding activities that can further valorize PGR.

Methods
Plant material. Overview. Across datasets, experiments and crosses, wheat genotypes trace back to 9,145 
PGR from the IPK genebank, 340 European elite cultivars, and 131 German advanced breeding lines. Passport 
information respecting scientific name, growth habit, geographical origin, as well as acquisition (‘TRI’ PGR), 
release (‘B’ PGR/elite cultivars), and obtention (elite breeding lines) date of the studied material were collected in 
our companion publication14. In more detail, information for PGR of the ‘TRI’ collection was accessed through 
the Genebank Information System (GBIS)29 as extended MCPD-format. Passport data of PGR from the ‘Boris 96’ 
panel30, i.e. ‘B’ collection; as well as information for elite cultivars and German breeding lines were compiled from 
different publications, online databases and website sources14. Not only for the IPK genebank but for genebanks 
worldwide in general, passport data are dynamic and are prone to change over time due to, for instance, gene-
bank curation activities20,21. To deal with different versions of identifiers in passport data, the IPK genebank uses 
unique digital object identifiers (DOIs) that are fixed and can trace back plant material to the formerly requested 
IPK accessions and their information.

Taxonomically, almost all PGR were either explicitly declared/classified as Triticum aestivum L. (67.2%) or 
in general as Triticum sp. (32.3%), while the very small proportion of remaining PGR have either not been clas-
sified yet (0.4%), corresponded to tetraploid wheat species (0.08%) or were wheat interspecific hybrids (0.02%). 
All European elite genotypes (cultivars plus breeding lines) were classified as Triticum aestivum L.. Growth 
habits of databases were contrasted with own field observations and correspondingly updated in our companion 
work14. PGR are almost entirely composed of strictly winter types (98.8%) with a small proportion of facultative 
types (1.2%). Similarly, most European elite genotypes are of winter type (96.8%) plus some facultative (2.1%) 
and spring (1.1%) type wheats.

Among the 55 different geographical origins reported for PGR (Fig. 1a), 52 have official ISO 3166 Alpha-3 
country codes (https://www.iso.org/obp/ui). Current states/countries of the former Soviet Union (SUN), 
Yugoslavia (YUG), and Czechoslovakia (CSK) were pooled together according to each of these three origins 
to homogenize different nomenclatures that arise due to historical reasons. In addition, for 1,506 PGR (16.5%) 
their origins are unknown, while only one European cultivar (0.3%) is missing its exact country of origin. 
European nations were the most common PGR origins (60.6%), followed by Asia (15.1%), and American coun-
tries (7.4%) (Fig. 1a). Most European PGR originated in Germany (23.4% of European origins), Italy (13.3%), 
and the former Soviet Union (10.7%). The majority of European elite genotypes belongs to Germany (61.8%), 
Great Britain (11%), France (10.6%), and Poland (7%) (Fig. 1b).

Regarding acquisition/release dates, these are unknown for 44 PGR (0.5%) and six elite cultivars (1.8%), 
respectively. PGR span an 80-year time window (1927–2007), with most of them (97.8%) tracing back to the 
last century (Fig. 2). Release or obtention dates of European elite genotypes range from 1975 to 2020, with the 
majority of them (87.5%) released/obtained from 2000 onwards. Among European cultivars, ‘Monopol’ is the 
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oldest one (released in 1975) and is still grown today in Germany for its high milling and baking quality31, while 
‘LGCharacter’ and ‘RGTRitter’ were the newest varieties (both released in 2020).

Seed sources. PGR from the ‘TRI’ catalog were directly obtained from the IPK genebank through GBIS, while 
seeds of PGR from the ‘B’ collection were kindly facilitated by Dr. Andreas Börner. The IPK genebank can nor-
mally provide ~5 g of seeds per PGR. Thus, in order to fulfill seed amount needs of large-scale research activities, 
seeds of 9,135 PGR were multiplied in a first step using single-row propagation plots. In parallel, 173 of these 
PGR plus 10 additional ones were multiplied under greenhouse conditions under the frame of the GenDiv pro-
ject32. For elite cultivars, seeds were obtained from the local market either recently or in previous projects33,34. 
Seeds of the advanced breeding lines were provided by four breeding companies with base in Germany35,36.

For field-propagated PGR, one (two) representative ear(s) was (were) bagged in case of homogeneous (clearly 
non-homogenous) PGR. Following a single-seed descent (SSD) method, seeds from isolated ears were harvested 
separately from the rest of the plot and further propagated using an ear-to-row method. Hereafter, we refer to 
these PGR samples as SSD-PGR. Greenhouse-propagated PGR were fixed by applying the SSD method for two 
consecutive generations (2 × SSD) for each PGR32.

Large-scale genotyping. Genomic data production. GBS was performed for 7,745 SSD-PGR plus 325 
elite cultivars, while WGS was conducted for 263 SSD-PGR, 191 elite cultivars, 131 advanced breeding lines, 
and the 183 greenhouse-propagated PGR. GBS-characterized SSD-PGR trace back to 7,651 accessions and are 
identified with a unique correlative number combined with the PGR name nomenclature from the ‘TRI’ and ‘B’ 
collections. In more detail, SSD-PGR originate from single representative plants of 7,557 homogenous PGR and 
94 double sampled non-homogenous PGR. For 171 modern cultivars, three plants per genotype were sequenced 
in a previous work7, while only a single plant per genotype was sequenced for the remaining samples. Regarding 
WGS-characterized SSD-PGR, only two of them trace back to a double sampled non-homogenous PGR. For each 
genotype, DNA was extracted from a single in-greenhouse-grown-10-days-old seedling using silica-membrane 
technology (NucleoSpin® 96 Plant II) according to manufacturer instructions (Machery-Nagel).

a

b

PGR (counts)

Elite (counts)

1 1300

1 291

Fig. 1 Number of counts according to the geographical origins of the 9,616 genotypes considered in the current 
study. (a) World map of 7,639 out of 9,145 winter wheat plant genetic resources (PGR) from the IPK genebank 
with 55 known geographical origins. (b) Map of Europe (excluding Russia), portraying releasing/obtention 
countries for 471 elite genotypes (340 European cultivars plus 131 German breeding lines). In (a) and (b), 
territories in gray lack entries. All maps were generated with Datawrapper.
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GBS was conducted following a two-enzyme digestion protocol37,38. For this, DNA samples were simultane-
ously digested with PstI and MspI (New England Biolabs) and sticky ends were ligated with adapters containing 
sample-specific barcode sequences. This step allowed to track down each processed barcoded sample after DNA 
pooling. DNA was pooled into batches of 540 genotypes in equimolar amount to form a GBS library. Single-end 
sequencing (1 × 107 cycles) was conducted following Illumina protocols on HiSeq 2000 (171 × 3 = 513 samples), 
HiSeq 2500 (6,262 samples) or NovaSeq 6000 (1,637 samples) devices and using custom sequencing primers.
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Fig. 2 Distribution of the number of PGR (orange columns), elite cultivars (green) and breeding lines (blue) 
considered in this study according to their years of acquisition, release or obtention. When present, the exact 
counts number of genotypes per year are included within brackets [].
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For WGS, libraries were prepared using the Nextera DNA Flex Library Prep following Illumina protocols 
and pooled afterwards in an equimolar manner. The multiplexed pool was quantified by qPCR and paired-end 
sequenced (2 × 151 cycles and 10 bp for the index reads) using a NovaSeq 6000 system and an average genome 
coverage of 3-fold.

Genomic data processing. In a first step, reads of each of the 171 modern cultivars sequenced in triplicate were 
pooled according to each original genotype. In this regard and if the opposite is not stated, the terms samples and 
genotypes are used indistinctly when referring to genomic data throughout the whole manuscript. Low-quality 
bases and adapter sequences were discarded from GBS raw reads using cutadapt (v1.16)39 by considering a 
minimum read length of 30 bp. This step was subsequently confirmed by using FastQC (v0.11.7)40. After this, 
BWA-MEM (v0.7.17)41 was applied at default settings to align the retained high-quality reads against the hexa-
ploid wheat reference genome assembly of Chinese Spring (RefSeq v1.0)42. For WGS, reads were aligned with 
minimap2 (v2.17)43, in which the genome index size was set to 50 Gb while all other parameters remained as 
per default. Alignments were converted into binary map format using SAMtools (v1.9)44 and sorted afterwards 
with NovoSort® (v3.06.05). Variant calling was done using the mpileup and call functions from SAMtools/
BCFtools (v1.8)45 with parameters -DV and minimum read quality (q) cutoff = 20. Later, those biallelic variants 
were retained in the generated variant calling format (VCF) files using a custom awk script if the minimum 
QUAL = 40, minimum read depth for homozygous calls = 2 and for heterozygous calls = 4, in case of GBS, while 
these parameters were set to 40, 1, and 2, respectively, for WGS. From here onwards, we refer to these VCF files 
for GBS and WGS polymorphic variants as “unfiltered” SNP data. For the assessment of molecular diversity, 
linkage disequilibrium and genomic-phenotypic data interoperability (see last two sections of Methods), VCF 
files were further filtered using BCFtools and base and data.table (v1.12.8) functions in R environment46 (v3.6.1). 
Files were imported into R using the vcfR package (v1.12.0)47. Here, only markers having a minimum QUAL 
value of 40, a maximum percentage of missing values of 10%, ≥10 genotypes carrying any of both alleles in 
homozygous state, and ≤1% heterozygosity, were retained.

Field evaluations of yellow rust resistance. Two groups of field experiments, summing up to 19 in total, 
were conducted to evaluate the resistance against YR (Table 1):

Large-scale resistance screening in unbalanced experiments. Twelve experiments were performed to large-scale 
evaluate the YR resistance of 7,684 PGR and 80 European elite cultivars based on naturally occurring infections 
(Table 1). An additional wheat genotype denoted as ‘Filler’ was considered due to technical reasons during 
sowing, but it was not part of the tested entries and has no passport data. Given the large number of entries 
to be screened, the plant material was tested in an unbalanced fashion by considering 1,428–1,697 entries per 
experiment (Table 1). Experiments were conducted between harvest years 2015–2020 at locations Gatersleben 
and Schackstedt. Wheat plants were cultivated in all experiments under rainfed continental conditions pre-
dominant at both German locations. In all experiments, chemical crop protection comprised only the use of 
herbicides, while no fertilizers were applied. In each experiment, the experimental unit corresponded to a 0.4 m2 
plot. An alpha lattice design with two complete replications divided into incomplete blocks was used to account 
for uncontrolled spatial variation. Except experiment SST_2019_6, in which infection severity was scored in 
only one replication, both replications were measured in each experiment. In addition, GAT_2019_6 is the 
only experiment of this group in which YR infections were scored at two (early and late) dates. For this exper-
iment, only the maximum as the most differentiating value among the two dates was retained for each plot. 
Otherwise experiments considered only a single scoring date after the clear onset of YR infections. Infection 
severity was expressed in a 1 (no symptoms) to 9 (severe infection) scoring scale following the official protocols 
of the German Federal Plant Variety Office48.

Precision balanced experiments. Seven experiments were conducted to test 200 European elite cultivars and 
600 SSD-PGR (Table 1). Elite cultivars were pre-selected based on their maximized genomic diversity. The 
600 SSD-PGR are not only a highly diverse sample but harbor also an increased proportion of resistant gen-
otypes - which are in general at low frequencies in genebanks14. Among the 600 SSD-PGR, only two of them 
trace back to a double sampled non-homogenous PGR. Three wheat entries not belonging to the 200 cultivars 
plus 600 SSD-PGR but used to estimate experiment effects lack of passport data and were thus denoted as 
Filler_1–3. Experiments were conducted during harvest years 2019 and 2020 in German locations Gatersleben, 
Quedlinburg, Wetze, and Rosenthal (Table 1). Wheat plants were cultivated in all experiments under rain-
fed continental conditions predominant at all considered locations. Experiments GAT_YR_2018 and -_2019 
were based on natural infections, while the other five experiments were artificially inoculated. Experiments 
ROS_YR_2018 and -_2019 relied on inoculations directly applied on the tested material, whereas surrounding 
susceptible spreader plots served as initial inoculum source for the tested entries in the other three inoculated 
experiments. Artificial inoculations were based on spore mixtures of race isolates from genetic groups ‘PstS7’ 
and ‘PstS10’ collected during past crop seasons. As reported by the Global Rust Reference Center16, these two 
aggressive race groups are virulent against resistance genes Yr1, Yr2, Yr3, Yr4, Yr6, Yr7, Yr9, Yr17, Yr25, Yr32 and 
also against resistance specificities of genotypes ‘Spalding Prolific’ and ‘Avocet S’. As well, both race groups are 
avirulent against resistance genes Yr5, Yr8, Yr10, Yr15, Yr24 and Yr27. In particular, ‘PstS7’ is virulent against 
the resistance specificity of the genotype ‘Ambition’, while ‘PstS10’ being avirulent. Experiments conducted in 
Gatersleben considered chemical weed control without use of fertilizers, while fertilizers but no herbicides were 
applied in the QLB_YR_2019 experiment (Table 1). Regarding experiments conducted in Wetze and Rosenthal 
both, herbicides and fertilizers were applied. Except for the QLB_YR_2019 experiment, where plant material 
was tested using a single replication in incomplete blocks, all experiments considered two complete replications 
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and an alpha lattice design. The size of the experimental unit was a 0.2–0.5 m2 plot, with a size fixed for each test 
location. Disease symptoms were scored at a single timepoint after the onset of YR infection in WTZ_YR_2019, 
ROS_YR_2018 and -_2019 experiments, while early and late infections were recorded in the other four exper-
iments. QLB_YR_2019 was the only experiment where infection was originally recorded using a percentage 
instead of a 1–9 scoring scale. Percentage scorings were transformed into a 1–9 scale using the scale conversion 
key of the German Federal Plant Variety Office48.

Yield evaluations for informed pre-breeding. Two groups of field experiments, summing up to 26 
in total, were conducted to evaluate the contribution of PGR to yield improvement using ‘Elite × PGR’ crosses 
(Table 2):

Yield breeding value estimation experiments. A total of 751 PGR - 234 PGR plus 527 SSD-PGR denoted with 
the suffix “_ISO” - and four elite cultivars were crossed as male parents with up to 16 out of 42 elite cultivars 
using chemical hybridization agents in the field. Particularly, 1,569 out of the 1,577 resulting hybrids corre-
sponded to ‘Elite × PGR’ factorial crosses, while the remaining eight hybrids were ‘Elite1 × Elite2’ crosses. PGR 
serving as pollen donors comprise a diverse sample from the IPK genebank14 and were pre-selected for their 
pronounced anther extrusion based on large-scale screenings of genebank material. This pre-selection ensured 
a sufficient quantity of field-produced hybrid seed to be able to conduct multiple field experiments. Hybrid seed 
of ‘Elite × PGR’ and ‘Elite1 × Elite2’ crosses was produced at the IPK facilities. Sterility of the female parents was 
checked by bagging at least one plant per crossing block49. In addition, during the season following seed produc-
tion, the uniformity and hybridity – a clear morphological differentiation from the female parent – of F1 seeds 

Group Experiment Locationa Yearb Timesc Infectiond Agronomye Designf
Plot size 
(m2) Replicatesg Entriesh

Large-scale 
screening

GAT_2014_1 Gatersleben 2014–2015 1x Natural H α lattice 0.4 2 1537

SST_2014_1 Schackstedt 2014–2015 1x Natural H α lattice 0.4 2 1537

GAT_2014_2 Gatersleben 2014–2015 1x Natural H α lattice 0.4 2 1560

GAT_2015_2 Gatersleben 2015–2016 1x Natural H α lattice 0.4 2 1561

SST_2015_2 Schackstedt 2015–2016 1x Natural H α lattice 0.4 2 1509

GAT_2015_3 Gatersleben 2015–2016 1x Natural H α lattice 0.4 2 1600

GAT_2016_3 Gatersleben 2016–2017 1x Natural H α lattice 0.4 2 1588

GAT_2017_3 Gatersleben 2017–2018 1x Natural H α lattice 0.4 2 1583

GAT_2017_5 Gatersleben 2017–2018 1x Natural H α lattice 0.4 2 1447

SST_2018_5 Schackstedt 2018–2019 1x Natural H α lattice 0.4 2 1428

GAT_2019_6 Gatersleben 2019–2020 M:2x Natural H α lattice 0.4 2 1697

SST_2019_6 Schackstedt 2019–2020 1x Natural H α lattice 0.4 1(2) 1696

Precision

GAT_YR_2018 Gatersleben 2018–2019 2x Natural H α lattice 0.4 2 793

ROS_YR_2018 Rosenthal 2018–2019 1x Artificial „F“ H/F α lattice 0.3 2 800

WTZ_YR_2018 Wetze 2018–2019 2x Artificial „S“ H/F α lattice 0.5 2 800

GAT_YR_2019 Gatersleben 2019–2020 2x Natural H α lattice 0.4 2 801

QLB_YR_2019 Quedlinburg 2019–2020 2x Artificial „S“ F IB 0.2 1 800

ROS_YR_2019 Rosenthal 2019–2020 1x Artificial „F“ H/F α lattice 0.3 2 798

WTZ_YR_2019 Wetze 2019–2020 1x Artificial „S“ H/F α lattice 0.5 2 799

Table 1. Summary of the 12 unbalanced large-scale screening experiments and seven balanced precision 
experiments conducted in the field to evaluate yellow rust (YR, Puccinia striiformis f. sp. tritici) severity of plant 
genetic resources and elite cultivars. aLocation specificities are as follows: Gatersleben (latitude 51° 49’ 19.74” 
N, longitude 11° 17’ 11.80” E, 111 m.a.s.l., black soil of clayey loam-texture, 9 °C average annual temperature, 
490 mm average annual rainfall), Schackstedt (latitude 51° 43’ 0” N, longitude 11° 37’ 0” E, 122 m.a.s.l., black 
soil of clayey loam-texture, 8.9 °C average annual temperature, 483 mm average annual rainfall), Quedlinburg 
(latitude 51° 46’ 22.22” N, longitude 11° 9’ 12.82” E, 140 m.a.s.l., black soil of clayey loam-texture, 8.9 °C average 
annual temperature, 497 mm average annual rainfall), Rosenthal (latitude 52° 18’ 10.242” N, longitude 10° 10’ 
26.2668” E, 72 m.a.s.l., brown soil of slightly sandy loam-texture, 9.5 °C average annual temperature, 637 mm 
average annual rainfall), Wetze (latitude 51° 44’ 22.686” N, longitude 9° 54’ 36.1224” E, 136 m.a.s.l., brown soil 
of slightly clayey loam-texture, 8.6 °C average annual temperature, 664 mm average annual rainfall). bSowing 
- harvest years. cDisease symptoms were scored either once (1x) or twice (2x) after the onset of YR infection. 
M:2x means that only the maximum infection value was recorded. dMaterial was tested based either on natural 
infections (Natural), artificial inoculations using spreader plots (Artifial “S”) or full experiment artificial 
inoculations (Artifial “F”). eCrop management considered chemical control against weeds (H) and/or use of 
fertilizers (F). fSpatial variation was corrected using an alpha (α lattice) design with blocks subdivided into 
incomplete blocks or only considering incomplete blocks (IB). gIn case of 1(2) only one of two replicates was 
measured. hNumber of entries according to the original field plan.
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were controlled by growing each hybrid and its both parents side-by-side in 0.2 m2 plots. In parallel, the 1,577 
IPK hybrids were tested together with 347 hybrids from the State Plant Breeding Institute of the University of 
Hohenheim (Landessaatzuchtanstalt, LSA), 518 parent genotypes, in addition to a set of 40 checks for their grain 
yield. Yield testing was conducted in a staggered fashion throughout five consecutive years by using partially 
overlapping entry groups (series), each composed of 501 to 617 genotypes (Table 2). Except for series 5, which 
was tested in only two locations, each series was tested in five locations. Across series, a total of 22 estimation 
experiments spanned together harvest years 2016–2020 and seven different German locations: Hohenheim, 
Renningen, Gatersleben, Schackstedt, Böhnhausen, Asendorf, and Hadmersleben. All experiments were con-
ducted following an alpha lattice design. Experiments were performed either in an unreplicated (series 1, 2 and 
4, plus three experiments of series 3), partially replicated (series 3) or completely replicated (series 5) fashion. 
For experiments of series 1 and 2, trialing and blocking was used to account and correct for uncontrolled spa-
tial variation, while complete and/or incomplete blocks were considered for this purpose in series 3 to 5. The 
experimental unit corresponded for all series to a plot, with sizes ranging between 6 to 9 m2. Wheat plants were 
cultivated in all experiments under rainfed continental conditions predominant at all considered locations. In 
all breeding value estimation experiments plots were treated with fertilizers, herbicides, and pesticides by fol-
lowing conventional local practices. Harvest of plots was performed with a combine harvester and plot yield was 
adjusted to a 140 g H2O kg−1 moisture basis and expressed in Mg ha−1.

Yield breeding value validation experiments. The feasibility to develop high yielding pre-breeding mate-
rial using breeding values as a tool for PGR parent selection was evaluated in early yield testing experiments 
(Table 2). Preliminary breeding values obtained from estimation experiments of harvest year 2016 were used to 
select 13 PGR with high yield breeding value estimates. These PGR served as pollen donors in 14 and 18 initial 

Group Series Experiment Locationa Yearb Trialsc Trial Design Testd
Block 
sizee Entriesf

Estimation

S1 BOH_2015 Böhnhausen 2015–2016 2 α lattice U 9 611

S1 GAT_2015 Gatersleben 2015–2016 2 α lattice U 9 611

S1 HOH_2015 Hohenheim 2015–2016 2 α lattice U 9 611

S1 RNG_2015 Renningen 2015–2016 2 α lattice U 9 611

S1 SST_2015 Schackstedt 2015–2016 2 α lattice U 9 611

S2 ASD_2016 Asendorf 2016–2017 2 α lattice U 10 615

S2 GAT_2016 Gatersleben 2016–2017 2 α lattice U 10 614

S2 HOH_2016 Hohenheim 2016–2017 2 α lattice U 10 614

S2 RNG_2016 Renningen 2016–2017 2 α lattice U 10 617

S2 SST_2016 Schackstedt 2016–2017 2 α lattice U 10 617

S3 GAT_2017 Gatersleben 2017–2018 1 α lattice PR 10 433

S3 HDM_2017 Hadmersleben 2017–2018 1 α lattice U 10 500

S3 HOH_2017 Hohenheim 2017–2018 1 α lattice U 10 500

S3 RNG_2017 Renningen 2017–2018 1 α lattice U 10 500

S3 SST_2017 Schackstedt 2017–2018 1 α lattice PR 10 389

S4 GAT_2018 Gatersleben 2018–2019 1 α lattice U 12 495

S4 HDM_2018 Hadmersleben 2018–2019 1 α lattice U 12 488

S4 HOH_2018 Hohenheim 2018–2019 1 α lattice U 12 502

S4 RNG_2018 Renningen 2018–2019 1 α lattice U 12 502

S4 SST_2018 Schackstedt 2018–2019 1 α lattice U 12 502

S5 GAT_2019 Gatersleben 2019–2020 1 α lattice CR 10 510

S5 SST_2019 Schackstedt 2019–2020 1 α lattice CR 10 510

Validation

— GAT_PB_2019 Gatersleben 2019–2020 1 Incomplete block PR 4–5 95

— SST_PB_2019 Schackstedt 2019–2020 1 Incomplete block PR 4–5 59

— GAT_PB_2020 Gatersleben 2020–2021 1 Incomplete block PR 5 118

— SST_PB_2020 Schackstedt 2020–2021 1 Incomplete block PR 5 108

Table 2. Summary of experimental setup for the 22 and four estimation and validation experiments, 
respectively, of yield breeding values of plant genetic resources using bridging ‘Elite × PGR’ crosses. aLocations 
specificities are as follows: Böhnhausen (latitude 51° 51’ 30.95” N, longitude 10° 57’ 44.32” E, 173 m.a.s.l.), 
Gatersleben (latitude 51° 49’ 19.74” N, longitude 11° 17’ 11.80” E, 111 m.a.s.l.), Hohenheim (latitude 49° 43’ 
2.65” N, longitude 9° 11’ 12.70” E, 406 m.a.s.l.), Renningen (latitude 48° 44’ 29.58” N, longitude 8° 55’ 15.35” 
E, 484 m.a.s.l.), Schackstedt (latitude 51° 43’ 0” N, longitude 11° 37’ 0” E, 122 m.a.s.l.), Asendorf (latitude 52° 
44’ 17.93” N, longitude 9° 0’ 24.11” E, 45 m.a.s.l.), Hadmersleben (latitude 51° 59’ 29.79” N, longitude 11° 18’ 
12.79” E, 91 m.a.s.l.). bSowing - harvest years. cNumber of trials per experiment. dGenotypes were tested either 
in an unreplicated (U), partially (>20%) replicated (PR) or completely replicated (CR) fashion. eSize of the 
incomplete blocks (number of plots) used to account and correct for uncontrolled spatial variation. Plot sizes 
ranged between 6 to 9 m2. fNumber of entries according to the original field plan.

https://doi.org/10.1038/s41597-022-01891-5


8Scientific Data |           (2022) 9:784  | https://doi.org/10.1038/s41597-022-01891-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

crosses during 2016 and 2017, respectively. Two additional PGR lacking of breeding value estimates were also 
considered as male parents in crosses during 2017. A set of 12 locally adapted European elite cultivars released 
between years 2004 and 2015 were used as pollen receptors in two- (Elite1 × PGR) and three-way crosses 
(Elite2 × [Elite1 × PGR]) involving PGR. Seeds of segregating progenies from each of the eight and 27 performed 
two- and three-way crosses, respectively, were increased and genetically fixed by two generations of selfing in 
Gatersleben. Besides roughing of off-types plus fixing true types, two-stage selection based on visual assessment 
of single plants, followed by rows focusing on plant height and leaf health in 0.5 m2 plots, was applied. Other 
than herbicides, no additional chemical treatments (i.e. fungicides, nitrogen fertilizers, etc.) were used for crop 
management during plant material depuration. After these selection steps, at least one genotype per initial cross 
could enter early yield testing experiments, summing up to a total of 189 advanced F3:4 families across 35 initial 
crosses. In the breeding value validation experiments (Table 2), candidate families were evaluated for their yield 
per se performance together with 15 elite checks under conventional local agricultural practices. Experiments 
were conducted during harvest years 2020 and 2021; with each year considering two locations: Gatersleben and 
Schackstedt. Wheat plants were cultivated in all experiments under rainfed continental conditions predominant 
at both considered locations. Elite checks corresponded to winter wheat cultivars approved for commercial 
use in Germany, with the French cultivar ‘Arezzo’ (released in 2007) being the oldest one, while the German 
‘LGCharacter’ and French ‘RGTRitter’ varieties (both released in 2020) were the newest ones. Check varieties 
‘RGTReform’, ‘Benchmark’, and ‘LGInformer’, were commercially released in 2014, 2015, and 2018, respectively, 
and connected the four validation experiments, thus allowing an integrated analysis. Seven additional genotypes 
(coded as LSA_1–7) present in early yield experiments were lines from the LSA breeding program. Although 
LSA lines lack of passport data, these were kept in datasets to not disrupt the estimation of field design effects. 
In all experiments, the experimental unit corresponded to a 6 m2 plot. Entries were tested in a partially repli-
cated fashion and an incomplete block design was used to correct for uncontrolled spatial variation. Plots were 
harvested using a combine harvester, whereas grain yield was adjusted to a 140 g H2O kg−1 moisture basis and 
expressed in Mg ha−1.

Phenotypic data analyses. A multiple-step strategy based on mixed models50 was implemented for data 
curation and parameter estimation:

Data curation and preparation. With the exception of yield breeding value validation experiments as well as 
the YR evaluations of SST_2019_6 and QLB_YR_2019 experiments, phenotypic data were outlier-corrected first 
by using the following general mixed model:

~ μ + + + × + +

+ +

Trait Genotypes Experiments Genotypes Experiments Trials Replicates(Trials)

Blocks(Replicates: Trials) Error, (1)

where the common mean (μ) and genotype effects were treated as fixed factors, whereas experiments and their 
multiplicative interactions with genotypes, trials nested within experiments, replicates nested within trials, 
incomplete blocks nested within replicates and trials, as well as the model error nested within experiments were 
assumed as random and normally distributed.

In case of YR evaluations, Eq. (1) was fitted experiment-wise for each scoring timepoint (single, early or 
late). Therefore, effects of trials, experiments, and their interactions with genotypes were dropped from Eq. (1) 
according to each specific experimental design (Table 1). Normalized residuals of this model were obtained 
by subtracting their average and dividing them by their standard deviation. After this, residuals were tested 
experiment-wise for their significance as outliers following Anscombe and Tukey51 and assuming a nominal 
alpha level of 0.01. Accordingly, datapoints flagged as outliers were discarded from final datasets.

For breeding value estimation experiments, outlier correction of yield data underwent series-wise and trials 
and/or replicate effects in Eq. (1) were considered/ignored according to the respective experimental design(s) 
used in each series (Table 2). Later, yield data were screened series-wise for significant outliers using the 
method M4 “Bonferroni-Holm with rescaled median absolute deviation standardized residuals” as suggested 
by Bernal-Vasquez et al.52. Following this, datapoints detected as significant outliers were accordingly discarded. 
Afterwards, yield records of series 1 to 4 were adjusted series-wise for trials, replicates and/or effects of incom-
plete blocks using Eq. (1) according to the experimental design(s) specific for each series (Table 2) while this 
adjustment underwent experiment-wise for series 5. In a next step, 161 hybrids (144 IPK plus 17 LSA hybrids) 
with low homogeneity and/or hybridity were discarded from the integrated dataset and IPK hybrids plus line 
parent genotypes were subtracted for parameter estimation.

Parameter estimations within experiments. Following data preparation, parameter estimation underwent first 
experiment-wise for YR-scores and yield breeding value validation experiments. Best linear unbiased estima-
tions (BLUEs) of genotypes for YR-scores were computed for each scoring timepoint (“single”, “early” or “late”) 
of replicated experiments as well as for yield performance in each yield breeding value validation experiment. 
For this, effects of trials, experiments, and their interactions with genotypes were ignored in Eq. (1) and design 
effects were considered/skipped according to each specific experiment (Tables 1 and 2). Due to the absence of 
replications in QLB_YR_2019 and SST_2019_6, YR-scores in these particular experiments were adjusted out of 
the frame of mixed models using the means of corresponding incomplete blocks. In parallel, variance compo-
nents of single replicated experiments were estimated for each scoring timepoint in a similar fashion as BLUEs 
but assuming genotypes as random. Variance estimates were used to compute experiment-specific heritabilities 
in the way:
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where g
2σ�  and σError

2�  are the genotypic and error variance estimates, respectively, while N Rep. . is the average 
number of effective replicates after considering missing plots and/or outlier-correction.

Parameter estimations across experiments. Large-scale YR screening experiments: firstly, a correlation test for 
BLUEs and/or experimental design corrected data was performed between experiments. Later, BLUEs of gen-
otypes and variance components of YR-scores were obtained from the outlier-corrected data integrated across 
12 experiments. For this, the trial effect was dropped from Eq. (1). The heritability across experiments was then 
computed as:

�

�
� �

σ
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=

+ +
σ σ

. . . . × . .
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(3)
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g
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2

2

2
N Exp N Exp N Rep

g Exp Error
2 2

where �σ × .g Exp
2  is the variance of the interaction between genotypes and experiments, σError

2�  is the average error 
variance nested within experiments, N Exp. . is the average number of effective experiments used to test a geno-
type, while all other components in Eq. (3) retain the definitions from Eq. (2).

Precision balanced YR experiments: data of one genotype (‘PilgrimPZO’) was discarded from these integrated 
analyses due to material mislabeling. In a first step, correlations of BLUEs and/or experimental design corrected 
data were computed between experiments. In addition, the maximum value among early and late scorings or 
single timepoint scoring were selected experiment-wise for each genotype based on single experiment BLUEs or 
data corrected for incomplete-block effects in the case of QLB_YR_2019. Using this integrated dataset BLUEs 
were computed across experiments by fitting Eq. (1) but only considering μ as well as genotype, experiment and 
error effects. By assuming μ as fixed factor and the remaining model effects as random, �g

2σ  was obtained but the 
error term and genotype × experiment interaction were confounded in this model. Assuming that the average 
of single-experiment error variance estimates equals Error

2�σ , σ σ= − σ
× . . .

� � �
g Exp Error
2 2

N Rep
Error
2

, where σ�Error
2  is the vari-

ance estimate of the confounded error and interaction terms of the model. After this, Eq. (3) was used to esti-
mate the heritability of YR-scores across precision experiments.

Yield breeding value estimation experiments: in a first step, correlations of BLUEs and/or experimental 
design corrected data were computed between experiments. Later, the following mixed model was fitted to the 
outlier-and-design corrected yield data from 22 estimation experiments:

Yield Type Experiments Lines Hybrids Lines Experiments

Hybrids Experiments Error, (4)

~ + + + + ×

+ × +

where Type includes the specific group mean of either lines (μLines) or hybrids (μHybrids) and was assumed as 
fixed, while hybrid and lines, experiments and their interactions with genotypes as well as the error nested 
within experiments were assumed as random factors. For lines, variance estimates g

2
Lines

�σ  and g Exp
2
Lines

σ × .�  of yield 
per se performance are directly obtained from Eq. (4), while the total variance of hybrid yield can be further 
decomposed as follows:

~Yield Experiments GCA GCA SCA

GCA Experiment GCA Experiments Error, (5)

Hybrids Hybrids Females Males

Females Males

μ + + + +

+ × + × +

where GCAFemales and GCAMales are the general combining abilities (GCA) of female and male parents,  
respectively, SCA is the specific combining ability between parents, while the error term is confounded  
with the SCA×Experiments interaction. From Eq. (5), g GCA GCA SCA

2 2 2 2
Hybrids Females Males

� � � �σ σ σ σ= + + , and 
σ σ σ= +× . × . × .� � �g Exp GCA Exp GCA Exp

2 2 2
Hybrids Females Males

, are derived. These estimates in addition to variance components 
of lines and �σError

2 , were used to compute yield heritabilities (hLines
2  and hHybrids

2 ) across experiments according to 
Eq. (3). In parallel, the breeding value of the ith male parent genotype was defined as μ + GCAHybrids Male(i)� � , 
where GCAMale(i)

�  is the best linear unbiased predictor (BLUP) of the corresponding male parent component. In 
case of PGR tested in hybrids as both PGR and SSD-PGR, the respective breeding values were averaged into a 
single estimate. The heritability of breeding values estimated in the hybrid context was defined as:

σ

σ
=

+ + +
σ σ σ

. . . . . . × . .
× .
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�
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2
2

2
N Exp N Fem N Exp N Rep
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GCAMales Exp SCA Error
2 2 2

where .N Fem. is the average number of crossing females used to test male parents, while the remaining terms 
retain all previous definitions.
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Yield breeding value validation experiments: BLUEs of genotypes and variance components of the yield per-
formance across breeding value validation experiments were obtained using Eq. (1) but skipping replicate and 
trial effects and assuming a common error variance for all experiments. The heritability of yield performance 
across experiments was then computed as specified in Eq. (3).

Linear mixed models of phenotypic data analyses were fitted using the average information matrix algorithm 
for restricted maximum likelihood (REML) computation implemented in ASReml-R (v3.0 and 4.0)53,54.

Molecular diversity and linkage disequilibrium as captured by genotyping plat-
forms. Considering the total number of genotypes for each genotyping platform (GBS and WGS) as n and the 
total number of filtered markers as p, SNP-matrices can be represented as M = (msi), with 1 ≤ i ≤ n and 1 ≤ s ≤ p. 
Given 1 ≤ j ≤ n, the Rogers’ distance55 between any i-th and j-th genotypes is calculated in the way: 

∣ ∣∑ −= m m
p s

p
si sj

1
2 1 . For each row of M, homozygous states for reference and alternative alleles were coded as 0 and 
2 according to RefSeq v1.0, respectively, while 1 represented the heterozygous state. A principal coordinate anal-
ysis (PCoA) was conducted on Rogers’ distance matrices using the cmdscale() function in R. Here, the first two 
PCo, i.e. PCo1 and 2, were retained to respectively portray the molecular diversity captured by GBS and WGS 
using biplots. To investigate the level of concordance between GBS and WGS, a Mantel correlation test56 as imple-
mented in the vegan R package (v2.5–7)57 was performed on the Rogers’ distance matrices for 454 overlapping 
genotypes between both platforms.

SNP filtering resulted in 29,846 GBS and 1,452,806 WGS markers having a minimum QUAL score of 40, a 
maximum missing value rate of 10%, ≥10 genotypes carrying any of both alleles in homozygous state, and up to 
1% heterozygosity. This implied 24,091,446 and more than 67 billion intra-chromosomal marker combinations 
to be assessed for GBS and WGS platforms, respectively. To reduce the computational burden for WGS SNP 
markers, variants were chromosome-wise downsampled to an expected value of 10 markers per Mb, resulting 
in 145,307 markers across 21 chromosomes and the unanchored sequences. Intra-chromosomal linkage dise-
quilibrium between marker (column) pairs of t(M) was estimated as the squared correlation coefficient (r2)58, 
while physical distances were computed as the pairwise Euclidean distance between SNP marker positions on 
RefSeq v1.0 of Chinese Spring41. Efficient correlation computation was performed using the bigcor() function 
implemented in the propagate R package (v1.0–6)59. After this, cubic splines were fitted in R environment using 
smooth.spline() to estimate the r2 decay as a function of the distances between marker pairs in different genetic 
pools: PGR samples, European elite cultivars and German elite breeding lines.

Genomic-phenotypic data interoperability. The accuracy of the genomic best linear unbiased predic-
tion (GBLUP)60 was used as a quality measure for data interoperability of overlapping phenotypic and genomic 
datasets. Using matrix nomenclature, the mixed model50 for GBLUP can be described as follows:

ZY 1 g e, (7)nμ= + +

where Y denotes an n-dimensional vector of trait values for n genotypes, 1n is a unit vector of length n, μ indi-
cates the fixed common population mean, Z corresponds to a design matrix connecting the elements of g to Y, 
g represents an n-dimensional vector of random genotypic values and e is the random residual term. Traits 
corresponded to either ready-to-use BLUEs of YR-scores across large-scale screening or precision experiments 
as well as ready-to-use yield breeding values of PGR estimated across experiments using ‘Elite × PGR’ F1 crosses. 
In Eq. (7), σ( )N Gg 0, g

2~  and ~ σN Ie 0( , )e
2 , where G is an additive genomic relationship matrix computed 

from markers based on the first method of VanRaden60, I indicates an identity matrix, while σg
2 and e

2σ  corre-
spond to the genotypic and error variance components of the model, respectively. For G matrix computation, 
profiles in M were coded as −1, 1, 0, for the reference and alternative alleles at homozygous and heterozygous 
states, respectively, while missing values were imputed using the average of observed values for each particular 
locus. Prediction accuracies of GBLUP were estimated by means of five-fold cross validations. For this, datasets 
containing both phenotypic and genomic data were randomly subdivided into five groups. The first four groups 
served together as the training set, whereas the fifth group corresponded to the prediction set. During predic-
tion, the phenotypes of the prediction set were masked, while monomorphic markers across training and pre-
dictions sets were discarded for G matrix computation. After prediction, the accuracy was computed for 
genotypes in the prediction set as the Pearson correlation coefficient between predicted and observed values 
divided by h2 , with h2 being the heritability of the corresponding predicted trait. The five groups were per-
muted, so that each of them serves exactly four times as training set, and one time as prediction set. The random 
subdivision into five groups was repeated 20 times, giving a total of 5 × 20 = 100 cross-validation runs.

Mixed model equations for genomic prediction were computed using REML as implemented in the rrBLUP 
R package (v4.6.1)61. All computational methods related to phenotypic analyses and genomic prediction were 
implemented within R statistical environment46 (v3.4.4, v3.6.1).

Data Records
Raw sequencing reads: FASTQ files containing raw reads for 8,070 (GBS) and 768 (WGS) genotypes were depos-
ited at the European Nucleotide Archive62: GBS63 and WGS64,65. Sequenced genotypes are findable through their 
‘SAMEA’ IDs on EMBL-EBI BioSamples66: a full list of integrated GBS and WGS ‘SAMEA’ BioSample IDs con-
nected with plant material passports, passport data sources, SSD- and IPK genebank DOIs was deposited at 
e!DAL-PGP67 and can be accessed here68.

SNP markers: variant calling results based on read mapping against the reference sequence of Chinese Spring 
(RefSeq v1.0)42 were stored as VCF files. Unfiltered VCF files for GBS (‘090222_8070_sample_unfiltered_snps_
biosample.vcf.gz’) and WGS (‘070222_768_samples_wgs_no_filter_biosample.vcf.gz’) data are located at the 
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European Nucleotide Archive and can be accessed here69. These files contain information on 1,628,276 and 
213,804,916 SNP markers with a minimum QUAL = 40 and polymorphic among 8,070 GBS and 768 WGS sam-
ples, respectively. Genotype names are coded using the respective ‘SAMEA’ BioSample IDs68. VCF files contain 
relevant information for each SNP regarding its chromosome, physical position on chromosome in bp, reference 
and alternative alleles, as well as QUAL. R objects containing reduced numbers of SNP markers used for techni-
cal validations were deposited into the e!DAL-PGP repository and can be accessed here70.

Phenotypic records were also deposited into e!DAL-PGP:
YR-scorings: infection severity of Puccinia striiformis f. sp. tritici on wheat plants were field recorded on plots 
and expressed in a 1 (no symptoms) to 9 (severe infection) scoring scale following the official protocols of the 
German Federal Plant Variety Office48. Text files containing YR-scores were stored in ISA-Tab format. After 
outlier correction, the effective number of records from large-scale screening71 and precision experiments72 
amount to 35,043 and 15,353, respectively. Besides phenotypic records, each ISA-Tab file includes information 
that connect records with the corresponding plant material, incomplete block, replication, year, location, and 
experiment, in addition to plant material passports, passport data sources, SSD- and IPK genebank DOIs, as well 
as ‘SAMEA’ IDs. Ready-to-use BLUEs computed across large-scale screening experiments71 for 7,682 PGR and 
80 elite cultivars as well as BLUEs across precision experiments72 for 199 elite cultivars and 600 SSD-PGR are 
available in the’BLUEs_and_heritabilities‘ folder associated to each corresponding dataset.

Yield records: wheat grain yield was field recorded on plots and expressed in Mg ha−1 on a 140 g H2O kg−1 
moisture basis. Text files containing grain yield records were stored in ISA-Tab format. After correction for 
outliers and design effects, the effective number of phenotypic records in breeding value estimation experiments 
amounts to 7,40773. The ISA-Tab file contains also information to connect phenotypic records with the corre-
sponding tested material, material type (hybrid or line), parents, year, location, experiment, and series, in addi-
tion to plant material passports of parent lines, their passport data sources, SSD- and IPK genebank DOIs, as 
well as ‘SAMEA’ IDs. Ready-to-use breeding values computed across estimation experiments for 707 PGR can be 
found in the respective ‘Breeding_values_and_heritabilities’ folder73. For breeding value validation experiments, 
the number of yield records corresponds to 73974. The corresponding ISA-Tab file includes also the information 
needed to connect phenotypic records to the respective plant material, FAMILY-DOI, incomplete block, year, 
location, and experiment, in addition to plant material passports of check cultivars and parent lines, their pass-
port data sources, SSD- and IPK genebank DOIs, as well as ‘SAMEA’ IDs. Ready-to-use BLUEs of grain yield 
computed across validation experiments are also available for 189 advanced F3:4 progenies and 15 elite cultivar 
checks in the corresponding ‘BLUEs_and_heritabilities’ folder74.

For more details on genomic and phenotypic data production, preparation, and processing, please refer to 
the Methods section. Machine readable details are also included in a ‘i_investigation.txt’ file associated to each 
phenotypic dataset71–74.

technical Validation
Genotyping-by-sequencing is a precise and cost-efficient platform to study molecular diver-
sity in genebanks. For GBS, the average total read count per genotype (after trimming) corresponded to 
~2.64 million, while a WGS sample presented on average ~354.8 million reads (Table 3). These numbers slightly 
decreased to ~2.59 (98.3% of total) and ~349.1(98.4%) after read mapping against Chinese Spring (RefSeq v1.0)42, 
with 62.7% (GBS) and 47.7% (WGS) of the average read count per genotype having a mapping quality >q20. 
These reads (>q20) were retained during variant calling and allowed the obtention of VCF files for 8,070 GBS and 
768 WGS samples, respectively. SNP markers with QUAL ≥40, ≤10% missing values rate, at least 10 genotypes 
carrying each allele in homozygous state, and a maximum of 1% heterozygosity, were used to assess the molecular 

Reads

GBS (8,070 genotypes)

Minimum Median Average Maximum

Alla 778,809 2,406,622 2,637,070.2 27,663,505

Mapped

Total 757,460 2,369,798.5 2,591,115.5 27,296,923

>q1 576,566 1,798,418.5 1,962,639.1 20,679,706

>q20 481,039 1,486,933 1,623,899 17,034,192

>q30 415,903 1,284,438.5 1,402,438 14,765,665

WGS (768 genotypes)

All 56,358,130 346,951,848 354,818,926.3 1,015,707,996

Mapped

Total 55,439,721 341,737,943 349,082,726.1 999,714,679

>q10 27,616,390 178,233,289.5 178,555,659.1 473,928,110

>q20 25,815,724 166,330,159.5 166,505,569.7 439,321,203

>q30 24,084,200 154,655,202 154,777,065.9 406,186,889

Table 3. Minimum, maximum, median and average sequencing read counts per genotype characterized with 
genotyping-by-sequencing (GBS) or whole-genome sequencing (WGS, 3-fold coverage). Read counts are 
presented according to different minimum read mapping quality (q) levels. aAfter trimming.
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diversity, linkage disequilibrium and genomic-phenotypic data interoperability. The latter can be found after 
quality assessment sections of phenotypic data. After filtering a total of 29,846 SNP markers across 8,070 geno-
types were available for GBS, while the SNP-matrix for WGS contained 1,452,806 markers across 768 genotypes70.

A PCoA was conducted on the Rogers’ distances to assess the molecular diversity among the 8,070 GBS and 
the 768 WGS samples (Fig. 3a,b). Rogers’ distance matrices and a custom R code for their computation are also 
available here70. PCo1 and 2 explained 9.5% and 5.6% of the molecular variation portrayed by GBS-SNP mark-
ers, respectively, while the reduced number of samples for WGS slightly increased the percentage of explained 
variation to 13.1% (PCo1) and 7.1% (PCo2). As expected, PGR samples expand the molecular diversity of the 
elite pool, whose genotypes cluster very close to each other in the left corner of biplots. Coordinates of the 
German elite breeding lines formed a slightly more contracted group than elite cultivars (Fig. 3b). Nevertheless, 
the good overlap between these two latter groups reflects the continuous material exchange that takes place 
between European wheat breeders75,76.

The intra-chromosomal decay of linkage disequilibrium (r2) as a function of physical distance was estimated 
by fitting cubic splines curves for each genotypic group and genotyping platform (Fig. 3c,d). Independent of the 
genotyping platform and as already observed in past studies77,78, r2 values decay faster in genebank samples as 
compared to modern elite genotypes. European elite cultivars presented in turn a slightly faster decay of linkage 
disequilibrium compared to the German elite breeding lines (Fig. 3d). Since differences in r2 decay between GBS 
(Fig. 3c) and WGS (Fig. 3d) platforms were less pronounced for elite cultivars, we attribute the faster r2 decay 
in PGR samples portrayed by GBS to the large difference in population size (7,745 GBS vs 446 WGS samples) 
rather than to the genotyping platforms themselves.

As also reported in our companion study14, the correlation between GBS- and WGS-based Rogers’ dis-
tances among 454 genotypes characterized with both platforms amounted to 0.88 (Mantel correlation test 
p-value = 0.001). According to correlation estimates from past works comparing GBS with other mainstream gen-
otyping platforms to assess crop plant genebank diversity7,79, the correspondence between GBS and WGS observed 
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Fig. 3 Molecular neutral diversity and linkage disequilibrium decay in genebank and elite plant material. 
Molecular diversity portrayed by the first two principal coordinates (PCos) from Rogers’ distance matrices 
calculated using genotyping-by-sequencing (GBS, (a)) and whole-genome sequencing (WGS, (b)). Intra-
chromosomal linkage disequilibrium (r2) as a function of the genomic physical distance (Mb) in GBS (c) and 
WGS (d). GBS was conducted for 7,745 plant genetic resources (PGR) samples from the IPK genebank and 
325 European elite cultivars. WGS was performed for 191 European elite cultivars, 131 German elite breeding 
lines and 446 PGR samples from the IPK genebank. Percentage of variation explained by PCos are included in 
brackets (). For r2 decay, distances between SNP pairs correspond to RefSeq v1.0 of Chinese Spring while cubic 
splines were fitted to whole genomes but only the first 20 Mb are portrayed.
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in our study is very high. This is noteworthy, considering that WGS reads deliver the least biased genome rep-
resentation possible. GBS is a cost-effective and simple method that reduces the complexity of genomes. On the 
one hand, complexity reduction obviously limits the depth of analysis for large and complex genomes of species 
such as hexaploid wheat. On the other hand, if the primary objective of characterizations is the macro-assessment 
of molecular diversity and linkage-disequilibrium in wheat populations, GBS is the method of choice7,79.

Large-scale screening and precision experiments revealed yellow rust resistance as a rare phe-
notype in the German Federal ex situ genebank. After outlier correction, heritability estimates for 
replicated experiments were in general higher than 0.7, with the only exception being SST_2018_5 (h2 = 0.54) 
(Table 4). The highest heritabilities (h2 = 0.92) were estimated in inoculated precision experiments ROS_ and 
WTZ_YR_2019. Due to material mislabeling during the prosecution of experiments, the cultivar ‘PilgrimPZO’ 
was completely discarded from further phenotypic analyses. The effective number of entries with YR scores 
(either BLUEs or single point values) ranged from 1,395 to 1,669 per individual screening experiment and 
between 722 and 797 for precision experiments. Because of the unbalanced structure of large-scale screening 
experiments, the pairwise entry overlap ranged between four and 1,641 common genotypes. In contrast, these 
numbers were higher in balanced precision experiments, ranging from 697 to 797 common entries between 
experiments. In our companion study14, PGR tested in the first five large-scale screening experiments constituted 
the base population for trait-customized core selection of the 600 SSD-PGR tested in precision experiments. 
For this reason, the pairwise entry overlap between large-scale screenings and precision experiments drops 
drastically from 259–339 to 13–26 in later experiments. All significant pairwise correlations (p-value < 0.05) 
between design-corrected YR scores from different experiments were positive and ranged between 0.29 and 0.92. 
In analyses across experiments, the heritability of YR-scores was 0.82 for the large-scale screening and 0.89 for 
precision experiments. Presumably due to unbalanced phenotyping, a very small proportion (0.4%) of BLUEs 
computed across large-scale screening experiments for 7,682 PGR plus 80 elite cultivars lied outside of the 1–9 
parametric space (Fig. 4). This bias was not observed in the BLUEs computed across precision experiments for 
199 elite cultivars and 600 SSD-PGR. Nevertheless, such a bias is ignorable considering the strong correlation 
[r = 0.77, -log10(p-value) = 128.4] of BLUEs across experiments for the overlapping material between precision 
and large-scale screening experiments. Large-scale screening experiments revealed that only a small PGR frac-
tion (8.4%) have fewer infection symptoms than an average elite cultivar. We showed in our companion study14 
that this resistant PGR fraction is enriched with material from European origins that entered the IPK genebank 
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2
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Fig. 4 Distribution of the best linear unbiased estimations (BLUEs) across experiments for outlier-corrected yellow 
rust (YR, Puccinia striiformis f. sp. tritici) infections of plant genetic resources (PGR or SSD-PGR) and elite cultivars 
(Elite) tested in precision (boxplot, upper left corner), large-scale screening (boxplot, lower right) or both types 
of field experiments (scatter plot, upper right). YR infections were scored using an ordinal rating scale between 1 
and 9, where 1 means complete absence of YR leaf symptoms and 9 denotes fully infected leaves. BLUEs that lie 
outside of the 1–9 parametric space are due to the unorthogonal structure of unbalanced experiments. In total, 19 
field experiments were conducted between harvest years 2015 and 2020 considering five German locations. Large-
scale screenings fully relied on natural YR infections, while five out of seven precision experiments were artificially 
inoculated. The exact numbers of genotypes according to each category are included within brackets []. In boxplots, 
boxes enclose 50% of the central data, including median (black bold line) and mean (black diamond), while whiskers 
are ± 1.5 × interquartile range and dots represent extreme values. In the scatter plot, ** denotes the significance 
[-log10(p-value) = 128.4] of the correlation between YR scores from precision and large-scale screening experiments.
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during recent decades. The implemented trait-customized core selection approach14 allowed to more than triple 
(27.5%) the PGR YR-resistant proportion in precision experiments while increasing exotic molecular diversity 
and reducing the association between population structure and trait variation. This provided the base to identify 
genetically diverse PGR donors of YR resistance sources not yet used in elite breeding14, which are being currently 

6.2 6.4 6.6 6.8 7.0
0

1

2

3

4

Yield breeding value [Mg/ha]

D
en

si
ty TRI 19607

TRI 6747
TRI 5082
TRI 8280
TRI 4589

TRI 1040
TRI 13344
TRI 28909
TRI 10231
TRI 11221

TRI 13141
TRI 9670
TRI 1340

4.5

5.0

5.5

6.0

6.5

7.0

7.5

Yi
el

d 
pe

rfo
rm

an
ce

 [M
g/

ha
]

R
G

TR
ef

or
m

R
G

TR
ef

or
m

R
G

TR
ef

or
m

Fr
an

z

Fr
an

z

R
G

TR
ef

or
m

Fr
an

z

R
G

TR
ef

or
m

O
th

er
 p

re
-b

re
ed

in
g 

m
at

er
ia

l

El
ite

 c
he

ck

Parent (PGR) selection for pre-breeding

Progenies advanced to F3:4 and yield tested

To
ba

k

Fa
m

ul
us

H
en

rik

Fa
m

ul
us

H
er

m
an

n

a

b

R
G

TR
ef

or
m

El
ix

er

Ta
ba

sc
o

H
en

rik

Ta
ba

sc
o

H
er

m
an

n

R
G

TR
ef

or
m

H
en

rik

H
er

m
an

n
R

G
TR

ef
or

m

R
G

TR
ef

or
m

D
es

am
o

R
G

TR
ef

or
m

H
en

rik

H
er

m
an

n
R

G
TR

ef
or

m

Fr
an

z
To

ba
k

Fr
an

z
Be

nc
hm

ar
k

G
la

uc
us

H
en

rik

H
er

m
an

n
G

la
uc

us

Ta
ba

sc
o

H
en

rik

Ta
ba

sc
o

H
er

m
an

n

G
la

uc
us

H
en

rik

H
er

m
an

n
G

la
uc

us

R
G

TR
ef

or
m

El
ix

er

H
en

rik
Fr

an
z

H
er

m
an

n
Fr

an
z

Fr
an

z
To

ba
k

Ta
ba

sc
o

H
en

rik

Ta
ba

sc
o

H
er

m
an

n

-------

Elite� × PGR Elite� × [Elite� × PGR]
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leaf health and plant height

Crosses with elite cultivars

Fig. 5 Using yield breeding value estimates of plant genetic resources (PGR) to initiate pre-breeding programs 
in wheat. (a) Kernel density distribution of yield breeding values (Mg/ha) for 707 PGR. Breeding values were 
estimated using yield data of ‘Elite × PGR’ F1 hybrids from 22 field experiments conducted between harvest 
years 2016 and 2020. Based on preliminary data from 2016, 13 PGR with superior breeding values were used 
as male parents in two- (Elite1 × PGR) and three-way (Elite2 × [Elite1 × PGR]) crosses involving 11 adapted 
elite cultivars. Vertical dashed lines indicate the breeding values of selected PGR estimated across the full set of 
22 experiments. (b) After two-stage selection for high leaf health and reduced plant height, 173 advanced F3:4 
PGR-derived progenies tracing back to 32 initial crosses were tested together with 15 elite cultivar checks (black 
dots) and 16 additional IPK pre-breeding lines (gray dots) in yield validation experiments conducted in two 
locations during harvest years 2020 and 2021. The best linear unbiased estimations of yield (Mg/ha) computed 
across validation experiments for the tested material are portrayed and grouped according to each initial cross. 
The color legend of PGR-derived populations matches that of the selected PGR parents used in initial crosses. 
Horizontal dotted and dashed lines indicate the yield performances of the best newest cultivar (‘LGCharacter’) 
and the mostly grown cultivar during the last decade (‘RGTReform’) in Germany, respectively.

Experiment h2

Experiment

GAT_PB_2019 SST_PB_2019 GAT_PB_2020 SST_PB_2020

GAT_PB_2019 0.91 95 0.72 — —

SST_PB_2019 0.85 56 57 — —

GAT_PB_2020 0.87 3 3 118 0.68

SST_PB_2020 0.76 3 3 108 108

Table 6. Heritabilities (h2) and matrix containing the effective numbers of entries (underlined diagonal values) 
for best linear unbiased estimates of yield in four pre-breeding validation experiments as well as the significant 
correlations (p-value < 0.05, above diagonal) and number of overlapping entries (below diagonal) among them.
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validated using classical and functional genetics approaches. Heritabilities, BLUEs and custom R codes for their 
computation are also available in the respective ‘BLUEs_and_heritabilities’ folders71,72.

Yield breeding values of plant genetic resources to inform breeders and initiate pre-breeding 
programs. After outlier-and-design correction, the effective number of entries with yield records ranged 
between 238 and 500 for individual breeding value estimation experiments. Due to the series-wise strategy to 
test plant material, the highest numbers of overlapping entries with yield records were observed between exper-
iments conducted within the same year (Table 5). In more detail, the number of pairwise overlapping entries 
among 22 breeding value estimation experiments ranged between 0 and 500. All significant pairwise correla-
tions (p-value < 0.05) between yield records of different experiments had positive sign, with magnitudes ranging 
between 0.11 and 0.96. Across experiments, 37 elite cultivars in addition to 227 PGR plus 1,429 ‘Elite × PGR’ and 
four ‘Elite1 × Elite2’ F1 hybrids have yield records in the outlier-and-design corrected dataset. Heritabilities of 
per se yield performance amounted to 0.89 for elite cultivars and PGR together, while the heritability of hybrid 
performance was 0.50, as also reported in our companion work14. The 1,429 ‘Elite × PGR’ originate from crossing 
36 elite cultivars with 205 PGR and 510 SSD-PGR which, put together, trace back to 707 PGR tested in 1,427 
merged ‘Elite × PGR’ hybrid crosses. Yield breeding values of PGR computed across the 22 estimation experi-
ments ranged between 6.11 and 7.11 Mg/ha, with a mean of 6.79 (Fig. 5a). As reported in our companion work14, 
the heritability of breeding values was 0.32, which reflects the complexity of handling less than half of the genetic 
variation underlying yield in hybrids. A custom R code for breeding value estimation of PGR and heritability 
computations as well as its expected outputs are available in the ‘Breeding_values_and_heritabilities’ folder73.

Based on preliminary results from estimation experiments conducted during harvest year 2016, 13 PGR were 
selected for their superior breeding value to initiate a small pre-breeding program using 11 European elite cultivars 
as breeding value receptors (Fig. 5). Computed across the 22 estimation experiments, breeding values of selected 
PGR ranged from 6.80 to 7.05 Mg/ha and were superior to the general mean of breeding value estimates (Fig. 5a). 
Progenies from seven and 25 Elite1 × PGR and Elite2 × [Elite1 × PGR] initially performed crosses, respectively, were 
advanced to F3:4 and pre-selected for good visual performance. The in total 173 advanced F3:4 progenies, with at least 
one progeny per initial cross, were tested for grain yield together with 15 elite cultivar checks and 16 additional 
pre-breeding lines in four validation experiments conducted in two locations during harvest years 2020 and 2021 
(Fig. 5b). A custom R code for BLUEs and heritability computation as well as its expected output files are available 
in the ‘BLUEs_and_heritabilities’ folder74. Yield performances were highly repeatable, which was reflected by the 
heritabilities within (h2 ≥ 0.76, Table 6) and across (h2 = 0.76) validation experiments as well as by the significant 
positive correlations among them (r ≥ 0.68, Table 6). The highest yields were observed in general for elite check 
cultivars, with grain yield values ranging between 5.94 and 7.48 Mg/ha (Fig. 5b). For them, the year of cultivar 
release was significantly and positively correlated with the yield performance (r = 0.79, p-value < 0.001), reflecting 
the advances in yield breeding achieved between years 2007 and 2020. Among the 173 + 16 = 189 advanced F3:4 
progenies, up to two with an average of only 1.1 progenies per initial Elite1 × PGR cross made it through the first 
selection stages based on visual performance. Adding a second elite cultivar to pedigrees as Elite2 × [Elite1 × PGR] 
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Fig. 6 Distributions of cross-validated interoperability between genomic and phenotypic data. Genotyping 
platforms were genotyping-by-sequencing (GBS) and whole-genome sequencing (WGS, 3-fold coverage), 
while phenotypes corresponded to the best linear unbiased estimates for yellow rust (YR) scorings computed 
across large-scale screening or precision experiments, as well as yield breeding values (BV) computed across 
estimation experiments. Interoperability was estimated as the genomic prediction accuracy using 80% of the 
integrated data as training and 20% as validation set in 100 cross-validation runs. Total number (N) of samples 
with phenotypes and polymorphic SNP markers used for cross-validations according to each genotyping 
platform are portrayed as table on the left side. In case of GBS*, the same training and validation phenotypes 
used for WGS were considered. For more details on cross-validations, please see Methods. In distributions, 
diamonds, horizontal and vertical lines correspond to the average, standard deviation and median, respectively. 
Violin plots were obtained using the vioplot R package (v0.3.7).
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increased in general the number of progenies per initial cross with good visual performance to an average of 6.7, 
with the least and most prolific crosses having one and 21 F3:4 progenies, respectively. Two-way crosses were as a 
group also significantly less competitive than three-way crosses (� �Three way Two wayμ μ−− −

 = 0.72 Mg/ha, 
p-value < 0.001). The lower outputs for two-way crosses could be attributed to the increased proportion of deleteri-
ous PGR background still present in them, which also indicates that a realistic use of PGR variation for pre-breeding 
is achieved through three-way crosses. In fact, three-way crossing schemes are already the main strategy to intro-
duce PGR variation into large-scale global pre-breeding programs such as Seeds of Discovery22 (https://seedsofdis-
covery.org/). Although none of the PGR-derived progenies was as competitive as the best check cultivar ‘Informer’ 
(released in 2018), among the 173 F3:4 progenies whose PGR parents were selected based on breeding values, three 
(2%) and 15 (9%) had better yield performance than the best newest (‘LGCharacter’, released in 2020) and the 
locally most grown cultivar (‘RGTReform’, released in 2014), respectively. Regarding the additional 16 pre-breeding 
lines whose PGR parents lack of breeding value estimates, none of them could reach these previously mentioned 
yield levels. Global efforts of the Seeds of Discovery initiative led to the development of 2,867 pre-breeding lines that 
trace back to 366 exotic wheat PGR22. Multiple environment yield trials conducted in Central America and South 
Asia revealed that locally, up to ~2% of these pre-breeding lines have better yield performance than the best adapted 
varieties. Moreover, pre-breeding lines with beneficial traits trace back to 62 of the 366 exotic founders (17%) used 
as PGR parents by Seeds of Discovery22. In our small pre-breeding program established using breeding values as 
parent selection tool for PGR (Fig. 5), competitive pre-breeding lines trace back to eight of the 13 selected PGR 
(62%) parents. All in all, at least as regards visual performance and yield, our validation experiments suggest that 
using breeding values as tool could boost the input-to-output ratio for pre-breeding programs.

High genomic prediction accuracies support the suitability of data for integrated 
phenotypic-genomic analyses. Seed mixtures, sample mislabeling, among other sources of system-
atic errors can occur in large-scale characterizations. This obviously disrupts the connectivity between geno-
type and phenotype and in turn, decrease the value of the data for integrated analyses. To rule-out the presence 
of such data-imparity, we used the cross-validated accuracy of genomic prediction as a quality measure for 
genomic-phenotypic data interoperability (Fig. 6).

Integrating YR-scorings and GBS data resulted in 6,371 and 799 genotyped samples having records 
in large-scale screenings and precision experiments, respectively (Fig.  6). In cross-validations, the 
genomic-phenotypic data interoperability between YR-scorings and GBS was in general high, with prediction 
accuracies of 0.72 ± 0.02 and 0.69 ± 0.05 for large-scale screening and precision experiments, respectively. As 
expected from past simulation studies80,81, the slightly higher accuracy for large-scale screenings than for preci-
sion experiments can be attributed to the ~8 times larger population size of the former group, which provided 
in turn also a small increase (~6%) in the number of polymorphic markers used for prediction. Shifting to WGS 
decreased population sizes for large-scale screenings and precision experiments to 309 and 454 samples but 
accuracies only slightly dropped to 0.69 ± 0.09 and 0.66 ± 0.08, respectively. Moreover, the ~55-fold increase 
in number of polymorphic markers from WGS provided practically no improvement in accuracy over GBS 
when the same population size was considered for both genotyping platforms (see GBS* in Fig. 6). This last 
observation is not surprising considering that GBLUP60 mostly relies on relatedness for prediction80,81 and that, 
as mentioned before, GBS- and WGS-based Rogers’ distances were highly correlated. Although out of the scope 
of this work, we anticipate that alternative genomic prediction methods less dependent on relatedness80,81 would 
benefit more from the increased marker densities provided by WGS.

GBS samples of PGR having also breeding value estimates amount to 597 (Fig. 6). Prediction accuracies of 
0.68 ± 0.1 support also the high genomic-phenotypic data interoperability for these samples and come very close 
to the estimates presented in our companion study using 1,000 instead of 100 cross-validations14. Last but not 
least, only 24 PGR samples have both WGS data and breeding value estimates – a too limited number of genotypes 
to meaningfully assess the genomic-phenotypic data interoperability. Although integrated analyses for WGS and 
yield breeding values are currently not advisable, PGR are available upon request, and we thus fully encourage 
future activities that increase the connectivity between these two types of data. A custom R code to assess the 
genomic-phenotypic data interoperability as well as its needed inputs and expected outputs are available here70.

Usage Notes
We expect that these FAIR data support and encourage future research and breeding initiatives that further 
valorize crop plant genebanks. The genebank material of the ‘TRI’ catalogue is available upon request using IPK 
genebank DOIs and can be accessed through GBIS (gbis.ipk-gatersleben.de) under the conditions of a stand-
ard material transfer agreement (SMTA). Seeds of field isolated accessions and pre-breeding material can be 
requested upon availability through their SSD- and FAMILY-DOIs, respectively, by following SMTA conditions 
as well (contact e-mail: reif@ipk-gatersleben.de).

Code availability
The custom awk script for filtering of VCF files is available at e!DAL-PGP and can be accessed here82. Custom 
R codes for phenotypic parameter estimations are included within the respective ‘R_code’ subfolder of each 
dataset71–74 deposited into e!DAL-PGP. In addition, custom R codes to assess the genomic-phenotypic data 
interoperability and the computation of Roger’s distances as well as their needed inputs and expected outputs 
were also deposited into e!DAL-PGP and can be accessed here70.
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