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Proteomic and transcriptomic 
profiling of aerial organ 
development in Arabidopsis
Julia Mergner  1, Martin Frejno1, Maxim Messerer  2, Daniel Lang  2, Patroklos Samaras  1, 
Mathias Wilhelm1, Klaus F. X. Mayer  2,3, Claus Schwechheimer4 & Bernhard Kuster  1,5 ✉

Plant growth and development are regulated by a tightly controlled interplay between cell division, cell 
expansion and cell differentiation during the entire plant life cycle from seed germination to maturity 
and seed propagation. To explore some of the underlying molecular mechanisms in more detail, we 
selected different aerial tissue types of the model plant Arabidopsis thaliana, namely rosette leaf, 
flower and silique/seed and performed proteomic, phosphoproteomic and transcriptomic analyses 
of sequential growth stages using tandem mass tag-based mass spectrometry and RNA sequencing. 
With this exploratory multi-omics dataset, development dynamics of photosynthetic tissues can be 
investigated from different angles. As expected, we found progressive global expression changes 
between growth stages for all three omics types and often but not always corresponding expression 
patterns for individual genes on transcript, protein and phosphorylation site level. The biggest 
difference between proteomic- and transcriptomic-based expression information could be observed for 
seed samples. Proteomic and transcriptomic data is available via ProteomeXchange and ArrayExpress 
with the respective identifiers PXD018814 and E-MTAB-7978.

Background & Summary
Developmental processes modulate the size, shape and functionality of an organism during its life cycle1. The 
boundaries and timelines for development are defined by the genetic code stored in the DNA complement of 
each cell, but how the genetic programme is executed depends on environmental conditions2. The model plant 
Arabidopsis thaliana is commonly used as a reference model to study many aspects of plant growth and develop-
ment3. Arabidopsis has a short life cycle of about six weeks, which starts with seed germination and vegetative 
growth followed by the transition to flowering, seed production and finally seed maturation3. In 2001, Boyes 
et al. introduced specific growth stage definitions, which now serve as landmarks in the dynamic process of 
Arabidopsis development1. Within this uniform framework, researchers are able to compare data from pheno-
typic studies with metabolic and gene expression profiling data of the respective developmental growth stages.

Expression profiling generates a link between gene information and tissue morphogenesis or plant pheno-
type. Transcriptomic analyses are commonly used to study the regulation of growth and development. However, 
as proteins are the executers of most response programs, a combined transcriptomic and proteomic approach 
should enable deeper insights into the molecular changes during plant development. Work from this labora-
tory has recently provided such a combined study and assembled a mass spectrometric draft of the proteome 
of Arabidopsis4. This has provided important clues as to which Arabidopsis genes exist as proteins, where they 
are found within the organism and in which approximate quantities. While very powerful as such, this resource 
portraits merely a static picture. Clearly, having both spatial (different tissue types) and temporal (growth stages) 
information is often necessary to elucidate gene functions involved in the dynamic processes of plant devel-
opment5. Advances in proteomics analysis techniques via liquid chromatography coupled to tandem mass 
spectrometry now allow sampling of a proteome to an unprecedented depth but often require extensive sam-
ple fractionation steps6. In addition to substantially increasing data acquisition time, this leads to increased 
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quantitative variability and reduced data completeness between experiments. Stable isotope labelling approaches 
like tandem mass tags (TMT) allow multiplexing of up to 16 samples7,8 and thus enable the simultaneous meas-
urement of samples collected e. g. over time. We choose TMT-based quantification to ensure consistent protein 
and phosphorylation site quantification between growth stages and to minimize the number of missing values 
especially in the phosphorylation data, where quantifications are mostly based on a single peptide9. For our study 
of expression profiles in consecutive developmental stages in Arabidopsis, we decided to focus on leaf, flower and 
fruit (silique/seed). With this selection we exemplify the value of longitudinal proteome profiling in three aerial 
plant tissues types. Note that the same approach may be taken for other plant parts such as stem or root.

Leaves are often considered the most important plant organs because of their role in energy metabolism and 
carbon fixation10. In Arabidopsis, the leaves at the base of the plant (rosette leaves) display different morpholo-
gies dependent on their respective age. The seedling and juvenile-phase leaves are small, round and without leaf 
hairs while the adult phase leaves are large and narrow, with more serrations and leaf hairs on both the upper and 
lower side10. Because rosette leaves are generated consecutively in a spiral pattern by the shoot apical meristem, 
juvenile stage leaves are chronologically older than adult leaves11. Rosette growth is still a part of the vegetative 
phase of Arabidopsis development and the transition to the reproductive phase starts with the onset of flower-
ing1. Flowers are the most specialized organs in Arabidopsis and consist of four different organ types12. The green 
sepals, the white petals, the stamen containing the pollen with the male gametophyte and the carpel containing 
the female egg cells. Throughout flower development, these organ types undergo both morphological changes and 
growth, ending with fertilization of the egg-cell and the subsequent start of embryogenesis12. Like the other devel-
opmental steps, embryogenesis and seed generation are continuous processes, but can be separated into early 
stages, determined by pattern formation and morphogenesis, followed by maturation and the building of storage 
reserves in the mid phase and finally the preparation for desiccation and developmental arrest in the late stage13.

For our analysis, we used TMT multiplexing of consecutive rosette leaf, flower and siliques/seed stages, to 
generate proteomic and phosphoproteomic profiles of their expression patterns. In addition, we used RNAseq to 
provide the matching transcriptome dataset. Together, these three datasets provide detailed spatial and temporal 
information about important aspects of plant development across multiple omics dimensions and can be used as 
a reference dataset or hypothesis generator for future biological experiments.

Methods
Plant materials and growth conditions. Arabidopsis thaliana wild type Columbia-0 (Col-0) plants were 
grown on soil under continuous white light conditions at 22 °C. Samples for flower (stage 9–15), siliques and 
seeds were harvested from mature plants. Seed stages were collected from developing siliques and processed 
either with (silique, stage 1–5) or without (seed, stage 6–10) silique septum and valves. Juvenile and adult rosette 
leaves were harvested at the same time point from 22 days-old plants before bolting. Classification of growth stage 
and plant section was done as described before12–14. Harvested material from at least three individual plants was 
combined for each sample, frozen in liquid nitrogen and stored at −80 °C until further use.

Protein lysis and digest. Frozen plant material was homogenized with a tissue lyzer (Qiagen, Hilden, 
Germany) or with mortar and pestle in liquid nitrogen. Proteins were precipitated over night with 10% trichlo-
roacetic acid in acetone at −20 °C and subsequently washed two times with ice-cold acetone. Dry samples were 
incubated with urea digestion buffer (8 M urea, 50 mM Tris-HCl pH 7.5, 1 mM DTT, cOmpleteTM EDTA-free pro-
tease inhibitor cocktail (PIC) [Roche, Basel, Switzerland], Phosphatase inhibitor [PI-III; in-house, composition 
resembling Phosphatase inhibitor cocktail 1,2 and 3 from Sigma-Aldrich, St. Louis, USA]) for 1 h. Protein con-
centration was determined with a Bradford assay15. For each sample 100 µg (TMT10plex) or 166 ug (TMT6plex) 
of protein was reduced (10 mM DTT), alkylated (55 mM chloroacetamide), and diluted 1:8 with digestion 
buffer (50 mM Tris-HCl pH 8.0, 1 mM CaCl2). In-solution digestion with trypsin (1:100 w/w) (Roche, Basel, 
Switzerland) at 37 °C was performed for 4 h followed by a second digestion step over night. Digested samples were 
acidified to pH 3 using trifluoroacetic acid (TFA) and centrifuged at 14,000 g for 15 min at 4 °C. The supernatants 
were desalted on 50 mg SepPAC columns (Waters, Milford, USA) and vacuum dried. TMT labelling was per-
formed as described previously16,17. To cover the 13 rosette leaf series samples, two separate TMT10plex experi-
ments were performed with seven leaf stages as biological replicates (CT, LF5-6, LF10-12) and either LF1,3,8 (set 
1) or LF2,4,9 (set 2) as variable subsets (Fig. 1a).

Peptide enrichment and fractionation. Fe3+-IMAC was performed as described previously with some 
adjustments18. TMT-labelled peptides of the growth stage samples were combined for each respective develop-
mental series, desalted, vacuum dried and subsequently re-suspended in ice-cold IMAC loading buffer (0.1% 
TFA, 40% acetonitrile). For quality control, 1.5 nmol of a synthetic library of phosphopeptides and their corre-
sponding non-phosphorylated counterpart sequence (B2 and F1)19 were spiked into each sample prior to loading 
onto a Fe3+-IMAC column (Propac IMAC-10 4 × 50 mm, Thermo Fisher Scientific, Waltham, USA). The enrich-
ment was performed with Buffer A (0.07% TFA, 30% acetonitrile) as wash buffer and Buffer B (0.315% NH4OH) 
as elution buffer. Collected full proteome and phosphopeptide fractions were vacuum-dried and stored at −80 °C 
until further use.

For the full proteome analysis, hydrophilic strong anion exchange chromatography (hSAX) peptide separation 
was performed as described previously20. The full proteome IMAC fraction was reconstituted in hSAX solvent 
A (5 mM Tris-HCl, pH 8.5) and an equivalent of 300 µg protein digest separated using a Dionex Ultimate 3000 
HPLC system (Dionex Cor., Idstein, Germany) equipped with an IonPac AG24 guard column (2 × 50 mm) and 
an IonPac AS24 stong anion exchange column (2 × 250 mm, Thermo Fisher Scientific, Waltham, USA). Fractions 
were collected in 96 well format and subsequently pooled to 48. Individual fractions were acidified with formic 
acid (FA), desalted on self-packed StageTips (five disks, Ø 1.5 mm C18 material, 3 M EmporeTM, elution solvent 
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0.1% FA in 50% ACN) and dried down prior to LC-MS/MS analysis. Phosphopeptides were fractionated into six 
fractions using the high pH reversed phase protocol and pooling scheme for TMT-labelled phosphopeptides as 
described previously16. Phosphopeptide fractions were reconstituted in desalting buffer (0.1% FA) and loaded on 
self-packed StageTips (five disks, Ø 1.5 mm C18 material, 3 M EmporeTM). After a wash step with desalting buffer, 
basic reversed phase buffer A (25 mM NH4FA pH 10) was applied to the StageTips and the flow through (FT) 
collected in a new vial. Phophosphopeptides were eluted with 5%, 7.5%, 12.5%, 17.5% and 50% ACN in 25 mM 
NH4FA pH 10. The 5% and 50% ACN and the FT and 17.5% fractions were combined and all fractions were dried 
down prior to LC-MS/MS analysis.

LC-MS/MS analysis. Nanoflow LC-MS/MS was performed by coupling a Dionex 3000 (Thermo Fisher 
Scientific, Waltham, USA) to a QExactive Orbitrap HF (Thermo Fisher Scientific, Waltham, USA). Samples for 
full proteome and phosphoproteome analysis were re-suspended in loading buffer containing 0.1% formic acid 
(FA) or 50 mM citrate and 1% FA, respectively. Peptide loading and washing were done on a trap column (100 µm 
i.d. x 2 cm, packed in-house with Reprosil-Pur C18-GOLD, 5 µm resin, Dr. Maisch, Ammerbuch, Germany) at a 
flow rate of 5 µl/min in 100% loading buffer (0.1% FA) for 10 min. Peptide separation was performed on an ana-
lytical column (75 µm i.d. x 40 cm packed in-house with Reprosil-Pur C18, 3 µm resin, Dr. Maisch, Ammerbuch, 
Germany) at a flow rate of 300 nl/min using a 110 min gradient from 4% to 32% solvent B (solvent A: 0.1% FA, 
5% DMSO in HPLC grade water; solvent B: 0.1% FA, 5% DMSO in acetonitrile) for the full proteome analysis 
and a two-step 110 min gradient from 4% to 27% solvent B for the phosphoproteome analysis21. Peptides were 
ionized using a spray voltage of 2.2 kV and a capillary temperature of 275 °C. The instrument was operated in 
data-dependent mode, automatically switching between MS and MS2 scans. Full scan MS spectra (m/z 360–1300) 
were acquired with a maximum injection time of 10 ms at 60,000 resolution and an automatic gain control (AGC) 
target value of 3e6 charges. For the top 20 precursor ions, high resolution MS2 spectra were generated in the 
Orbitrap with a maximum injection time of 57 ms at 30,000 resolution (isolation window 1.3 m/z), an AGC target 
value of 2e5 and normalized collision energy of 33%. The underfill ratio was set to 1% with a dynamic exclusion 
of 20 s. Only precursors with charge states between 2 and 6 were selected for fragmentation. For the phosphop-
roteome analysis, the MS2 spectra were acquired with a maximum injection time of 100 ms. Dynamic exclusion 
was set to 35 s.

Peptide and protein identification and quantification. Raw data files for full proteome and phosphop-
roteome were processed together as two separate parameter groups using MaxQuant software (v. 1.5.3.8) with 
standard settings unless otherwise described22. MS/MS spectra were searched against Araport1123 protein coding 
genes (Araport11_genes.201606.pep.fasta; download 06/2016), known contaminants and spike-in phosphopep-
tide library sequences19, with trypsin as protease and up to two allowed missed cleavages. Carbamidomethylation 
of cysteines was set as fixed modification and oxidation of methionines and N-terminal acetylation as variable 
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Fig. 1 Sample description and experimental workflow. (a) Selected tissue growth stages and tandem mass 
tag (TMT) labelling scheme for rosette leaf, flower and silique/seed samples. Rosette leaf and seed/silique 
samples were labelled with TMT10plex and flower samples with TMT6plex reagents. Cotyledons (CT), leaf 
(LF), silique (SQ), seed (EB), flower (FL). (b) Schematic depiction of the proteomic and RNAseq workflows. 
Solid phase extraction (SPE), ion metal affinity chromatography (IMAC), hydrophilic strong anion exchange 
chromatography (hSAX), basic reversed phase chromatography (bRP).
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modifications. For the phosphoproteome parameter group phosphorylation of serine, threonine or tyrosine 
was added as variable modification. Search parameters for the TMT-labelled full- and phosphoproteome were 
adjusted according to TMT6 plex/10plex settings (PIF > 0.75, TMT batch correction factors). Results were filtered 
to 1% PSM, protein and Site FDR.

RNA sequencing. Total RNA was isolated using the NucleoSpin RNA Plant kit (Macherey-Nagel, Düren, 
Germany). DNA was removed by on-column treatment with rDNAse (Macherey-Nagel, Düren, Germany). 
For recalcitrant samples (seed, silique), a LiCl-based protocol was adopted with minor modifications24. After 
LiCl precipitation, the RNA pellet was dissolved in rDNAse buffer and treated with rDNAse (Macherey-Nagel, 
Düren, Germany) at 37 °C for 10 min. The final pellet was re-suspended in 35 µl DEPC-treated water. RNA was 
quantified (NanodropTM, Thermo Fisher Scientific, Waltham, USA) and quality checked with a Bioanalyzer 2100 
(Agilent Technologies, Santa Clara, USA). RNA integrity number (RIN) values between 6.4 and 10 were accepted 
for further analysis. cDNA libraries were prepared using the TruSeq Stranded mRNA Sample Preparation kit 
(Illumina, San Diego, USA) according to the manufacturer’s instructions. Clusters were generated in two batches 
and sequenced on a High throughput flow cell with the HiSeq. 2500 platform (Illumina, San Diego, USA) to a 
depth of 36 million reads per sample. Quality assessment of raw and trimmed 75 bp paired RNAseq reads was 
performed with FastQC. Raw RNAseq reads were trimmed to remove adapter contamination and poor qual-
ity base calls using Trimmomatic version 0.35 with parameters (ILLUMINACLIP:Illumina-PE.fasta:2:30:10; 
LEADING:3; TRAILING:3; SLIDINGWINDOW:4:20; MINLEN:36)25. Trimmed RNAseq reads were mapped to 
the Araport1123 transcriptome with Kallisto version 0.43.1 (default parameters)26.

Data processing. MaxQuant output tables were filtered for non-plant contaminants, reversed sequences and 
proteins which were only identified based on modified peptides. Protein abundance estimation was based on cor-
rected TMT reporter intensities. For comparison of genes identified at transcript and protein levels, MaxQuant 
ProteinGroups containing several gene loci were filtered out in order to retain only unambiguously identified 
gene loci. In case of multiple protein isoform identifications as distinct ProteinGroups, only the isoform with the 
higher number of razor + unique peptides was retained. For qualitative and quantitative analyses, all protein or 
transcript isoform information was collapsed onto the gene level. Note therefore, that we use the term protein 
identification to describe the identification of specific gene locus with at least one peptide and do not consider the 
various proteoforms this might contain. mRNA quantities are displayed as transcripts per kilobase million (TPM) 
and a cutoff of 1 TPM was used as lower limit for detection across all samples.

Unless otherwise stated, displayed abundances for protein, transcript and phosphorylation sites were log2 
transformed. Protein and transcript datasets were median centred to the overall median of the respective dataset. 
No normalization was performed for the p-site dataset, since total p-site intensity variations between tissues are 
also due to biological sample differences. Instead, the spike-in phosphopeptide library was used, to assess repro-
ducible enrichment efficiency and MS measurement quality of phosphoproteome samples19. Phosphoproteins 
were defined as proteins with a distinct phosphorylation site identification. P-sites with a localization probability 
>0.75 were designated as class I sites27. ComBat28 was used to remove batch effects between the two TMT10plex 
experiments covering the 13 rosette leaf samples after log transformation and mean abundance calculation of 
protein/p-sites between replicate samples.

Data analysis. Araport11 annotated Arabidopsis gene loci (n = 27,655) and Isoform (n = 48,359) coverage 
was calculated using all transcript identifications and unambiguously identified proteins. Note that only 35,870 
isoforms have a distinct sequence on protein level. Histograms of the log2 transformed transcript abundance dis-
tribution were plotted in Perseus29 (v. 1.5.5.3) and the population of transcripts that was also identified on protein 
level indicated for each tissue type.

Pearson correlation coefficients of protein TMT reporter intensities between different tissue growth stages 
were calculated in Perseus using ProteinGroups with unambiguous gene loci identification and at least one 
valid quantification (LF n = 9,080; FL n = 9,706; SQ/EB n = 11,276). For the two rosette leaf TMT experiments, 
Pearson correlation coefficients were calculated for all pair-wise combinations of TMT reporter intensities of 
growth stages from leaf set 1 and leaf set 2. Pearson correlation coefficients of transcript intensities between dif-
ferent tissue growth stages were calculated using all transcripts with at least one quantification (LF n = 19,759; FL 
n = 22,632; SQ/EB n = 22,506).

Principal component analysis (PCA) was performed in Perseus using z-scored protein and transcript inten-
sities and datasets without missing values for both omics levels (LF n = 7,563; FL n = 9,138; SQ/EB n = 9,559)

Supervised hierarchical clustering analysis on protein level (unambiguous identifications) for consecutive 
developmental stages (rosette leaf, flower; silique, seed) was performed on log2-transformed, z-scored intensities 
in Perseus using Euclidean distance and average linkage. Z-scoring was performed separately for silique and 
seed samples because the large morphological difference between the two sample sets would overshadow small 
changes between growth stages. Gene ontology biological process (GOBP) term annotations were loaded from 
the Perseus organism repository (mainAnnot.arabidopsis_thaliana.txt; download 10/2015). A Fisher’s exact test 
was performed for the protein expression clusters in each dataset using Benjamini-Hochberg FDR truncation 
(0.01 threshold). The results were filtered for an enrichment factor > 1.5 (Supplemental Tables S1–3).The relation 
between protein and transcript expression for individual gene loci was calculated using the Pearson correlation 
coefficient and the set of genes with abundance measurements on both protein and transcript level in at least 
five matching growth stages (5 pairwise complete observations; LF n = 8,938; FL n = 9,268; SQ n = 10,568; EB 
n = 9,868). Density distributions of Pearson correlation values were plotted in R30 (v 3.5.1). To estimate the relative 
proportion of genes with positive (Pearson coefficient: 0.5 to 1), negative (Pearson coefficient: −1 to −0.5) and no 
correlation (Pearson coefficient:−0.5 to 0 and 0 to 0.5) between transcript and protein levels for each dataset, the 
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number of genes in each section was divided by the total number of genes in each dataset. Supervised hierarchi-
cal clustering analysis was performed in Perseus for genes with Pearson correlation coefficient > 0.5 (n = 4,264) 
or < −0.5 (n = 1,724) in the seed dataset using log2-transformed and z-scored intensities, Euclidean distance and 
average linkage. A Fisher’s exact test was performed in Perseus for the expression clusters in both categories (pos-
itive protein-transcript correlation + ; negative protein-transcript correlation –) using Benjamini-Hochberg FDR 
truncation (Supplemental Table S3). Enrichment factor, the negative logarithm of the Benjamini-Hochberg FDR 
and category size were plotted for GOBP categories that passed the 0.01 FDR threshold.

Domain information for IQD14 (AT2G43680) was obtained from the pfam database31 (http://pfam.xfam.org/
protein/Q8LPG9) for the identifier IQD14_ARATH. We note that with the exception of the leaf dataset (n = 2 for 
7 stages), no replicates were performed for the developmental time courses and the dataset should therefore be 
treated as exploratory. Similar developmental stages however show high expression similarity and can be used to 
contrast e.g. early and late development stages.

Data Records
Transcriptome sequencing and quantification data are available at ArrayExpress (www.ebi.ac.uk/arrayexpress) 
under the identifier E-MTAB-797832. The raw mass spectrometric data and MaxQuant result files have been 
deposited to the ProteomeXchange Consortium via PRIDE33, with the dataset identifier PXD01881434. The data-
sets will also be available via ProteomicsDB35.

Technical Validation
Experimental design. High quality data and a good coverage of the transcriptome/proteome are essen-
tial to gain meaningful information about the function of biological pathways and individual genes throughout 
plant growth stages. For our expression profiling of different stages in Arabidopsis growth, we placed a focus on 
four aerial organ systems, rosette leaves, siliques, immature seeds and flowers and collected samples spanning 
a defined segment in their respective development (Fig. 1a). To cover the 13 samples of the rosette leaf series 
with the available ten TMT isobaric labelling channels, we performed two independent proteomics experiments. 
Cotyledons and rosette leaves number 5, 6, 7, 10, 11 and 12 are represented in both experiments as biological 
replicates. The leaves 1 and 2 (juvenile phase), 3 and 4 (juvenile phase) and 8 and 9 (adult phase) respectively, 
are morphological very similar and were divided between the two leaf datasets. Leaves 1, 3 and 8 were covered 
in the first leaf series experiment, leaves 2, 4 and 9 in the second (Fig. 1a). We used isobaric labelling with TMT 
and extensive peptide fractionation in combination with measurement on a Q Exactive HF mass spectrometry 
platform to obtain deep and consistent proteome coverage and quantification (Fig. 1b). Part of the protein sam-
ples were used to generate sample-matched profiles of the phosphorylation status across organ development. The 
enrichment of phosphopeptides in each series was performed after the TMT labelling step to reduce technical 
variance (see methods; Fig. 1b). In parallel, we also extracted total RNA from all leaf, silique, seed and flower 
stages and measured transcript abundance profiles by RNAseq using a HiSeq. 2500 sequencer (Fig. 1b).

Qualitative and quantitative transcriptome and proteome coverage. Using the above described 
workflow, we identified more than 9,000 distinct proteins for each organ type (Table 1; Fig. 2a; Supplemental 
Tables S1–3). Protein identifications in silique/seed and flower were higher than in leaves. This can be explained 
by the high dynamic range of photosynthesis-associated proteins in leaves that mask the presence of more low 
abundant proteins4,36 (Fig. 2b). In addition, we expect a more varied gene expression in flower and silique/seed 
tissues given their specialized cell types and morphology. Silique and seed tissues showed the highest phosphoryl-
ation activity with the largest number of identified phosphorylation sites (Fig. 2b). The average sequence coverage 
was 20.1% for flower, 27.8% for silique/seed and 25.6% for the leaf dataset, respectively (Table 2) and falls within 
the expected range for tryptic digested samples. More than 90% of the proteins in each dataset were identified 
with two or more unique peptides and the average Andromeda score (all peptides, Table 2) was 64.2, 95.6 and 
103.0, respectively. In the parallel RNAseq analysis we identified up to 22,632 individual transcripts thus covering 
about 82% (flower) of the annotated protein-coding genes (Araprot1123) which is about twice as high as coverage 
on the proteome level (Table 3). Due to the lower sequence coverage in proteomics, isoform identification is also 
more effective on transcript than on protein level (Table 3). Note that nearly all protein identifications arise from 
the high abundant transcript populations (Fig. 2c), which shows the current limitation of the proteomics tech-
nology to detect low abundant protein species in the background of highly complex samples. With the ongoing 

Identification Rosette leaf Flower Silique/Seed

ProteinGroups (all) 10,123 10,686 12,225

ProteinGroups (unambiguous) 9,080 9,706 11,276

Phosphoproteins (unambiguous) 963 1,446 2,271

Peptides (all) 87,364 68,011 105,469

Phosphopeptides (all) 1,576 2,299 4,297

Phosphorylation sites (all) 1,838 2,596 4,870

Phosphorylation sites class I (all) 1,559 2,229 4,097

Transcripts 19,759 22,632 22,506

Table 1. Number of identifications on protein, transcript and phosphorylation level.
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advances in mass spectrometry technology and bioinformatics tools however, we expect to see even more sensi-
tive MS analyses in the future.

As expected, quantitative expression levels of most proteins were very similar between consecutive growth 
stages but diverged during developmental progression of the respective tissues (Fig. 3a). The same was observed 
for quantitative expression levels of transcripts (Fig. 3b). For the rosette leaf dataset, we compared protein iden-
tifications and quantifications between the two independent biological replicates to estimate workflow variation. 
Protein expression level quantification was very reproducible and matching leaves and adjacent growth stages 
showed the best correlation (Fig. 3c). The overlap in protein identification for the two leaf TMT datasets was 89% 
which also demonstrated the consistency in measurement depth for one tissue type.
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Description Rosette leaf Flower Silique/Seed

ProteinGroups (unambiguous)

Sequence coverage 0%-25% 53.7% 67.4% 48.9%

Sequence coverage 25%-50% 38.3% 28.6% 40.1%

Sequence coverage 50%-75% 7.6% 3.7% 10.5%

Sequence coverage 75%-100% 0.4% 0.2% 0.6%

ProteinGroups (unambiguous)

Unique peptides < 2 5.7% 8.5% 6.3%

Unique peptides 2 9.3% 14.4% 9.5%

Unique peptides > 2 85.0% 77.1% 84.2%

Peptides (all)

Andromeda Score < 50 7.0% 34.4% 17.2%

Andromeda Score 50–100 39.2% 49.0% 35.8%

Andromeda Score ≥ 100 53.8% 16.6% 47.0%

Table 2. Sequence coverage, unique peptide identifications and Andromeda Score.

Description Omics Level Rosette leaf Flower Silique/Seed

Gene loci n = 27,655

Gene loci Proteomics 32.8% 35.1% 40.8%

Gene loci Transcriptomics 71.4% 81.8% 81.4%

Isoforms n = 48,359

Isoforms Proteomics 12.8% 13.1% 15.8%

Isoforms Transcriptomics 89.2% 94.4% 93.9%

Table 3. Percentage of protein coding gene loci (Araport11 annotation) detected on protein and transcript level.
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Stage-specific gene expression. Principal component analysis of the consecutive samples in each tissue 
type showed a gradual shift of expression levels from early to late developmental stages both on protein and 
transcript level (Fig. 3d). We expect that the comparison of gene expression profiles on the different omics levels 
of this dataset will allow for a more comprehensive molecular characterization of specific growth regulation37,38. 
The observed expression dynamics likely reflect a combination of tissue composition and functionality change39. 
Early and late developmental stages in the different tissues were consistently associated with specific GOBP terms. 
In young stages of flower (FL9,10,11), silique (SQ1,2,3) and seed (EB6,7,8) as well as newly generated rosette 
leaves (LF10-12) genes involved in translation, RNA processing and DNA organization are comparatively high 
abundant as would be expected of tissues with a high amount of cell division activity (Fig. 4a; Supplemental 
Tables S1–3). Later stages on the other hand are dominated by energy generation, transport and metabolic pro-
cesses (Fig. 4a; Supplemental Tables S1–3).

Usage Notes
With the following examples we aim to exemplify, how the information provided in our multi-omics study can be 
used to explore molecular pathways that are modulated during the growth of photosynthetic active aerial plant 
organs.

Protein/mRNA relation. Changes in transcript abundance are usually reflected by protein level changes in 
the same direction albeit not necessary of comparable magnitude40. We compared transcript and protein expres-
sion patterns across growth stages in our datasets and found positive correlations for a majority of genes (Fig. 4b). 
The seed dataset however showed an increase in the proportion of genes with either no or even negative cor-
relation between protein and transcript levels (Fig. 4b). A possible explanation is the accumulation of storage 
reserves as either mRNAs or proteins that takes place during seed maturation41, an effect we already observed 
in our tissue atlas study4. A GOBP term enrichment analysis for the seed sample indeed showed an increase in 
genes associated with transport, localization and biological signalling for genes with negative protein-transcript 
correlations (Fig. 4c,d; Supplemental Table S3). Genes with positive protein-transcript correlations that are high 
abundant in the early stages of seed development on the other hand are enriched for GO terms associated with 
RNA processing and translation. Genes that are more abundant in the later developmental stages both on protein 
and transcript level can be associated with photosynthesis, energy production and metabolic processes (Fig. 4c,d; 
Supplemental Table S3).

Pathway or protein family expression profiles. Changes in the expression levels of proteins or 
protein families between different developmental stages can be associated with their molecular function. 
Proteins involved in cell cycle regulation and progression like cell division cycle (CDC) 5 and CDC48, cyclins, 
cyclin-dependent kinases or members of the minichromosome maintenance complex (MCM) are detected with 
higher abundance in early developmental stages of flower, silique and seed (Fig. 5a). In the rosette leaf dataset, 
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the adult leaves 10, 11 and 12 are the morphologically youngest stages and therefore show elevated cell cycle 
activity in comparison to the other leaf stages (Fig. 5a). An opposite trend can be observed for genes involved 
in energy production like glyceraldehyde-3-phosphate dehydrogenase (GAPDH), fructose-bisphosphate aldo-
lase (FBA) or phosphofructokinase (PFK) gene family members (Fig. 5a). Interestingly the two GAPCP-type 
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genes (GAPCP1 and GAPCP2) are higher abundant in young tissues, similar to the cell cycle associated genes 
(Fig. 5a). This expression pattern is expected since these proteins are involved in glycolytic energy production in 
non-green plastids42. A similar expression pattern was observed for PFK6, suggesting a specific function in the 
energy metabolism of young developmental tissue stages that has yet to be elucidated43.

Another example that supports our protein expression data are several protein families involved in cell wall 
growth and turgor establishment. Members of the CESA protein family form the cellulose synthase complex 
(CesA) which produces cellulose, the main load bearing component of the plant cell wall44. Primary cell wall 
formation is initiated during cell division and growing cells continuously produce new cell wall components45. 
The primary cell wall CesA complex consist of multiple copies of CESA1, CESA3 and CESA644. Deposition of 
the more rigid secondary cell wall only starts after the cessation of cell growth to mechanically stabilize especially 
load bearing plant structures like the stem. Within the rosette leaves we only detected components of the primary 
cell wall synthesis complex and CESA protein levels were more abundant in the later fast-growing leaves, which 
are still undergoing active cell division (Fig. 5b). This finding is supported by our previous Arabidopsis pro-
teome study where the secondary cell wall CesA complex was primarily detected in stem tissues but not leaves4. 
Cellulose synthase-like (CSL) proteins which also belong to the cellulose synthase superfamily have been associ-
ated with the synthesis of several β-glycan polymers46. Among these, CSLA2 for example has been described as a 
mannan und glucomannan synthase47,48 which have structural and storage functions in the plant cell wall. CSLC4 
on the other hand can synthesize xyloglucan, a major hemicellulose in the primary plant cell wall49. According 
to their functionality in cell wall formation, we detect higher expression of CSLA2 in juvenile rosette leaves 
and CSLC4 in later growth stages (Fig. 5b). The different expression profiles of CSL family proteins in rosette 
leaves can thus be used to elucidate their function in the different steps of plant cell wall synthesis and modifica-
tion (Fig. 5b). Plant tissue growth occurs through cell proliferation and cell expansion50. After cell proliferation 
has stopped, cell expansion is mainly driven by an increase in turgor pressure and cell wall loosening45. The 
H+-ATPase complex is an H+-pump in the plasma membrane that is involved in regulating turgor pressure and 
cell wall pH51,52. In the rosette leaf dataset, we identified four of the 11 H+-ATPase gene family members53 all of 
which showed elevated expression in leaves 5 through 8 (Fig. 5b). Although these leaves are still growing, growth 
here is mainly driven by turgor-mediated cell expansion50.

Developmental stage expression markers. Developmental stages are often characterized by the expres-
sion of specific marker genes, like transcription factors which initiate molecular programs at precise times in 
flower development54. Protein synthesis constitutes a time delay for changes in transcript levels to become appar-
ent in protein levels40. Stage markers might therefore appear to be out of sync between the proteome and tran-
scriptome datasets in a dynamically developing system like the flower. We compared the expression profiles of a 
set of gene families that were associated with stage 12 flowers in a transcriptome study by Zhang et al.55. Oleosins, 
DUF1216 and DUF220 genes also showed peak mRNA expression at flower stage 11–12 (oleosins, DUF220) and 
stage 12 (DUF1216) in our transcriptome data (Fig. 5c). At the protein level, however, elevated expression was 
apparent only at stage 12 (oleosins, DUF220) and stage 13 (DUF1216) (Fig. 5c).

Phosphorylation site characterization. The number of phosphorylation sites identified for each protein 
ranged from a single site to more than 30 distinct modification sites. A high number of phosphorylation sites was 
often detected for proteins with large unstructured domains like loops and tails56. For the protein IQD14, which 
belongs to the family of plant-specific IQ67 Domain (IQD) genes involved in calcium regulation57, we detected 28 
distinct phosphorylation sites, most of which localized to unstructured regions (Fig. 5d). The expression profiles 
of these sites in the silique and seed dataset mostly resembled the profiles detected at the protein and transcript 
level, notably a decreasing abundance during silique growth and an increase throughout the seed development 
stages (Fig. 5d). This indicates that phosphorylation of these sites is constitutive rather than regulatory58. In con-
trast, a divergent phosphorylation pattern was detected for threonine 271 (T271), which showed increased phos-
phorylation during silique growth. Similar observations were made for serine 439 and 504 (S439, S504) with a 
peak in phosphorylation signal at embryo stage 8 (Fig. 5d). These sites might therefore be involved in growth 
stage dependent regulation of protein function.

Code availability
Source code used for RNAseq data processing and pre-processing of transcript, protein and phosphorylation site 
data files is available in GitHub59.
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