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A spatio-temporal continuous soil 
moisture dataset over the Tibet 
Plateau from 2002 to 2015
Yaokui Cui1,2*, Chao Zeng3, Jie Zhou4, Hongjie Xie5, Wei Wan1, Ling Hu1,2, Wentao Xiong1, 
Xi Chen1, Wenjie Fan1,2 & Yang Hong1,6

Surface soil moisture is a key variable in the exchange of water and energy between the 
land surface and the atmosphere, and critical to meteorology, hydrology, and ecology. The 
Tibetan Plateau (TP), known as “The third pole of the world” and “Asia’s water towers”, 
exerts huge influences on and sensitive to global climates. In this situation, longer time series 
of soil moisture can provide sufficient information to understand the role of the TP. This paper 
presents the first comprehensive dataset (2002–2015) of spatio-temporal continuous soil 
moisture at 0.25° resolution, based on satellite-based optical (i.e. MODIS) and microwave 
(ECV) products using a machine learning method named general regression neural network 
(GRNN). The dataset itself reveals significant information on the soil moisture and its changes 
over the TP, and can aid to understand the potential driven mechanisms for climate change 
over the TP.

Background & Summary
Land surface soil moisture is a key variable in the exchange of water and energy between the land surface and the 
atmosphere, and critical to meteorology, hydrology, and ecology1,2. Soil moisture can impact runoff and land-
slide generation, drought development and be used in many other hydrological, meteorological and ecological 
applications1–3. A longer time series of spatially consistent and temporally continuous soil moisture products 
can improve our understanding of meteorological and hydrological processes and associated modelling at the 
daily timescale, and it is also very useful for a number of applications such as weather forecasting and drought 
monitoring4.

A longer time series of spatially consistent and temporally continuous soil moisture products can be utilized 
for more accurate and reliable estimates of deeper soil moisture, and evapotranspiration etc., also be useful for 
a number of applications such as data assimilation, weather forecasting and drought monitoring4, and eventual 
improve our understanding of feedback mechanisms between different meteorological and hydrological compo-
nents, especially under the background of climate change.

The Tibetan Plateau (TP), known as the Earth’s Third Pole and Asia’s water towers, plays an important role in 
global change. Rivers originated in the TP support the development of society and economy in the surrounding 
countries. However, the Tibetan Plateau is sensitive to climate change and human activities, making it neces-
sary to obtain a comprehensive and long-term observation covering all water cycle components (including soil 
moisture) over this region. Due to the water body, glacier, frozen soil and vegetation, the soil moisture retrieval 
algorithm is not always suitable5. For the uncertainty of forcing data, such as precipitation etc., the process-based 
model is difficult to simulate the surface soil moisture. Until to now, there are no spatio-temporal continuous soil 
moisture product to meet the need of application of meteorology, hydrology and ecology, also limiting the con-
tinuous analysis of its spatiotemporal variation6. There are several remote sensing based soil moisture products7,8, 

1Institute of Remote Sensing and GIS, School of Earth and Space Sciences, Peking University, Beijing, 100871, China. 
2Beijing Key Laboratory of Spatial Information Integration & Its Applications, Beijing, 100871, China. 3School of 
Resource and Environment Science, Wuhan University, Wuhan, 430072, China. 4State Key Laboratory of Remote 
Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, 100101, 
China. 5Department of Geological Sciences, University of Texas at San Antonio, San Antonio, TX, 78249, USA. 
6Department of Civil Engineering and Environmental Science, University of Oklahoma, Norman, 73019, OK, United 
States. *email: yaokuicui@pku.edu.cn

Data Descriptor

OPEN

https://doi.org/10.1038/s41597-019-0228-x
mailto:yaokuicui@pku.edu.cn


2Scientific Data |           (2019) 6:247  | https://doi.org/10.1038/s41597-019-0228-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

such as FY-3, ASCAT, SMOS, AMSR-E, AMSR2, and SMAP with spatial resolution of larger than tens of kilo-
metres. According to the previous studies, the percentage of these data gaps over the TP is more than 40%, and 
even more than 80% in the central and western TP9. Hence, the low coverage of these products over the TP 
located in low altitude region is the major problem for researches and applications. To overcome this disadvantage 
of remote sensing based soil moisture product, ECV combined soil moisture product (version ESA CCI SM v04.2, 
hereafter called ECV product) uses almost all of the available satellites including active and passive observations 
to produce longer time series of soil moisture. The ECV product is the first purely multi-decadal satellite-based 
soil moisture product that spans 38 years (from 1978 to 2016) on a daily basis and at a spatial resolution of 0.25°. 
ECV is also the first long time series of remote sensing based soil moisture product and has very good consist-
ency. ECV product was developed as part of the European Space Agency’s (ESA) Water Cycle Multi-mission 
Observation Strategy (WACMOS) and Soil Moisture Climate Change Initiative (CCI) projects10,11. However, it 
is unfortunate that the coverage is not significantly improved as expected, especially over the TP (Fig. 1(a,b)). 
The satellite orbit, vegetation, frozen soil, snow cover and glaciers are the main factors that making the soil mois-
ture retrieval algorithm does not work well. Hence, the released original ECV product only represents the soil 
moisture under suitable condition. Until to now, there is no spatio-temporal continuous and open-access remote 
sensing based soil moisture product across the TP.

In this study, we use MODIS (Moderate Resolution Imaging Spectroradiometer) Land Surface Temperature 
(LST) daily product (MOD11C1, 0.05°), Normalized Difference Vegetation Index (NDVI) product (MOD13C1, 
0.05°) and albedo product (MOD43C1, 0.05°), the DEM (30 m) provided by NASA Shuttle Radar Topographic 
Mission (SRTM), and the ECV V04.2 combined soil moisture product (Daily, 0.25°), as the main data sources. 
The algorithm is a modified version of the published method9, using the General Regression Neural Network 
(GRNN). The flowchart for producing and validating this dataset is shown in Fig. 2. This newly generated dataset 

Fig. 1  Coverage of the original ECV soil moisture product. (a) The spatial distribution over 2002–2015. (b) The 
time series from 2002 to 2015.

Fig. 2  Flowchart for producing spatio-temporal continuous soil moisture dataset based on General Regression 
Neural Network (GRNN) method using ECV product.
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could be valuable in addressing scientific questions associated with global change, land-atmosphere interaction, 
ecological evolution, etc.

Methods
The method used in this paper is a modified version of the method proposed by Cui9, with the BP-NN being 
replaced by the GRNN model, since there are too many gaps for the ECV product over 2002–2006 and GRNN 
could better deal with this situation having limited training data. In addition, the GRNN has less parameters 
and better generalization ability. A stepwise processing method is used to obtain the final soil moisture products 
(Fig. 2) and is described in detail as follows.

Data Pre-processing.  MODIS LST, NDVI and albedo with 0.05°resolution are reconstructed using 
multi-temporal robust regression method12, i.e., the HANTS method (Harmonic Analysis of Time Series)13, and 
the statistical method based on temporal filtering, respectively. More detailed information also could be found in 
the reference of Cui9. These three reconstructed methods could not only fill the gap in the original data, but also 
improve the quality. Afterwards, the LST, NDVI, albedo and DEM are resampled from 0.05° or 30 m to 0.25°, to 
be used as inputs together with the latitude, longitude, and DOY (day of year).

Soil moisture reconstructing.  When the soil is unfrozen, the GRNN method is used to finish the recon-
structing process. When the soil is frozen, the default value (Fig. 3) is used to fill the gaps. For the unfrozen soil, 
the process has two steps: training and predicting.

Frozen-unfrozen soil condition.  For only the liquid water in the soil could be observed by remote sensing sensor, 
distinguishing different soil condition is necessary for the reconstruction process, where a default value is used 
under frozen soil condition and GRNN-based method is used under unfrozen soil condition. The frozen soil 
condition defined as the land covered by snow or the LST lower than 0 °C, where the soil moisture is nearby the 
residual water content. For simplicity, we use MODIS albedo (threshold is 0.4) and LST (threshold is 0 °C) prod-
uct to distinguish whether the soil is frozen or not. In this paper, the unfrozen soil condition means that the LST 
is higher than 0 °C and there is no snow covered (albedo smaller than 0.4), where there are strong relationship 
between soil moisture and remote sensed LST, NDVI, albedo, etc.

GRNN model training.  The pixels that have available value for both optical and ECV products are extracted to 
form a training dataset, 2° by 2° and year by year. A GRNN with spread of radial basis functions of 0.05 is built 
in Matlab R2016b version. As all parameters, including LST, NDVI, albedo, DEM, latitude, longitude, and DOY, 
are selected when the ECV product has value, and then the GRNN was trained. At last, a trained GRNN was 
obtained.

GRNN model predicting.  The complete time series of the seven input variables together with the trained GRNN 
model are used to generate complete time series of soil moisture.

Correction.  The mean bias between the original and reconstructed soil moisture is calculated pixel by pixel 
where the soil under unfrozen soil condition, and then be added to the reconstructed soil moisture to correct the 
offset.

Post-processing.  When the soil in frozen condition or covered by glacier, the GRNN method is not applica-
ble. Instead, we use a default value to finish the reconstructing process, since the soil moisture has little variation 
around a default value (residual soil moisture, Fig. 3). To overcome the lack of effective observations, the default 
value was taken as the smaller one in the minimum value of time series data9 and the volumetric water content 
at −1500 KPa in the soil map14. To mitigate the outlier effect, a mean filter every 3 days is applied at pixel scale, 
when the LST is lower than 0 °C.

Fig. 3  Soil moisture default value used in this study when the soil is frozen, unit: cm3 cm−3.
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Data Records
The dataset includes not only the reconstructed soil moisture, but also the original ECV soil moisture and aux-
iliary data, such as: reconstructed LST, reconstructed NDVI, reconstructed albedo, and DEM etc. (shown in 
Table 1). The data set can be accessed at https://doi.org/10.6084/m9.figshare.7996448 15 (the file is in ‘.rar’ format, 
compression software is needed to decompress). Files are stored in GeoTiff format and are projected in World 
Geodetic System 1984 (WGS84). All variables are located in latitude 25°–40° N and longitude 70°–105° E, with 
spatial resolution of 0.25°. Original ECV soil moisture data is stored in the subfolder named ‘Raw’. An example 
file name is ‘YYYY_DOY_ECV_Raw.tif ’, with YYYY, DOY and Raw standing for year, day of year and original, 
respectively. The reconstructed soil moisture and quality control data are stored in the subfolder named ‘filled’. An 
example file name is ‘YYYY_DOY_ECV_filled.tif ’ and ‘YYYY_DOY_QC.tif ’, with ‘filled’ and ‘QC’ standing for 
reconstructed and quality control, respectively. The reconstructed LST, NDVI, albedo are stored in the subfolder 
named ‘Auxiliary’, the file name is similar only with suffix of LST, NDVI, and albedo respectively. Auxiliary data 
are also included in the subfolders of ‘Dem’ and ‘DefalutV’ (default soil moisture value for soil in frozen condi-
tion), the name is just the same as the folder’s name, for there is only one file in the folder. It is noted that each 
variable appears stored in a subfolder named year by year.

Technical Validation
Quality control of the production method.  The production method is carried out based on the recently 
published algorithm9. The reconstruction methods for optical products as inputs are carried out using the pub-
lished algorithms of the co-authors (Chao Zeng, Jie Zhou), and each algorithm strictly follows their original 
workflow. Therefore, the main error sources include errors in the input data i.e., the MODIS and ECV datasets, 
and on the assumption of soil freezing when the LST is lower than 0 °C. The first error source is primarily due to 
the retrieval process including atmospheric correction and empirical parameters in retrieval algorithm. The using 
of several variables as inputs into GRNN could minimize the error effect from single variable. Meanwhile, the aim 
of this paper is to reproduce a consistent dataset with the original ECV product, only to improve the temporal and 
spatial continuity. The effect of the second error is mitigated using filter method in the post process.

Folder Subfolder File name Description

Raw SM_Ori YYYY_DOY_ECV_Raw.tif
• Original Soil moisture
• Daily
• Unit: cm3 cm−3

Filled

SM_Rec YYYY_DOY_ECV_Filled.tif
• Reconstructed Soil Moisture
• Daily
• Unit: cm3 cm−3

QC YYYY_DOY_QC.tif
• Quality control data
• 0: Reconstruction using GRNN during soil unfrozen condition
• 1: Gaps filled using default value during soil frozen condition
• 2: Filtered results

Auxiliary

LST YYYY_DOY_lst_Filled.tif • LST: Reconstructed
• Unit: K

NDVI YYYY_DOY_ndvi_Filled.tif • NDVI: Reconstructed
• Range: 0–10000

Albedo YYYY_DOY_albedo_Filled.tif • Albedo: Reconstructed
• Range: 0–10000

Dem Dem.tif
• DEM
• Unit: °

DefaultV DefaultV_TP.tif • Soil moisture default value
• Unit: cm3 cm−3

Table 1.  Data organizations and descriptions for the generated dataset.

Fig. 4  Correlation coefficient (CC) between the reconstructed and original ECV products. (a) Spatial 
distribution over 2002–2015. (b) Time series from 2002 to 2015.
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Comparison with the original ECV products.  The correlation coefficient (CC) between the recon-
structed and original ECV data is calculated and shown in Fig. 4(a). In more than 99% available area, the CC 
is greater than 0.7. The yearly area-averaged CC from 2002 to 2015 shows enough stability (Fig. 4(b)). We can 
see that the reconstructed data is consistent with the original data, meaning that the trained GRNN model has 
enough sufficient representativeness and robustness. Hence, the reconstructed product is from the outputs of 
GRNN model instead of the original one. Which makes the dataset not only having better consistency, but also 

Fig. 5  Validation using the field measurements. (a,b) is results of reconstructed and original products at the 
small grid, respectively and (c,d) is results of reconstructed and original products at the large grid, respectively. 
(e,f) is results of reconstructed products at Non-ECV coverage period for small and large grid, respectively.

https://doi.org/10.1038/s41597-019-0228-x


6Scientific Data |           (2019) 6:247  | https://doi.org/10.1038/s41597-019-0228-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

with the comparable accuracy as the original ECV data. However, it should be noted that the filled values only 
represent liquid water in the soil, especially soil in frozen condition.

Comparison with in situ measurements.  For verification purposes, two nested Soil Moisture/
Temperature Monitoring Networks on the central TP (TP-SMTMN)9,16, located in the Naqu with 4500 m above 
the sea level is used. The larger network is 1° × 1° (4 × 4 pixels, 91.5–92.5°E, 31–32°N) containing 38 soil moisture 
measurement stations and the smaller one is 0.25° × 0.25° (one pixel, 91.75–92°E, 31.5–31.75°N) containing 9 
stations. For each station, the soil moisture of the 0–5 cm topsoil was measured with the interval of 30 minutes, 
and the daily average value is used to validate the original and reconstructed ECV satellite soil moisture.

To evaluate the dataset, we compare it to the two networks with different scales, as shown in Fig. 5(a–d). For 
the smaller and larger networks, the R of our dataset is 0.86 and 0.85, respectively, higher than the original prod-
uct (0.85 and 0.80, respectively), also with more available values. For non-ECV coverage period, the R is 0.22 and 
0.33 for the small and large grid, respectively, showing significant correlation (P = 0.05). This indicates that the 
dataset has the comparable accuracy with the original dataset, but much better spatio-temporal continuity.

The trend of soil moisture.  The trends of soil moisture over TP during 2002–2015 are analysed with the 
least square method17 and shown in Fig. 6. It can be seen that most parts of the TP (68.6%) has an increase trend 
(Fig. 6), indicating wet trend. This is consistent with the results based on the long-time series of in-situ meas-
urements18. The areas with a soil moisture decreasing trend are mainly distributed in north-inner of the Plateau, 
nearby the Taklimakan Desert, the biggest desert of China. It also can be seen that the extreme increasing and 
decreasing trends seen around the southern and south-eastern boundary areas. Soil moisture over the TP is 
undergoing significant change along with global change.

Code availability
Custom code for handling the dataset and all input data are available at Data Citation15. This Matlab code enables 
users to easily reconstructed the soil moisture product. Core of the code is the application of GRNN model. The 
code requires Matlab version 2016b or higher.
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