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Human kinematic, kinetic and EMG 
data during different walking and 
stair ascending and descending 
tasks
tiziana Lencioni, Ilaria Carpinella  *, Marco Rabuffetti, Alberto Marzegan & Maurizio Ferrarin  

This paper reports the kinematic, kinetic and electromyographic (EMG) dataset of human locomotion 
during level walking at different velocities, toe- and heel-walking, stairs ascending and descending. A 
sample of 50 healthy subjects, with an age between 6 and 72 years, is included. For each task, both raw 
data and computed variables are reported including: the 3D coordinates of external markers, the joint 
angles of lower limb in the sagittal, transversal and horizontal anatomical planes, the ground reaction 
forces and torques, the center of pressure, the lower limb joint mechanical moments and power, the 
displacement of the whole body center of mass, and the surface EMG signals of the main lower limb 
muscles. The data reported in the present study, acquired from subjects with different ages, represents 
a valuable dataset useful for future studies on locomotor function in humans, particularly as normative 
reference to analyze pathological gait, to test the performance of simulation models of bipedal 
locomotion, and to develop control algorithms for bipedal robots or active lower limb exoskeletons for 
rehabilitation.

Background & Summary
Locomotion, the movement of the body from one place to another, is a fundamental task for animal life and 
it is performed through complex interactions among the neuro-muscular, skeletal and sensory systems1. The 
way locomotion is realized highly depends on the environment where it is performed. Humans, like all terres-
trial mammals, use legged locomotion requiring the continuous and alternate repositioning of each limb on 
the ground. Although legged locomotion is a dynamically unstable process, thus not easy to be learned and 
maintained at all stages of life, it offers some advantages like the possibility to be performed on different kinds of 
terrain, to overcome obstacles, to climb/descend stairs and to make sharp turns2. The main conditions of human 
locomotion are walking and running, the first being the most common one adopted during daily-life activities, 
with an average daily step count of about 9500 in adults3.

When problems arise due to abnormal functioning of one or more components of the motor system, human 
movements are altered and walking becomes less efficient, difficult or even impossible to be performed4. Also 
physiological changes associated to aging may worsen deambulation5. Rehabilitation approaches and assistive 
walking devices, e.g. canes, crutches, orthoses, can (at least partially) solve such problems and/or support patients 
to improve locomotion.

An important aspect in this context is the objective quantitative assessment of walking abnormalities in order 
to develop new rehabilitation protocols and assistive devices, to tailor/personalize them to each subject, and 
to verify their efficacy over time6. A key point in this process is the availability of normative data measured on 
healthy persons aimed at quantifying possible deviations of the walking pattern of a given subject from the phys-
iological profiles7,8.

Three types of data are traditionally considered to fully describe human walking: kinematic, kinetic and elec-
tromyographic (EMG)7. Kinematic data include displacement and orientation of body segments, joint angles and 
spatio-temporal gait parameters. Kinetic data include ground reaction forces (GRF), lower limb joint mechanical 
moments and powers, kinetic and potential energy. Muscle activation patterns are analyzed through the electrical 
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signals (EMG) associated to muscular fibre contraction, that can be recorded noninvasively through surface elec-
trodes attached on the skin over muscle bellies.

The present dataset has been collected using the state-of-the-art instruments of a gait analysis laboratory, 
which include: a TVC-based stereophotogrammetric system, a set of passive reflective markers, dynamometric 
force platforms and a wireless multichannel EMG recording system.

Few databases including kinematics, kinetics and EMG data of healthy subjects during locomotor tasks 
and upper limb exercises have been published7–14. Most databases reporting lower limb data, usually provide 
between-subject average profiles in numerical format7–9, while single subject data are made available in one data-
base only which provides kinematic and force plate data but not EMG signals12,13. Moreover, most of published 
databases concern only level walking, and did not consider other locomotor tasks, such as toe- and heel-walking15 
and stair negotiation16, that can be more sensitive to mild alterations typical of early-stage neuromuscular dis-
eases. In particular, compared to plain walking, toe- and heel-walking challenge balance and imply a stronger 
distal activity of ankle muscles, while stair negotiation implies larger amounts of energy to be produced during 
ascending or dissipated during descending, and asks for larger range of motion and moment of hip and knee 
joints17. Moreover, it is well known that walking speed has apparent effects on kinematics, kinetics and muscle 
recruitment8 and that increased speeds are able to disclose locomotor anomalies18.

Based on the above considerations, in the present paper we report a comprehensive dataset of kinematic, 
kinetic and EMG individual data measured on 50 healthy subjects of different ages (young, adult and elderly) dur-
ing the following conditions: level walking at different velocities, toe- and heel-walking, and stairs ascending and 
descending. Possible applications of the data here reported are: providing age- and speed-matched normative ref-
erence for the analysis of altered gait in individual patients, developing/optimizing lower limb prostheses19, devel-
oping/testing simulation models of bipedal locomotion20, and developing control algorithms for bipedal robots21, 
active exoskeletons22,23 or model-based Functional Electrical Stimulation systems24 for motor rehabilitation.

Methods
Participants. Fifty healthy subjects (25 males, 25 females, age range: 6–72 years, body mass: 18.2–110 kg, 
body height: 116.6–187.5 cm) were included in the study. All of them reported no known locomotor disorders or 
other health issues which could affect their motor performance. Age, gender, body weight and body height of each 
participant are reported in the data set.

Before engaging in experiments, each subject was comprehensively briefed about the procedure, introduced to 
the experiment and informed of any potential risks. We required participants to sign an informed consent form. 
The study and experiments were carried out in accordance with principles of the Declaration of Helsinki and 
approved by the Institutional Research Ethics Committee of Fondazione Don Carlo Gnocchi.

Instrumentation and subjects preparation. Data were acquired in the LAM (Laboratory for Movement 
Analysis) of the Biomedical Technology Department of Don Carlo Gnocchi Foundation Scientific Institute 
of Milano, Italy. The laboratory is equipped with a 9-camera motion capture system (SMART system, BTS, 
Garbagnate Milanese, Italy), two force platforms (Kistler, Winterthur, Switzerland) and a 8-channels wireless 
EMG recording system (ZeroWirePlus, Cometa, Bareggio, Italy).

Synchronous data acquisition was managed by the proprietary software of the motion capture system (SMART 
Capture, version 1.10, BTS, Italy). The markers trajectories were recorded at either 60 Hz or 200 Hz, force plate data 
at 800 Hz or 960 Hz, EMG data at 800 Hz, 960 Hz or 1000 Hz. Sampling frequencies are indicated in the data files.

The calibrated volume of the SMART-DX system was about (5 × 3 × 2) m3, within which the 3D coordinates 
of the retro-reflective markers could be reconstructed with an accuracy of less than 1 mm in all directions. The 
calibration of cameras’ and platforms’ positions was performed before each acquisition session, following the 
standard procedure described by the producer of the motion capture system.

At the beginning of each experiment, the subject was equipped with the LAMB total-body marker set25, which 
includes 29 retro-reflective markers (12 mm diameter) on head, upper limbs, trunk, pelvis and lower limbs (red 
and white dots in Fig. 1a). As required by the LAMB protocol, 8 additional markers were placed on great tro-
chanters and medial part of the lower limbs (gray dots in Fig. 1a). These markers were used during the prelimi-
nary static calibration trial and were removed during the dynamic trials.

Subjects were required to wear tight clothes or swimsuit and markers were attached on the skin above bony 
landmarks with double-sided adhesive tape. Surface EMG signals were recorded using pre-amplified self-adhesive 
Ag-AgCl electrodes (Medtronic Kendall, diameter: 24 mm, diameter of the active part: 10 mm, bipolar config-
uration, interelectrode distance: 20 mm) and were band-pass filtered (10 Hz–400 Hz) before sampling to reduce 
the aliasing effect.

EMG signals were recorded unilaterally, on the dominant side, from the following muscles tibialis anterior 
(TA), soleus (SO), gastrocnemius medialis (GM), peroneus longus (PL), rectus femoris (RF), vastus medialis 
(VM), biceps femoris (BF) and gluteus maximus (GMax). Electrodes were located on the skin according to 
SENIAM recommendations26. The recording sites were shaved to remove any hair and subsequently cleaned with 
an alcohol solution and allowed to dry. The signals were checked for quality and sensors locations were adjusted 
as necessary.

Experimental procedure. For each subject, the acquisition session included a static calibration phase 
and, subsequently, a dynamic one including five locomotor tasks: walking at different speeds, toe-walking (T), 
heel-walking (H), step ascending (U) and step descending (D). All tasks were performed barefoot.

The static calibration phase included two static trials: the calibration and the standing trial. The calibration 
trial, performed in an erect posture such that all markers are visible, is used to derive anthropometric measure-
ments (e.g. femoral length) and to calibrate the position of the great trochanters and the medial part of the body, 
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since the latter are hardly visible during locomotor movements. The standing trial, performed in the natural erect 
posture of each subject, is recorded to compute reference values for kinematic data during locomotion.

After the calibration phase, the 8 anatomical markers placed on great trochanters and medial lower limbs were 
removed and the dynamic locomotor tasks were acquired.

For the walking task, we initially asked the subjects to walk five trials at their natural speed (N). Hence we 
asked to perform the following ten trials while progressively increasing (first 5 trials) or decreasing (latter 5 trials) 
their speed. We gave no precise indications about gait speed or cadence in order not to induce gait alterations.

During step ascending (U) and descending tasks (D), a custom-made staircase consisting of two wooden 
steps was used. As shown in Fig. 1b, the first step was positioned on one force platform to provide GRF data, after 
removing the step weight through the platform reset procedure preliminarily performed. The second step was 
a structure with a bridge shape that did not interfere mechanically with the first step and leaned on the ground 
outside the force platform. During U, subjects were required to start from ground level and stop with both feet on 

Fig. 1 Experimental set-up. (a) Marker set of LAMB protocol, which includes a total of 29 markers: 25 
anatomical markers (red dots) and 4 technical markers (white dots). Skeleton figures are taken from another 
source (https://pixabay.com/en/skeleton-human-skeletal-anatomy-41548/ and https://pixabay.com/en/
skeleton-human-skeletal-anatomy-41550/). A preliminary calibration phase requires a static trial with 
additional 8 anatomical markers (grey dots), which are removed during the dynamic trials. The label of all 
markers are indicated. ASIS: anterior superior iliac spine; META1 and META5: first and fifth metatarsal heads; 
PSIS_MX: midpoint between right and left posterior superior iliac spines; GT: great trochanter; MEDCON 
and LATCON: medial and lateral femoral condyles; FH: fibular head; MEDMAL and LATMAL: medial and 
lateral malleoli. (b) Schematic drawing of the staircase used for step ascending/descending tasks (dynamometric 
platform is colored in green). (c) Pictures of a subject during the experiment equipped with markers and 
electrodes for EMG recording (see blowups). From left to right: standing, walking and step ascending trial.
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the second step. Correspondingly, during step descending (D), the subjects started standing on the second step, 
and stopped on the ground beyond the first step. The subjects performed toe-walking (T), heel-walking (H) and 
step negotiation (U and D) at their self-selected speed. We asked the subjects to repeat each task five times. A total 
of 35 locomotor trials were recorded for each participant, during a single acquisition session lasting about 1 hour. 
Only data from trials correctly completed (i.e. correct foot-strike on force platforms and absence of evident arti-
facts) and without technical problems in data collection are reported.

Figure 1c shows a subject equipped with markers and EMG electrodes during the recording session.

Data elaboration. The flowchart of data elaboration is shown in Fig. 2.
After data acquisition, the 3D markers’ coordinates were preprocessed using SMART Tracker software (ver. 

1.10) which allowed the labeling of each marker with a specific name, according to Fig. 1a. This operation defined 
the anatomical location of each marker. Moreover, the same software performed the computation of the 3D tra-
jectories of each marker.

After the labeling and 3D reconstruction procedures, kinematic data were further elaborated using a custom 
software implemented with MATLAB R2017b (The Mathworks Inc., Natick, MA).

In particular, the 3D coordinates of labeled markers of the lower limbs and pelvis were low-pass filtered (5th 
order, zero-lag, Butterworth filter) at a frequency equal to 6 Hz according to Rabuffetti et al.25, and the trajectory 
gaps were filled through spline interpolation in case of short periods (maximum 10% of the entire stride) of mark-
ers’ masking as described in technical validation section.

The 3D coordinates of all acquired markers are made available in the data record associated to this paper, 
as described in the “Data records” section, together with dynamometric platform data (3D ground reaction 
forces and torques, 3D coordinates of Center of Pressure (CoP)) and EMG signals. It must be noted that CoP 
coordinates reported in the data record are referred to the global reference frame of the optoelectronic system. 
Moreover, as regard step ascending and descending tasks, the reported CoP coordinates are referred to the plane 
of the platform, that was 18 cm (first step height) below the actual contact surface between foot and step.

To provide the interested reader with standard 3D kinematic and dynamic gait data, pelvis orientation angles, 
hip, knee and ankle joint angles, moments and powers, and 3D coordinates of the body center of mass have been 
computed according to the LAMB model and reported in the data record too.

In the following paragraphs a summary description of the LAMB model is reported, while a detailed charac-
terization can be found in Rabuffetti et al.25.

The LAMB model is based on the notion that the availability of the 3D coordinates of three markers and/or 
estimated points on each segment allows for the identification of local reference frames.

Firstly, the anthropometric parameters of each subject were computed from markers’ positions recorded dur-
ing the calibration trial. In particular, the leg length was estimated as the Euclidean distance between ASIS and 
LATMAL markers, while the pelvis depth as the component of the ASIS-GT distance onto the antero-posterior 
pelvis axis passing through the PSIS_MX and the midpoint between right and left ASIS markers.

Markers’ trajectories and anthropometric parameters were used to estimate the hip joint center (HJC) fol-
lowing Davis et al.27, and to reconstruct the additional anatomical markers in the dynamic trials, following the 
calibration procedure described by Cappozzo et al.28. In particular, GT and MEDCON were reconstructed using 
HJC, THIGH and LATCON markers, MEDMAL using FH, SHANK and LATMAL markers, and META1 using 
MEDMAL, LATMAL and META5 markers.

Secondly, the local reference frame of each segment was computed. The pelvis reference frame, identi-
fied according to Davis et al.27, was defined by a forward-oriented X-axis passing through the PSIS_MX and 
ASIS midpoint, an upward-oriented Y-axis perpendicular to the PSISs/ASISs plane, and a Z-axis computed as 

Fig. 2 Data processing. Flowchart of data elaboration.
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the cross-product of X and Y axes. The thigh reference frame was defined by an upwards longitudinal Y-axis 
passing through the HJC and the midpoint between LATCON and MEDCON (i.e. knee joint center, KJC), a 
forward-oriented X axis perpendicular to the plane identified by the thigh longitudinal Y-axis and by the 
LATCON-MEDCON vector, and a Z-axis that is the cross-product of X and Y. The shank reference frame 
included an upwards longitudinal Y-axis passing through the KJC and the ankle joint centre (AJC), the latter esti-
mated as the midpoint between LATMAL and MEDMAL, a forward X-axis perpendicular to the plane identified 
by the shank longitudinal Y-axis and by the LATMAL-MEDMAL vector, and a Z-axis that is the cross-product of 
X and Y. Finally, the foot reference frame was characterized by a longitudinal X-axis passing through the AJC and 
the midpoint between META1 and META5, an upwards Y-axis perpendicular to the plane defined by the foot lon-
gitudinal X-axis and the META5-META1 vector, and a Z-axis computed as the cross-product between X and Y.

Angular variables were computed, according to Grood & Suntay29 and Wu et al.30, by considering the local 
reference frames of two adjacent anatomical segments in the case of joint angles, and by considering the absolute 
functional frame and the segment local frame in the case of pelvis orientation angles.

Joint moments were computed following a free body approach and using published estimates of segments 
inertial characteristics based on subjects’ anthropometry31. The resulting moment vector was presented by the 
components relative to the local frame of the proximal segment. Joint powers were computed, for each joint, 
multiplying the flexion/extension joint moment with the first derivative of the flexion/extension joint angle. Joint 
moments and powers were normalized to the body mass of each subject, reported in the data record.

The 3D coordinates of the center of mass of the whole body were computed following a segmental analysis 
method32. In particular, the positions of the centers of mass of each body segment were computed from the 3D 
coordinated of markers and/or reconstructed points and from subjects anthropometric features. The mass of 
each segment was estimated following Zatsiorsky et al.31. Hence, the location of the whole body center of mass 
was computed frame by frame by using a weighted average of segmental center of mass based upon the segment 
mass fractions7,33.

For each trial, foot-strikes were defined from platform data as the first samples with presence of GRF data. 
Two consecutive foot-strike instants correspond to the initiation (tstart) and termination (tend) of the stride. Only 
strides including one step on a force plate were considered.

The data reported in the present study includes, for each trial, the portions of kinematic, dynamic and EMG 
signals between tstart and tend. In the case of angles, joint moments and powers, the signals were time normalized 
to 100 points as a percentage of stride duration (tend–tstart).

Field of s.Data structure Description

.Foot Indicates the trailing foot (i.e. the foot on the force plate), RX (right) or LX (left)

.TimeStampKin The timestamp of the foot-strike in the kinematic time vector, indicating the beginning of the stride (unit: s)

.TimeStampGrf Same as .TimeStampKin in the kinetic time vector related to the ground reaction force (unit: s)

.TimeStampEMG Same as .TimeStampKin in the EMG time vector (unit: s)

.Task Indicates the type of trial (Walking, HeelWalking, ToeWalking, StepDown, StepUp)

.Marker Matrix (3·Nmarker × N). It contains the 3D trajectories of the markers. The rows are the X, Y, Z coordinates of 
the markers named in the variable s.MarkerVarName. The columns are the N sample points (unit: m)

.EMG Matrix (8 × N). It contains the EMG data. The rows are the channels named in the variable s.EMGVarName. The 
columns are the N sample points (unit: mV)

.Grf
Matrix (9 × N). It contains the Grf data. The rows are the signals named in the variable s.GrfVarName. The first 
three rows are relative to the ground reaction force vector (unit: N), the second three rows are relative to the 
position of the application point of the ground reaction force (center of pressure, unit: mm), while the last three 
are relative to the ground reaction torque vector (unit: N*m). The columns are the N sample points.

.speed Averaged speed (unit: m/s)

.strideLength Length of the stride (unit: m)

.stepWidth Width of the stride (unit: m)

.cadence Cadence (unit: step/min)

.Ang
Matrix (12 × 101). The rows are the pelvis orientation and joint angles corresponding to the anatomical planes 
reported in the variable s.AngVarName. The columns are the sample points expressed as percentage of the stride 
duration (unit: deg)

.Mom
Matrix (9 × 101). The rows are the joint moments corresponding to the anatomical planes reported in the 
variable s.MomVarName. The columns are the sample points expressed as percentage of the stride duration (unit: 
Nm/kg)

.Pwr Matrix (3 × 101). The rows are the joint powers corresponding to the sagittal plane reported in the variable 
s.PwrVarName. The columns are the sample points expressed as percentage of the stride duration (unit: W/kg)

.Com Matrix (3 × 101). The rows are the X, Y, Z coordinates of the trajectory of the Center of Mass. The columns are 
the sample points expressed as percentage of the stride duration (unit: m)

Field of s.StandingData 
structure Description

.Marker
Matrix (3·Nmarker × 1). It contains the averaged values of the 3D locations of the markers during the standing 
trial. The rows are the X, Y, Z coordinates of the markers named in the variable s.MarkerVarName. The columns 
are the N sample points (unit: m)

.Ang Matrix (12 × 1). It contains the averaged values of the joint angles during the standing trial. The corresponding 
anatomical planes are reported in the s.AngVarName (unit: deg)

Table 1. Contents of s.Data and s.StandingData structures in SubjectX.mat files.
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Gait speed was computed as the ratio between the linear distance traveled by the HJCs’ midpoint during a 
stride and the stride duration. Stride length was computed as the linear distance traveled by AJC during a stride. 
The cadence (i.e. step/min) was calculated as 60/(0.5*stride duration). In data records also the step width is pro-
vided as the lateral distance between the AJC of the supporting foot and the contralateral one.

Data Records
All published data are de-identified and data files are available from FigShare34 under the terms of Attribution 4.0 
International Creative Commons License (http://creativecommons.org/licenses/by/4.0/).

The data set consists of multiple files, each of which corresponds to the data of one subject Each file is organ-
ized with the following naming convention: SubjectX.mat, where X is the subject number (from 1 to 50), and .mat 
is the format file (a MAT-file is the data file format of MATLAB® software).

SubjectX.mat. The SubjectX.mat file holds a structure (s) which contains the subject’s anthropometric var-
iables (Age [years], Gender [M/F], Body Height: BH [cm], Body Mass: BM [kg]), the sampling rate [Hz] of the 
kinematic, kinetic, and EMG data (KinFreq, GrfFreq, EMGfreq), the dominant leg from which the EMG signals 
were acquired (EMGSide [RX/LX]), the names of the angles (AngVarName), moments (MomVarName), powers 
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Fig. 3 Lower limb joint angles of all fifty subjects and all trials during level walking, toe-walking, heel-walking, 
step ascending and step descending. Each grey line represents the individual joint angles in the sagittal plane 
during a cycle and the black line represents the group average curve.
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(PwrVarName), GRF variables (GrfVarName), EMG signals (EmgVarName), and markers (MarkerVarName). 
The structure s contains also two fields (Data and StandingData) which report, respectively, the data of the 
locomotor trials and the standing trial. In details, these fields are described in Table 1. The length L of s.Data 
[L = length(s.Data) in MATLAB® language] represents the number of reported trials.

Technical Validation
Kinematic and EMG data. The calibration of cameras’ and platforms’ positions was performed before each 
acquisition session, following the standard procedure described by the manufacturer of the motion capture sys-
tem. Moreover, before each trial, the force plates were reset to remove their offset through the system’s acquisition 
software.

Markers and EMG electrodes were positioned by experts gait analysts (Authors TL and AM) according to pub-
lished protocols25,26. The EMG signals were checked for quality and sensor locations were adjusted if necessary. 
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Fig. 4 Lower limb joint moments of all fifty subjects and all trials during level walking, toe-walking, heel-
walking, step ascending and step descending. Each grey line represents the individual joint moments in the 
sagittal plane during a cycle and the black line represents the group average curve.
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In cases where the signal was persistently noisy, even after skin preparation, an abrasive skin gel was applied to 
remove dead cells and reduce impedance.

Marker labelling and 3D trajectory reconstruction were performed using the proprietary software of the 
motion capture system (SMART Tracker, version 1.10) and the results were visually checked trial by trial. Among 
the 1615 strides that constitute the dataset, only 0.6% of the recorded frames were missing data. For each stride, 
gap filling was applied to the markers of the pelvis and trailing limb (i.e. the supporting leg), only if a marker 
was missing for a maximum period equal to 10% of the entire stride. This threshold was chosen after a pre-
liminary analysis involving (i) the artificial cutting of signals portions of different lengths (1%, 2%, 5%, 10%, 
25%, 50% of stride duration), (ii) the portions’ filling through spline interpolation (interp1 with SPLINE option 
in MATLAB® language), and (iii) the calculation of the root mean square error (RMSE) between the interpo-
lated signals and the original ones. This procedure was applied to four markers (Asis_Rx, Psis_Mx, LatMal_Rx, 
Meta5_Rx) at four time frames (foot-strike and toe-off, both right and left). The median RMSE value was lower 
than 0.40 mm (inter-quartile range: 0.26 mm–0.89 mm) until the number of missing data was less than 10% of 
the stride duration. By contrast, at a percentage of 25%, the RMSE median value was 2.0 mm (interquartile range: 
1.04–4.44 mm). Based on this analysis, it was concluded that the adopted interpolation algorithm efficaciously 
works for holes up to 10% of stride duration.

A picture of the missing data remaining after the gap filling procedure is provided in SupplementaryFile01.
xlsx and SupplementaryFile02.xlsx (see Supplementary Information). In particular the SupplementaryFile01.xlsx 
summarizes the amount of missing values present in each matrix contained in the structure s.Data(i) for each 
trial i (i.e. .Marker, .Com, .Ang, .Mom, .Pwr, .EMG, .Grf). In addition, the SupplementaryFile02.xlsx shows the 
amount of missing values for each marker.

Reliability of LAMB protocol. The LAMB protocol has been extensively used to analyze different locomo-
tor tasks in healthy subjects9,23,35 and persons with motor disturbances6,15,17,36–39.

The marking reliability of LAMB has been demonstrated comparable to other protocols25. In particular, the 
between-operator marking variability was between 4.2 mm and 20.8 mm, in line with data from Rabuffetti et al.40 
(range: 6.7 mm–28.7 mm) and Della Croce et al.41 (range: 13.4 mm–20.5 mm). Also the within-operator marking 
variability (range: 3.7 mm–18.9 mm) was comparable to previously published data (range: 6.5 mm-17.9 mm)41. 
The between-operator mean (standard deviation) absolute variability of kinematic and kinetic outcomes was 7.3 
(3.7) deg for angular temporal profiles, 0.08 (0.06) Nm/kg for moments, and 0.30 (0.15) W/kg for power data25. 
These values are comparable with those reported by Ferrari et al.42 [15.6 (9.1) deg for angles, 0.18 (0.08) Nm/
kg for moments] and by Leardini et al.43 [8.6 (4.2) deg for angles, 0.14 (0.09) Nm/kg for moments]. The average 
minimum correlation coefficient for gait data was 0.907 for angles, 0.857 for moments and 0.882 for powers sug-
gesting a high similarity in the shape of different temporal profiles25. These values are in line with those previously 
reported42. Importantly, the variability indexes were comparable among tasks25, suggesting that the LAMB proto-
col is reliable and suitable for the analysis of different locomotor acts.

In addition, the same locomotor tasks (N, T, H, U, D) reported in the present data set and acquired through 
the LAMB protocol have shown a good inter-session reliability in a population of subjects with neuromuscular 
disease15.

The hip, knee, and ankle joint angles and moments in the sagittal plane are shown in Figs. 3 and 4 respectively, 
for all 50 subjects during all reported trials.

Comparison with published reference dataset. Present study population includes a sub-sample of 21 
young subjects (mean ± SD age: 10.9 ± 3.2 years, range 6–17 years) that closely matched the sample analyzed by 
Schwartz et al.8 (mean ± SD age: 10.5 ± 3.5 years). In order to compare the two datasets, we selected the walking 
trials (performed by the 21 young subjects) that were characterized by a normalized gait speed (Hof method44) 
between 0.36 and 0.50, according to the criteria adopted by Schwartz et al.8 Hence, we computed the Pearson’s 
correlation coefficient (r) between the average curves of the two data sets, as proposed by Ferrari et al.43. The 
results showed a high correlation between our data, recorded with LAMB protocol, and the ones of Schwartz 
et al.8, acquired with Vicon Plug-in Gait protocol. In particular, r values ranged from 0.74 to 0.99 for kinematic 
variables, from 0.69 to 0.99 for kinetics, and from 0.83 to 0.92 for EMG profiles.

Usage Notes
A script (walking_fig.m) is provided to assist with the reuse of the data. The script is deposited together with data 
files in FigShare34. The walking_fig.m file must be placed in the same directory containing the data files and must 
be run using MATLAB Software. The script contains an example on how to read and visualize angles, moments 
and powers of ankle, knee and hip joints of a single subject (Subject 6) executing straight line walking at different 
speed.

Code availability
In addition to the methods here presented, the instructions for reproducing the LAMB protocol are fully 
described in Rabuffetti et al.25. Moreover, the code used for computing the angular variables is provided together 
with data files in FigShare34. In details, the MATLAB function “CalcAngle.m” computes the angles in the three 
anatomical planes, starting from the reference frames of two adjacent body segments.
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