Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Detection and quantification of RNA decay intermediates using XRN1-resistant reporter transcripts

Abstract

RNA degradation ensures appropriate levels of mRNA transcripts within cells and eliminates aberrant RNAs. Detailed studies of RNA degradation dynamics have been heretofore infeasible because of the inherent instability of degradation intermediates due to the high processivity of the enzymes involved. To visualize decay intermediates and to characterize the spatiotemporal dynamics of mRNA decay, we have developed a set of methods that apply XRN1-resistant RNA sequences (xrRNAs) to protect mRNA transcripts from 5′–3′ exonucleolytic digestion. To our knowledge, this approach is the only method that can detect the directionality of mRNA degradation and that allows tracking of degradation products in unperturbed cells. Here, we provide detailed procedures for xrRNA reporter design, transfection and cell line generation. We explain how to extract xrRNA reporter mRNAs from mammalian cells, as well as their detection and quantification using northern blotting and quantitative PCR. The procedure further focuses on how to detect and quantify intact reporter mRNAs and XRN1-resistant degradation intermediates using single-molecule fluorescence microscopy. It provides detailed instructions for sample preparation and image acquisition using fixed, as well as living, cells. The procedure puts special emphasis on detailed descriptions of high-throughput image analysis pipelines, which are provided along with the article and were designed to perform spot co-localization, detection efficiency normalization and the quality control steps necessary for interpretation of results. The aim of the analysis software published here is to enable nonexpert readers to detect and quantify RNA decay intermediates within 4–6 d after reporter mRNA expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Graphical overview of the experimental workflow.
Fig. 2: Reporter design.
Fig. 3: Denaturing gel electrophoresis of RNA.
Fig. 4: Northern blot xrRNA analysis of transcripts degraded by NMD.
Fig. 5: qPCR xrRNA analysis of transcripts degraded by NMD.
Fig. 6: Representative smFISH and live-cell imaging data and analysis steps.

Similar content being viewed by others

Data availability

Example datasets and analysis software are available from the Chao lab website (https://data.fmi.ch/PublicationSupplementRepo/?group=gchao).

References

  1. Dolken, L. et al. High-resolution gene expression profiling for simultaneous kinetic parameter analysis of RNA synthesis and decay. RNA 14, 1959–1972 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Elkon, R., Zlotorynski, E., Zeller, K. I. & Agami, R. Major role for mRNA stability in shaping the kinetics of gene induction. BMC Genomics 11, 259 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hao, S. & Baltimore, D. The stability of mRNA influences the temporal order of the induction of genes encoding inflammatory molecules. Nat. Immunol. 10, 281–288 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schott, J. & Stoecklin, G. Networks controlling mRNA decay in the immune system. Wiley Interdiscip. Rev. RNA 1, 432–456 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Dasgupta, T. & Ladd, A. N. The importance of CELF control: molecular and biological roles of the CUG-BP, Elav-like family of RNA-binding proteins. Wiley Interdiscip. Rev. RNA 3, 104–121 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Marzluff, W. F., Wagner, E. J. & Duronio, R. J. Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat. Rev. Genet. 9, 843–854 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schoenberg, D. R. & Maquat, L. E. Regulation of cytoplasmic mRNA decay. Nat. Rev. Genet. 13, 246–259 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, C. Y. & Shyu, A. B. Mechanisms of deadenylation-dependent decay. Wiley Interdiscip. Rev. RNA 2, 167–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Dunckley, T. & Parker, R. The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif. EMBO J. 18, 5411–5422 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van Dijk, E. et al. Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J. 21, 6915–6924 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chang, C. T., Bercovich, N., Loh, B., Jonas, S. & Izaurralde, E. The activation of the decapping enzyme DCP2 by DCP1 occurs on the EDC4 scaffold and involves a conserved loop in DCP1. Nucleic Acids Res. 42, 5217–5233 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chapman, E. G. et al. The structural basis of pathogenic subgenomic flavivirus RNA (sfRNA) production. Science 344, 307–310 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boehm, V., Gerbracht, J. V., Marx, M. C. & Gehring, N. H. Interrogating the degradation pathways of unstable mRNAs with XRN1-resistant sequences. Nat. Commun. 7, 13691 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gerbracht, J. V., Boehm, V. & Gehring, N. H. Plasmid transfection influences the readout of nonsense-mediated mRNA decay reporter assays in human cells. Sci. Rep. 7, 10616 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Horvathova, I. et al. The dynamics of mRNA turnover revealed by single-molecule imaging in single cells. Mol. Cell 68, 615–625.e619 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, C., Han, B., Zhou, R. & Zhuang, X. Real-time imaging of translation on single mRNA transcripts in live cells. Cell 165, 990–1001 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yan, X., Hoek, T. A., Vale, R. D. & Tanenbaum, M. E. Dynamics of translation of single mRNA molecules in vivo. Cell 165, 976–989 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu, B., Eliscovich, C., Yoon, Y. J. & Singer, R. H. Translation dynamics of single mRNAs in live cells and neurons. Science 352, 1430–1435 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morisaki, T. et al. Real-time quantification of single RNA translation dynamics in living cells. Science 352, 1425–1429 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Pichon, X. et al. Visualization of single endogenous polysomes reveals the dynamics of translation in live human cells. J. Cell Biol. 214, 769–781 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Friedel, C. C., Dolken, L., Ruzsics, Z., Koszinowski, U. H. & Zimmer, R. Conserved principles of mammalian transcriptional regulation revealed by RNA half-life. Nucleic Acids Res. 37, e115 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rabani, M. et al. Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat. Biotechnol. 29, 436–442 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Braun, J. E. et al. A direct interaction between DCP1 and XRN1 couples mRNA decapping to 5′ exonucleolytic degradation. Nat. Struct. Mol. Biol. 19, 1324–1331 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Muhlrad, D., Decker, C. J. & Parker, R. Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5′ → 3′ digestion of the transcript. Genes Dev. 8, 855–866 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Matthews, J. C., Hori, K. & Cormier, M. J. Substrate and substrate analogue binding properties of Renilla luciferase. Biochemistry 16, 5217–5220 (1977).

    Article  CAS  PubMed  Google Scholar 

  26. Kieft, J. S., Rabe, J. L. & Chapman, E. G. New hypotheses derived from the structure of a flaviviral Xrn1-resistant RNA: conservation, folding, and host adaptation. RNA Biol 12, 1169–1177 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hocine, S., Raymond, P., Zenklusen, D., Chao, J. A. & Singer, R. H. Single-molecule analysis of gene expression using two-color RNA labeling in live yeast. Nat. Methods 10, 119–121 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Halstead, J. M. et al. TRICK: a single-molecule method for imaging the first round of translation in living cells and animals. Methods Enzymol. 572, 123–157 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Weidenfeld, I. et al. Inducible expression of coding and inhibitory RNAs from retargetable genomic loci. Nucleic Acids Res 37, e50 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Grimm, J. B. et al. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12, 244–250 (2015). 3 p following 250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Tinevez, J. Y. et al. TrackMate: an open and extensible platform for single-particle tracking. Methods 115, 80–90 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Lionnet, T. et al. A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nat Methods 8, 165–170 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Dietz, C. & Berthold, M. R. KNIME for open-source bioimage analysis: a tutorial. Adv. Anat. Embryol. Cell Biol. 219, 179–197 (2016).

    Article  PubMed  Google Scholar 

  35. Trcek, T., Sato, H., Singer, R. H. & Maquat, L. E. Temporal and spatial characterization of nonsense-mediated mRNA decay. Genes Dev. 27, 541–551 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3, 1101–1108 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Halstead, J. M. et al. Translation. An RNA biosensor for imaging the first round of translation from single cells to living animals. Science 347, 1367–1671 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Voigt, F., Eglinger, J. & Chao, J. A. Detection of the first round of translation: the TRICK assay. Methods Mol. Biol. 1649, 373–384 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Novartis Research Foundation (J.A.C.), the Institutional Strategy of the University of Cologne within the German Excellence Initiative (V.B.), a Swiss National Science Foundation (SNF) grant (31003A_156477; J.A.C.), a grant from the Deutsche Forschungsgemeinschaft (GE 2014/4-1; N.H.G), the SNF-NCCR RNA & Disease (J.A.C.) and an SNF Marie Heim-Vögtlin fellowship (F.V). N.H.G. acknowledges support from a Heisenberg fellowship (GE 2014/5-1 and GE 2014/7-1). We thank K. Schönig (CIMH) for the parental HeLa 11ht cell line, E. Dobrikova and M. Gromeier for establishing and M. Hentze for sharing the HeLa Flp-In T-REx cell line, L. Lavis (Janelia Farm) for providing Halo dyes, and L. Gelman and S. Bourke (FMI) for microscopy support, as well as H. Kohler (FMI) for cell sorting.

Author information

Authors and Affiliations

Authors

Contributions

J.V.G. and V.B. developed the northern blotting and qPCR protocols. F.V. and I.H. developed imaging protocols. F.V. developed image-processing pipelines with help from J.E. (KNIME). F.V., J.V.G., V.B., I.H., J.A.C. and N.H.G. wrote the manuscript.

Corresponding authors

Correspondence to Jeffrey A. Chao or Niels H. Gehring.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Protocols thanks Marvin Tanenbaum and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Boehm, V., Gerbracht, J. V., Marx, M.-C. & Gehring, N. H. Nat. Commun. 7, 13691 (2016): https://www.nature.com/articles/ncomms13691

Gerbracht, J. V., Boehm, V. & Gehring, N. H. Sci. Rep. 7, 10616 (2017): https://www.nature.com/articles/s41598-017-10847-4

Horvathova, I. et al. Mol. Cell 68, 615–625.e9 (2017): https://doi.org/10.1016/j.molcel.2017.09.030

Supplementary information

Supplementary Information

Supplementary Procedures 1–3 and Supplementary Tables 1 and 2

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voigt, F., Gerbracht, J.V., Boehm, V. et al. Detection and quantification of RNA decay intermediates using XRN1-resistant reporter transcripts. Nat Protoc 14, 1603–1633 (2019). https://doi.org/10.1038/s41596-019-0152-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-019-0152-8

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing