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SOMaS: a platform for data-driven 
material discovery in redox flow 
battery development
Peiyuan Gao1 ✉, amity andersen2, Jonathan Sepulveda3, Gihan U. Panapitiya4, aaron Hollas3, 
Emily G. Saldanha4, Vijayakumar Murugesan  1 ✉ & Wei Wang  3 ✉

Aqueous organic redox flow batteries offer an environmentally benign, tunable, and safe route to 
large-scale energy storage. the energy density is one of the key performance parameters of organic 
redox flow batteries, which critically depends on the solubility of the redox-active molecule in water. 
Prediction of aqueous solubility remains a challenge in chemistry. Recently, machine learning models 
have been developed for molecular properties prediction in chemistry and material science. the 
fidelity of a machine learning model critically depends on the diversity, accuracy, and abundancy of 
the training datasets. We build a comprehensive open access organic molecular database “Solubility of 
Organic Molecules in Aqueous Solution” (SOMAS) containing about 12,000 molecules that covers wider 
chemical and solubility regimes suitable for aqueous organic redox flow battery development efforts. 
In addition to experimental solubility, we also provide eight distinctive quantum descriptors including 
optimized geometry derived from high-throughput density functional theory calculations along with six 
molecular descriptors for each molecule. SOMAS builds a critical foundation for future efforts in artificial 
intelligence-based solubility prediction models.

Background & Summary
The aqueous solubility of organic molecules is a crucial property in multiple areas like synthesis chemistry, 
catalysis science, drug design, and energy science1–4. In energy science, to facilitate the rapid deployment of 
renewable energy, aqueous organic redox flow batteries (RFBs) have been increasingly recognized as a prom-
ising candidate for large-scale energy storage due to their inherent safety, potentially low-cost, and structure 
tunability5,6. In organic RFBs, the physicochemical properties of organic molecules significantly impact their 
performance characteristics7. The solubility of redox active organic species is a critical parameter in aqueous 
electrolyte design, as it determines the energy density of RFBs.

Versatility of organic molecular editing, in terms of both structural variations and functional group attach-
ments, offers a unique possibility for artificial intelligence-based designing of highly soluble redox molecules for 
RFB application. However, the predictive understanding of the relationship between a functional property such 
as solubility and the chemical structure of organic molecules is lacking. Some structural and physiochemical 
parameters such as solvent accessible surface area (SASA) and acid dissociation constant (pKa) are known to 
influence the solvation process. Multiple physics-based models were developed using these properties, but the 
accuracy remains unsatisfactory8–10. Linear regression-based models, such as quantitative structure−property 
relationships (QSPRs) using molecular parameters also fail to produce reliable solubility predictions11–13. For 
example, the state-of-the-art models render prediction of solubilities with root-mean-square errors (RMSEs) of 
approximately 0.3−0.4 (log units) for simple organic molecules and 0.7−1.0 (log units) for drug molecules in 
small test sets14.

With recent development in both computer hardware and software, machine learning (ML) is increasingly 
being recognized as a powerful technique for material design and property prediction15,16. To develop gen-
eralizable and accurate ML models, large datasets with structural and chemical diversity of molecules with 
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relevant quantum and molecular descriptors are extremely important. However, previous open-source solubility 
databases primarily designed for drug design are based on a few hundred drug molecules, which is very small 
and does not represent the relevant chemical parameter space of redox flow battery electrolytes. For example, 
the desired solubility of organic molecules in RFBs is much larger (≥0.5 M) than that of the drug molecules 
(<0.1 M). Also, strong acidic or basic organic molecules can be effective electrolyte in RFB, but most drug can-
didates are relatively weak acids and bases17–19. Therefore, organic RFB development efforts require a compre-
hensive database that covers relevant chemical parameter space.

In this work, we build a comprehensive open access database “Solubility of Organic Molecules in Aqueous 
Solution” (SOMAS) that can serve as an optimal platform for developing aqueous solubility prediction models 
using ML methods. Unlike previous solubility databases, the SOMAS database focused only on neutral organic 
molecules and excluded organic salts and organometallic compounds to reduce data set bias in predictive 
models. Our database has a total of 11,696 organic compounds, which is nearly twice the number of organic 
compounds in AqSolDB, an open source database reported recently20. Of equal importance is that the number 
of molecules in the range of high solubility (>0.5 M) is also about two times more than AqSolDB database, 
providing a more comprehensive training dataset20. In addition to the experimental solubility, eight quantum 
descriptors derived from high-throughput density functional theory (DFT) calculations along with traditional 
molecular descriptors were also added to each molecule in the database, rendering it as an optimal platform for 
solubility prediction models relevant for RFB application. The choice of quantum and molecular descriptors are 
carefully selected to represent the thermodynamic cycle of aqueous solubility shown in Fig. 1. We curated the 
molecular data of experimental aqueous solubility with specific temperature, and literature references collected 
from a wide range of material/chemical engineering databases and published papers/handbooks. To reduce the 
rate of duplicate entries in the database, we implemented a new cross-validation method using independent 
molecular identifiers. Furthermore, the isomer structure is represented by the canonical isomeric Simplified 
Molecular Input Line Entry System (SMILES) string, which enables efficient tabulation and identification of 
stereoisomeric molecules with multiple chiral centers. Our data curation steps were designed to significantly 
improve the compatibility and accuracy of the machine learning model for complex structures such as chiral 
organic molecules. We expect SOMAS to serve the energy storage researchers and broader scientific community 
as an open source aqueous solubility dataset for training and benchmarking of ML and physics-based solubility 
models and pave the way for other physiochemical property predictions.

Methods
We followed three steps to curate the database as illustrated in Fig. 2. First, we collected the molecular data of 
solubility from available aqueous solubility datasets and converted them to a standardized format. These sepa-
rate data files were then combined into one single dataset. To reduce the proportion of duplicates in the database, 
the molecular data from various sources were cross validated by different identifiers. For a given molecule, if the 
solubility data from literatures are with large difference, we do not follow the previous average protocol20, as it is 

Fig. 1 Thermodynamic cycle scheme of intrinsic solubility. ∆ = ∆ + ∆G G Gsublimation solvation. R, ideal gas 
constant, T, absolute temperature, S0, intrinsic solubility, Vm, crystalline molar volume.

Fig. 2 Workflow for database curation and augmentation of specific quantum and molecular descriptors.
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difficult to know the real weight function from different data sources. Instead, if the solubility difference of com-
pounds with the same identifier is too large (>50%), the original references of the data are checked manually. 
Only the solubility value from the reliable source is reported if no clerical error is found in the original references 
(the grade of data source is shown in the following section). When data at multiple temperatures are available, 
only the solubility value which is the closest to room temperature is selected. After the curation of solubility 
data, high throughput DFT calculations were performed to generate the quantum descriptors for each molecule. 
Finally, several molecular descriptors were calculated using RDkit code (http://www.rdkit.org) and added to the 
merged dataset. The workflow is shown in Fig. 2.

Step 1: Data pre-processing and merging. A set of three pre-processing steps were applied to each entry 
to format molecular representations and solubility values in the standardized units. The steps are as following:

Identifiers validation and unit conversion. We selected four identifiers namely, chemical name, SMILES string, 
Chemical Abstracts Service Registry Number (CASRN), and International Chemical Identifier (InChIKey) to 
confirm the information of each molecular data with reduced duplication rate and enhanced cross-validation 
methods. Generally, two or more of the identifiers were identified for each molecule from different data sources. 
Molar mass, a common molecular descriptor, was also used as an additional identifier for curation. The work-
flow of molecule identification is shown in Fig. 3. InChIKey is used as the main identifier for compounds in 
our datasets, and no InChIKey collision of molecules has been observed in our databases. Although a single 
InChIKey could theoretically map to two or more InChI (International Chemical Identifier, an InChi string 
represents one molecule) strings, the possibility is rather small for a dataset with the size of less than 100,000 
molecules21. In the absence of reported InChIKey, we used CASRN or the SMILES string to retrieve or construct 
an InChIKey. We used the following web sources to convert the CASRN to InChIKey: the Chemical Identifier 
Resolver web service of the National Cancer Institute (https://cactus.nci.nih.gov/chemical/structure), PubChem 
(https://pubchem.ncbi.nlm.nih.gov/), and ChemSpider (http://www.chemspider.com/). For the conversion of 
SMILES string to InChIKey, we have used the Open Babel22 and RDkit software. The unit of solubility in our 
database is mg/L. For solubility data with other units such as mol/L, it is calculated and converted to mg/L by 
the molar mass of molecule.

Isomeric SMILES string verification. To ensure validity and consistency of the SMILES strings, we have 
employed RDKit mol objects that converts SMILES to molecular structure. If an error occurred during the con-
version, the SMILES strings were manually revised to correct the error. In addition, there is significant presence 
of chiral molecules in the database. In most of publications with previous SMILES string grammar, the chirality 
of molecule is not specified. In the Daylight SMILES notation, it allows the specification of configuration at 
tetrahedral centers, and double bond geometry with isomeric SMILES string which is also canonical. With 
the isomeric smiles, it can generate correct molecular configuration when converting the SMILES string to 
three-dimensional molecular model. It is reasonable to use common SMILES string for the molecule with one 
chiral center, as the solubility values or other physicochemical properties will be equal for the S and R isomers. 
However, if the molecule includes two or more chiral centers, the solubility values of all the isomers are often 
different from each other. Therefore, the isomer specification is very important to identify the accurate solubil-
ity data of molecules; however, it has been often ignored in previous databases. In our database, we compare 
the collected information as CASRN or InChIKey of the molecules with the existing result on PubChem and 

Fig. 3 Workflow of identifiers cross-validation for molecules.
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ChemSpider website. If its isomeric SMILES string is provided on these websites, the SMILES string from the 
original reference will be replaced by the isomeric SMILES string.

Racemic mixture removal. As mentioned in the last section, the isomers are not specified by isomeric SMILES 
strings in some previous papers and databases. Therefore, for a chiral molecule, the reported solubility value 
with common SMILES string could be one of its isomers or racemic mixture of isomers. The solubility val-
ues are usually not the same for all the isomers for molecules including two or more chiral centers. When the 
solubility data of a molecule exists for both a common SMILES string and a specified isomeric SMILE string, 
the solubility data of the molecule with the common SMILES string will be marked as racemic mixture and 
removed. Currently, 129 molecular data points of racemic mixture have been identified in our database. While 
we try to eliminate the racemic mixture in our database, in some cases, the original data source only provides the 
common SMILES as an identifier. Such molecular data are not able to be specified, although these data may be 
racemic mixture. These data are temporarily reserved in our database. And they will be replaced with the data 
of specified stereoisomer when the isomeric data are available. The stereoisomer number of these molecules is 
more than 2 and their InChIKey identifiers include the string “UHFFFAOYSA”.

Data sources. The solubility data were collected from six data sources. Table 1 presents the final size and iden-
tifier information of the six sources. The data from each data source is processed separately. The details of data 
source are listed below.

Dataset 1: Dataset 1 is obtained by checking GDB-13 and GDB-17 datasets23,24 using EPA EPI suite (https://
www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface) and PubChem (https://
pubchem.ncbi.nlm.nih.gov/).

Dataset 2: Dataset 2 is obtained by checking Chembl25 (https://www.ebi.ac.uk/chembl/) using EPA EPI suite. 
ChEMBL is a database of bioactive drug-like small molecules, it contains 2D structures, calculated properties 
(e.g. logP, Molecular Weight, Lipinski Parameters, etc.), and abstracted bioactivities (e.g. binding constants, 
pharmacology, and ADMET data). The data are abstracted and curated from the primary scientific literature.

Dataset 3: Dataset 3 is NIST Standard Reference Database 106 (NIST SRD106). NIST SRD106 is a database 
containing solubilities originally published in the IUPAC (International Union for Pure and Applied Chemistry) 
- NIST solubility data series.

Dataset 4: Dataset 4 is obtained from the Online Chemical modeling environment25 (OCHEM) (https://
www.ochem.eu/home/show.do). The Online Chemical Modeling Environment is a web-based platform that 
aims to automate and simplify the typical steps required for QSAR modeling. It includes a large database of 
experimental measurements.

Dataset 5: Dataset 5 is obtained via eChemPortal (https://www.echemportal.org/echemportal/), which is 
an open source chemical property database developed by the Organization for Economic Co-operation and 
Development (OECD). Solubility data was extracted by searching experimental water solubility and tempera-
ture. We extracted the solubility data at 20–30 °C and its source link by changing the temperature filter from 20 
to 30.

Dataset 6: Dataset 6 is obtained from Cui’s work published on Frontiers in Oncology26. The solubility data 
were obtained from ChemIDplus database (https://chem.nlm.nih.gov/chemidplus/) and Pubmed (https://
pubmed.ncbi.nlm.nih.gov/) literature. The authors mentioned that these solubility data were measured at room 
temperature, but the temperature is not specified for every molecule in the original dataset. Note that we do not 
further check the reliability of temperature in this paper.

There are three grades in our database for the data sets. Data sets 3 and 5 are in grade 1, since the experimen-
tal method, detail of data fitting, and original reference are all provided. Data sets 1 and 2 are in grade 2 because 
only original reference is provided. Data sets 4 and 6 are in grade 3 as no specified original reference is provided.

Step 2: Quantum descriptor generation. Eight solubility and redox potential related quantum descrip-
tors, i.e., solvation energy, dipole moment, quadrupole moments, molecular volume, molecular surface area, the 
highest energy occupied molecular orbital (HOMO) energy, the lowest energy unoccupied molecular Orbital 
(LUMO) energy and molecular geometry are extracted from DFT calculations. DFT calculations were performed 
with the NWChem quantum chemistry package27. The initial 3D configurations of molecules are converted from 
SMILES string with the Experimental-Torsion “basic Knowledge” Distance Geometry (ETKDG) method28 and 
optimized by molecular mechanics method with the Universal Force Field (UFF) in the RDkit package. For 
some structures where RDKit could not render the 3D structure from the SMILES string, JMol’s SMILES to 3D 

Database
Final 
size Compound Representation

Average 
molecular weight

1 1,068 Name, partial CASRN, SMILES 167.09

2 2,122 Name, partial CASRN, 216.23

3 149 Name, CASRN, 185.27

4 2,791 Partial Name, SMILES, partial CASRN 257.19

5 1,743 Name, CASRN 248.66

6 3,823 Name, InChIKey 266.28

Table 1. Dataset sources list in the database.
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structure interpreter was used (http://www.jmol.org/). These starting 3D molecular geometries were then opti-
mized at the GFN2-xTB (semi-empirical extended tight binding) level of theory (or GFN-FF general force-field 
for relatively large 70 + atom molecules) with the CREST multi-level conformational search and optimizer soft-
ware of Grimme and coworkers29,30. The analytical linearized Poisson-Boltzmann (ALPB) implicit solvation 
model for water was used in all CREST optimizations31. The optimized lowest energy conformers from CREST 
are subsequently optimized at the PBE0 level of theory32,33 with the 6–31 G** basis set34–36, except for the heavier 
elements Sb, Te, and I, which used the Stuttgart basis set and effective core potential (ECP)37. Long range dis-
persion interactions are corrected with the DFT-D3 method of Grimme and coworkers38. An effect of implicit 
water solvent with a dielectric constant of 78.4 is included via COnductor like Screening MOdel for Real Solvents 
(COSMO) model39. NWchem output file for each molecule will be made available upon request.

Step 3: Molecular descriptor generation. Total of 1,826 Molecular descriptors, including 1,613 
two-dimensional and 213 three-dimensional features can be generated using the Mordred package40 with RDkit. 
Only the SMILES string is required to calculate two-dimensional features whereas atomic coordinates along 
three cartesian axis are required to generate three-dimensional features. In this work, we only select several 
two-dimensional molecular descriptors that are related to solubility. They are calculated octanol-water parti-
tion coefficient, calculated molar refractivity, topological polar surface area, Labute’s Approximate Surface Area, 
Balaban’s J index, and Bertz CT index.

Data Records
The SOMAS database consists of 11,696 organic compounds. The data are stored in the comma-separated values 
(CSV) file format and XYZ file. There are 26 columns in the csv file, i.e., identifiers, solubility, temperature, ref-
erence, data source reference, quantum descriptors (except optimized XYZ coordinates), molecular descriptors, 
and isomer information. The XYZ file is the optimized atomic coordinates by DFT calculation. All the XYZ files 
are compressed into a single tar.gz file. It includes five identifiers (CASRN, SMILES, Chemical name, InChIKey, 
Molar mass), eight quantum descriptors by DFT calculation (solvation energy, dipole moment, quadrupole 
moment, molecular volume, surface area, HOMO energy, LUMO energy, and optimized XYZ atomic coordi-
nates) and six calculated molecular descriptors (Cal logP, Cal MR, TPSA, Labute ASA, Balaban J index, and 
Bertz CT index) data of all the molecules, as described in Table 2. The csv file (data.csv) and tar.gz file (XYZfiles.
tar.gz) are accessible in Figshare repository (https://doi.org/10.6084/m9.figshare.14552697)41.

Figure 4 shows the distribution of solvation energy, dipole moment, molecular volume, and surface area of all 
molecules in SOMAS. It is observed that for most molecules, solvation energies are in the range of 0–20 kcal/mol,  
and dipole moment is primarily distributed at 1–10 Debye. The distributions of molecular volume and surface 
area lie within 100–200 Å3 and 200–300 Å2, respectively, indicating most of them are small molecules.

Column Name Description Type

Name Name of compound String

SMILES SMILES representation of compound String

Molar mass Molar mass (g/mol) Float

CASRN CAS registry number String

Solubility Experimental aqueous solubility value (mg/L) Float

Temperature Temperature (K) Float

Reference Source paper, book, or weblink for solubility value String

Standard InChIKey Hashed key of the IUPAC International Chemical Identifier String

Data group Data source String

Isomer Number of stereoisomers by RDkit Integer

Solvation energy COSMO based solvation energy by DFT calculation (kJ/mol) Double

Dipole moment Dipole moment by DFT calculation (Debye) Double

Molecular volume Volume of DFT optimized structure (Å3) Float

Molecular surface area Surface area of DFT optimized structure (Å2) Float

Quadrupole Moment Quadrupole Moment Asymmetry by DFT calculation (Buck) Double array

E_HOMO HOMO energy (eV) Double

E_LUMO LUMO energy (eV) Double

E_gap HOMO-LUMO energy gap (eV) Double

Cal logP Calculated octanol-water partition coefficient Float

Cal MR Calculated molar refractivity Float

TPSA Topological polar surface area Float

Labute ASA Labute’s approximate surface area Float

Balaban J index Balaban’s J index Float

Bertz CT index A topological complexity index of compound Float

Table 2. Topology of SOMAS database with selected descriptors.
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technical Validation
The probability distribution of solubility is analyzed for technical validation. Figure 5(a) shows the number 
distribution of molecules as a function of log solubility. It is found that the distribution of solubility fits well with 
a Gaussian distribution, indicating that aqueous solubility is a multiscale phenomenon involving physical and 
chemical features of molecules. The peak center is located at 2–3 (100–1000 mg/L), which is consistent with typ-
ical range of solubility for organic molecules. As most of the original data sources do not provide experimental 
error information, it is difficult to estimate the error. A previous work provides a validation method that sorts 
by the occurrence frequency of the molecule20. However, the method only works for molecular data that are 
obtained from independent data sources. If the data in different databases are obtained from the same paper, 
the weight function will be overestimated. Therefore, in our database, we do not show the occurrence frequency 

Fig. 4 Distribution of solvation energy, dipole moment, molecular volume, and surface area obtained in DFT 
calculation. (a) Solvation energy. (b) dipole moment. (c) Molecular volume. (d) Surface area.

Fig. 5 Distribution function of molecules as a function of log solubility (a) and distribution function of 
temperature (b) in SOMAS database. The dashed line represents the fitted Gaussian function.
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of the molecule but instead provide original reference of paper or web link of each molecule to facilitate robust 
cross-validation. Although the solubility of an organic molecule is sensitive to temperature, most data are in 
the range of 10–30 °C (see Fig. 5(b)). Hence the temperature-related uncertainty is likely to be minimal for ML 
models. We would like to note that the database contains a few solubility data points that are extremely small 
(≤10−10 mg/L) or unrealistically high (>106 mg/L) and should be treated with caution to avoid any data bias in 
predictive models. For example, extreme solubility data such as 1,000,000 mg/L is reported for some molecules 
that are likely to be miscible in water and often considered as infinite solubility.

Table 2 shows quantum descriptors obtained from DFT calculations at the PBE0/6–31 G** level theory, 
which are proven to be accurate and reliable for describing intramolecular degrees of freedom and intermolecu-
lar interactions33,42. The solvation energy is calculated using COSMO model which is an implicit solvation model 
implemented in a number of quantum chemistry or semi-empirical codes such as Gaussian43, NWChem27, 
TURBOMOLE44, and Q-Chem45. To further evaluate our DFT-derived descriptors, we calculated the solvation 
free energies of 308 organic molecules with COSMO-SMD46 (Solvation Model Based on Density) model and 
compared with experimental values from Minnesota solvation database (https://comp.chem.umn.edu/mnsol/). 
As shown in Fig. 6a, the root mean square error (RMSE) of our COSMO-SMD calculation is 1.82, which is close 
to previous calculation result (1.42) by SMD46 with NWChem on 274 molecules from a subset of Minnesota 
solvation database. Also, the calculated solvent accessible surface areas (SASA) of 308 molecules are also in good 
agreement with Minnesota solvation database as shown in Fig. 6(b).

Usage Notes
We present a comprehensive database comprising experimental aqueous solubility and solubility-related 
quantum and molecular descriptors of 11,696 organic molecules. The availability of the calculated quantum 
descriptors and molecular descriptors makes it possible to directly use the data for developing machine learning 
models. The SMILES and InChIKey representations of compounds as well as the atomic coordinates files are also 
provided as input for many machine learning codes. We recommend users to consider the temperature effect 
when using the data as training input to machine learning models.

code availability
NWChem is distributed as open-source under the terms of the Educational Community License version 2.0 
(https://www.nwchem-sw.org). The RDKit software is freely available under the BSD license (http://www.rdkit.org).  
The Open Babel software is freely available under GNU GPL (http://openbabel.org/wiki/Main_Page).
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