Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Application of anisotropic NMR parameters to the confirmation of molecular structure

Abstract

The use of anisotropic NMR data, such as residual dipolar couplings (RDCs) and residual chemical shift anisotropies (RCSAs), has emerged as a powerful technique for structural characterization of organic small molecules. RDCs typically report the relative orientations of different 1H–13C bonds; RCSAs report the relative orientations of different carbon chemical shielding tensors and hence are more useful for proton-deficient molecules. This information is complementary to that obtained from conventional NMR data such as J couplings, isotropic chemical shifts, and nuclear Overhauser effects (NOEs)/rotational frame nuclear Overhauser effects (ROEs). Obtaining anisotropic NMR data requires the creation of an anisotropic sample environment through an alignment medium. Here, we focus on the use of compressed or stretched polymeric gels as two different but fundamentally equivalent methods for introducing sample anisotropy. Protocols are provided for the synthesis of the chloroform-compatible poly(methyl methacrylate) and dimethyl sulfoxide (DMSO)-compatible poly(2-hydroxyethyl methacrylate) gels and sample setup with a preparation time of 2–3 d. The bond-specific RDC data and the atom-specific RCSA data are extracted as changes in 1H–13C couplings and 13C chemical shifts, respectively, between two measurements under different alignment conditions, with a total experimental time of 0.5–4 d. NMR data acquisition and important considerations are described in detail. We also provide step-by-step procedures for the density functional theory (DFT) calculations involved and data analysis using the commercial software MSpin. We use three example compounds, namely cryptospirolepine (505 Da), retrorsine (351 Da), and estrone (270 Da), to demonstrate some important aspects of the workflow, such as input data preparation, handling of structural flexibility, and RCSA data correction when necessary.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Making the gel transfer funnel and the stopper for use with the stretching device.
Fig. 3: NMR sample preparation with the compression device.
Fig. 4: NMR sample preparation with the stretching device.
Fig. 5
Fig. 6: Excerpt from the Mspin input and output files for cryptospirolepine (2).
Fig. 7: Single-tensor RCSA computation for retrorsine.
Fig. 8: Flowchart of the structural verification process using retrorsine as an example.

Similar content being viewed by others

References

  1. Nicolau, K. C. & Snyder, S. A. Chasing molecules that were never there: misassigned natural products and the role of chemical synthesis in modern structure elucidation. Angew. Chem. Int. Ed. Engl. 44, 1012–1044 (2005).

    Google Scholar 

  2. Suyama, T. L., Gerwick, W. H. & McPhail, K. L. Survey of marine natural product structure revisions: a synergy of spectroscopy and chemical synthesis. Bioorg. Med. Chem. 19, 6675–6701 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Tantillo, D. J. Walking in the woods with quantum chemistry—applications of quantum chemical calculations in natural product research. Nat. Prod. Rep. 30, 1079–1086 (2013).

  4. Kutateladze, A. G. & Reddy, D. S. High-throughput in silico structure validation and revision of halogenated natural products is enabled by parametric corrections to DFT-computed 13C chemical shifts and spin-spin coupling constants. J. Org. Chem. 82, 3368–3381 (2017).

    CAS  PubMed  Google Scholar 

  5. Mevers, E. et al. Homodimericin A: a complex hexacyclic fungal metabolite. J. Am. Chem. Soc. 138, 12324–12327 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Elyashberg, M. E., Williams, A. J. & Martin, G. E. Computer-assisted structure verification and elucidation tools in NMR-based structure elucidation. Prog. NMR Spectrosc. 53, 1–108 (2008).

    CAS  Google Scholar 

  7. Elyashberg, M., Williams, A. & Blinov, K. Contemporary Computer Assisted Approaches to Molecular Structure Characterization (RSC Publishing, London, 2012).

    Google Scholar 

  8. Elyashberg, M. E. & Williams, A. J. Computer-Based Structure Elucidation from Spectra Data. (Springer: Heidelberg, Germany, 2015).

    Google Scholar 

  9. Saurí, J. et al. Improved 1,1- and 1,n-ADEQUATE: pivotal experiments for the structure revision of cryptospirolepine. Angew. Chem. Int. Ed. Engl. 54, 10160–10164 (2015).

    PubMed  Google Scholar 

  10. Reif, B. et al. ADEQUATE, a new set of experiments to determine the constitution of small molecules at natural abundance. J. Magn. Reson. A 118, 282–285 (1996).

    CAS  Google Scholar 

  11. Martin, G. E. Using 1,1- and 1,n-ADEQUATE 2D NMR data in structure elucidation protocols in Annual Reports on NMR Spectroscopy Vol. 74 (ed. Webb, G. A.) Ch. 5 (Elsevier, London, 1996).

  12. Kummerlöwe, G., Crone, B., Kretschmer, M., Kirsch, S. F. & Luy, B. Residual dipolar couplings as a powerful tool for constitutional analysis: the unexpected formation of tricyclic compounds. Angew. Chem. Int. Ed. Engl. 50, 2643–2645 (2011).

    PubMed  Google Scholar 

  13. Ma, D., Liu, Y. & Wang, Z. Biomimetic total synthesis of (±)-homodimericin A. Angew. Chem. Int. Ed. Engl. 56, 7886–7889 (2017).

    CAS  PubMed  Google Scholar 

  14. Yang, Z. et al. Bioinspired total synthesis of homodimericin A. Angew. Chem. Int. Ed. Engl. 56, 7890–7894 (2017).

    PubMed  Google Scholar 

  15. Feng, J., Lei, X., Guo, Z. & Tang, Y. Total synthesis of homodimericin A. Angew. Chem. Int. Ed. Engl. 56, 7895–7899 (2017).

    CAS  PubMed  Google Scholar 

  16. Prestegard, J. H., Al-Hashimi, H. M. & Tolman, J. R. NMR structures of biomolecules using field oriented media and residual dipolar couplings. Q. Rev. Biophys. 33, 371–424 (2000).

    CAS  PubMed  Google Scholar 

  17. Bax, A. Weak alignment offers new NMR opportunities to study protein structure and dynamics. Protein Sci. 12, 1–16 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bax, A. & Grishaev, A. Weak alignment NMR: a hawk-eyed view of biomolecular structure. Curr. Opin. Struct. Biol. 15, 563–570 (2005).

    CAS  PubMed  Google Scholar 

  19. Yan, J., Kline, A. D., Mo, H., Shapiro, M. J. & Zartler, E. R. A novel method for the determination of stereochemistry in six-membered chair like rings using residual dipolar couplings. J. Org. Chem. 68, 1786–1795 (2003).

    CAS  PubMed  Google Scholar 

  20. Yan, J. et al. Complete relative stereochemistry of multiple stereocenters using only residual dipolar couplings. J. Am. Chem. Soc. 126, 5008–5017 (2004).

    CAS  PubMed  Google Scholar 

  21. Yan, J. & Zartler, E. R. Application of residual dipolar couplings in organic compounds. Magn. Reson. Chem. 43, 53–64 (2005).

    CAS  PubMed  Google Scholar 

  22. Kummerlöwe, G. & Luy, B. Residual dipolar couplings for the configurational and conformational analysis of organic molecules. Ann. Rep. NMR Spectrosc. 68, 193–232 (2009).

    Google Scholar 

  23. Gil, R. R., Griesinger, C., Navarro-Vázquez, A. & Sun, H. Structural elucidation of small organic molecules assisted by NMR in aligned media in Structure Elucidation in Organic Chemistry: The Search for the Right Tools (eds. Cid, M.-M. & Bravo, J.) Ch. 8 (Wiley-VCH, Weinheim, Germany, 2015).

  24. Gil, R. R. & Navarro-Vázquez, A. Application of residual dipolar couplings to the structural analysis of natural products in Modern NMR Approaches to the Structure Elucidation of Natural Products. Volume 2 Data Acquisition and Applications to Compound Classes (eds. Williams, A., Martin, G. & Rovnyak, D.) Ch. 4 (Royal Society of Chemistry, Cambridge, UK, 2017).

  25. Gschwind, R. M. Residual dipolar couplings – a valuable NMR parameter for small organic molecules. Angew. Chem. Int. Ed. Engl. 44, 4666–4668 (2005).

    CAS  PubMed  Google Scholar 

  26. Gil, R. R. Constitution, configurational, and conformational analysis of small organic molecules on the basis of NMR residual dipolar couplings. Angew. Chem. Int. Ed. Engl. 50, 7222–7224 (2011).

    CAS  PubMed  Google Scholar 

  27. Liu, L.-Y., Sun, H., Griesinger, C. & Liu, J.-K. The use of a combination of RDC and chiroptical spectroscopy for the determination of absolute configuration of fusariumin A from the Fungus Fusarium sp. Nat. Prod. Bioprospect. 6, 41–48 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Schmidt, M. et al. Determining the absolute configuration of (+)-mefloquine HCL, the side-effect reducing enantiomer of the antimalaria drug lariam. J. Am. Chem. Soc. 134, 3080–3083 (2012).

    CAS  PubMed  Google Scholar 

  29. Sun, H. et al. Challenge of large-scale motion for residual dipolar coupling based analysis of configuration: the case of fibrosterol sulfate A. J. Am. Chem. Soc. 133, 14629–14636 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kummerlöwe, G. & Luy, B. Residual dipolar couplings as a tool in determining the structure of organic molecules. Trends Anal. Chem. 28, 483–493 (2009).

    Google Scholar 

  31. Thiele, C. M. Use of RDCs in rigid organic compounds and some practical considerations concerning alignment media. Concepts Magn. Reson. 30A, 65–80 (2007).

    CAS  Google Scholar 

  32. Thiele, C. M. Residual dipolar couplings (RDCs) in organic structure determination. Eur. J. Org. Chem. 34, 5673–5685 (2008).

    Google Scholar 

  33. García, M. E. et al. Stereochemistry determination by X-ray diffraction analysis and NMR spectroscopy residual dipolar couplings. Angew. Chem. Int. Ed. Engl. 48, 5670–5675 (2009).

    PubMed  Google Scholar 

  34. Schuetz, A. et al. RDC-enhanced NMR spectroscopy in structure elucidation of sucro-neolambertellin. Angew. Chem. Int. Ed. Engl. 47, 2032–2034 (2008).

    CAS  PubMed  Google Scholar 

  35. Schuetz, A. et al. Stereochemistry of sagittamide A from residual dipolar coupling enhanced NMR. J. Am. Chem. Soc. 129, 15114–15115 (2007).

    CAS  PubMed  Google Scholar 

  36. Hallwass, F. et al. Residual chemical shift anisotropy (RCSA): a tool for the analysis of the configuration of small molecules. Angew. Chem. Int. Ed. Engl. 50, 9487–9490 (2011).

    CAS  PubMed  Google Scholar 

  37. Kummerlöwe, G. et al. Variable angle NMR spectroscopy and its application to the measurement of residual chemical shift anisotropy. J. Magn. Reson. 209, 19–30 (2011).

    PubMed  Google Scholar 

  38. Nath, N. et al. Determination of relative configuration from residual chemical shift anisotropy. J. Am. Chem. Soc. 138, 9548–9556 (2016).

    CAS  PubMed  Google Scholar 

  39. Liu, Y. et al. Unequivocal determination of complex molecular structures using anisotropic NMR measurements. Science 356, 43 (2017).

    CAS  Google Scholar 

  40. Troche-Pesqueira, E., Anklin, C., Gil, R. R. & Navarro-Vázquez, A. Computer-assisted 3D structure elucidation of natural products using residual dipolar couplings. Angew. Chem. Int. Ed. Engl. 129, 3714–3718 (2017).

    Google Scholar 

  41. Milanowski, D. J. et al. Unequivocal determination of caulamidines A and B: application and validation of new tools in the structure elucidation tool box. Chem. Sci. 9, 307–314 (2018).

    CAS  PubMed  Google Scholar 

  42. Funatsu, K., Del Carpio, C. A. & Sasaki, S. Automated structure elucidation system CHEMICS. Fres. Z. Anal. Chem. 324, 750–759 (1986).

    CAS  Google Scholar 

  43. Elyashberg, M. E., Blinov, K. A. & Martirosian, E. R. A new approach to computer-aided molecular structure elucidation: the expert system structure elucidator. Lab. Autom. Inf. Manage. 34, 15–30 (1999).

    CAS  Google Scholar 

  44. Elyashberg, M. E., Blinov, K. A., Williams, A. J., Martirosian, E. R. & Molodtsov, S. G. Application of a new expert system for the structure elucidation of natural products from their 1D and 2D NMR data. J. Nat. Prod. 65, 693–703 (2002).

    CAS  PubMed  Google Scholar 

  45. Lindel, T., Junker, J. & Köck, M. 2D-NMR-guided constitutional analysis of organic compounds employing the computer program COCON. Eur. J. Org. Chem. 1999, 573–577 (1999).

    Google Scholar 

  46. Köck, M., Junker, J., Maier, W., Will, M. & Lindel, T. A COCON analysis of proton-poor heterocycles – application of carbon chemical shift predictions for the evaluation of structural proposals. Eur. J. Org. Chem. 1999, 579–586 (1999).

    Google Scholar 

  47. Plainchont, B. et al. New improvements in automatic structure elucidation using the LSD (logic for structure determination and the SISTEMAT expert systems). Nat. Prod. Commun. 5, 763–770 (2010).

    CAS  PubMed  Google Scholar 

  48. Nuzillard, J.-M. & Painchont, B. Tutorial for the structure elucidation of small molecules by means of the LSD software. Magn. Reson. Chem. 56, 458–468 (2018).

    CAS  PubMed  Google Scholar 

  49. Mestrelab Research. Mnova Structure Elucidation. http://mestrelab.com/software/mnova/structure-elucidation/ (Mestrelab Research, Santiago de Compostela, Spain, 2017).

  50. Navarro-Vázquez, A., Gil, R. R. & Blinov, K. Computer-assisted 3D structure elucidation (CASE-3D) of natural products combining isotropic and anisotropic NMR parameters. J. Nat. Prod. 81, 203–210 (2018).

    PubMed  Google Scholar 

  51. Losonczi, J. A., Andrec, M., Fischer, M. W. F. & Prestegard, J. H. Order matrix analysis of residual dipolar couplings using singular value decomposition. J. Magn. Reson. 138, 334–342 (1999).

    CAS  PubMed  Google Scholar 

  52. Navarro-Vázquez, A. MSpin-RDC. A program for the use of residual dipolar couplings for structure elucidation of small molecules. Magn. Reson. Chem. 50, S73–S79 (2012).

    PubMed  Google Scholar 

  53. Cornilescu, G., Marquardt, J. L., Ottiger, M. & Bax, A. Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase. J. Am. Chem. Soc. 120, 6836–6837 (1998).

    CAS  Google Scholar 

  54. Liu, Y., Cohen, R. D., Martin, G. E. & Williamson, R. T. A practical strategy for the accurate measurement of residual dipolar couplings in strongly aligned small molecules. J. Magn. Reson. 261, 63–72 (2018).

    Google Scholar 

  55. Meddour, A., Berdague, P., Hedli, A., Courtieu, J. & Lesot, P. Proton-decoupled carbon-13 NMR spectroscopy in a lyotropic chiral nematic solvent as an analytical tool for the measurement of the enantiomeric excess. J. Am. Chem. Soc. 119, 4502–4508 (1997).

    CAS  Google Scholar 

  56. Canet, I., Courtieu, J., Loewenstein, A., Meddour, A. & Pechine, J. M. Enantiomeric analysis in a polypeptide lyotropic liquid crystal by deuterium NMR. J. Am. Chem. Soc. 117, 6520–6526 (1995).

    CAS  Google Scholar 

  57. Marx, A. & Thiele, C. Orientational properties of poly-gamma-benzyl-l-glutamate: influence of molecular weight and solvent on order parameters of the solute. Chem. Eur. J. 15, 254–260 (2009).

    CAS  PubMed  Google Scholar 

  58. Meyer, N.-C. et al. Polyacetylenes as enantiodifferentiating alignment media. Angew. Chem. Int. Ed. Engl. 51, 8334–8338 (2012).

    CAS  PubMed  Google Scholar 

  59. Lei, X. et al. Graphene oxide liquid crystals as a versatile and tunable alignment medium for the measurement of residual dipolar couplings in organic solvents. J. Am. Chem. Soc. 136, 11280–11283 (2014).

    CAS  PubMed  Google Scholar 

  60. Zong, W. et al. An alignment medium for measuring residual dipolar couplings in pure DMSO: liquid crystals from graphene oxide grafted with polymer brushes. Angew. Chem. Int. Ed. Engl. 55, 3690–3693 (2016).

    CAS  PubMed  Google Scholar 

  61. Luy, B., Kobzar, K. & Kessler, H. An easy and scalable method for the partial alignment of organic molecules for measuring residual dipolar couplings. Angew. Chem. Int. Ed. Engl. 43, 1092–1094 (2004).

    CAS  PubMed  Google Scholar 

  62. Haberz, P., Farjon, J. & Griesinger, C. A DMSO-compatible orienting medium: towards the investigation of the stereochemistry of natural products. Angew. Chem. Int. Ed. Engl. 44, 427–429 (2005).

    CAS  PubMed  Google Scholar 

  63. Gil, R. R., Gayathri, C., Tsarevsky, N. V. & Matyjaszewski, K. Stretched poly(methyl methacrylate) gel aligns small organic molecules in chloroform. Stereochemical analysis and diastereotopic proton NMR assignment in ludartin using residual dipolar couplings and 3 J coupling constant analysis. J. Org. Chem. 73, 840–848 (2008).

    CAS  PubMed  Google Scholar 

  64. Gil-Silva, L. F., Santamaría-Fernández, R., Navarro-Vázquez, A. & Gil, R. R. Collection of NMR scalar and residual dipolar couplings using a single experiment. Chem. Eur. J. 22, 472–476 (2016).

    CAS  PubMed  Google Scholar 

  65. García, M. E. et al. Di(ethylene glycol) methyl ether methacrylate (DEGMEMA)-derived gels align small organic molecules in methanol. Magn. Reson. Chem. 55, 206–209 (2017).

    PubMed  Google Scholar 

  66. Kummerlöwe, G., Auernheimer, J., Lendlein, A. & Luy, B. Stretched poly(acrylonitrile) as a scalable alignment medium for DMSO. J. Am. Chem. Soc. 129, 6080–6081 (2007).

    PubMed  Google Scholar 

  67. Kuchel, P. W. et al. Apparatus for rapid adjustment of the degree of alignment of NMR samples in aqueous media: verification with residual quadrupolar splittings in 23Na and 133Cs spectra. J. Magn. Reson. 180, 256–265 (2006).

    CAS  PubMed  Google Scholar 

  68. Kummerlöwe, G. et al. Tunable alignment for all polymer gel/solvent combinations for the measurement of anisotropic NMR parameters. Chem. Eur. J. 16, 7087–7089 (2010).

    PubMed  Google Scholar 

  69. Gayathri, C., Tsarevsky, N. V. & Gil, R. R. Residual dipolar couplings (RDCs) analysis of small molecules made easy: fast and tuneable alignment by reversible compression/relaxation of reusable PMMA gels. Chem. Eur. J. 16, 3622–3626 (2010).

    CAS  PubMed  Google Scholar 

  70. Kramer, F., Deshmukh, M. V., Kessler, H. & Glaser, S. J. Residual dipolar coupling constants: an elementary derivation of key equations. Concepts Magn. Reson. A 21, 10–21 (2004).

    Google Scholar 

  71. Lucas, N. J. D. The influence of vibrations on molecular structure determinations from N.M.R. in liquid crystals. Mol. Phys. 22, 147–154 (1971).

    CAS  Google Scholar 

  72. Emsley, J. W. & Lindon, J. C. The effect of vibrational averaging on the geometry of cyclobutadiene iron tricarbonyl derived from the proton N.M.R. spectrum of a nematic solution. Mol. Phys. 28, 1373–1375 (1974).

    CAS  Google Scholar 

  73. Burnell, E. E. & De Lange, C. A. Effects of interaction between molecular internal motion and reorientation on NMR of anisotropic liquids. J. Magn. Reson. 39, 461–480 (1980).

    CAS  Google Scholar 

  74. Liu, Y. & Prestegard, J. H. A device for the measurement of residual chemical shift anisotropy and residual dipolar coupling in soluble and membrane-associated proteins. J. Biomol. NMR 47, 249–258 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Luy, B. Distinction of enantiomers by NMR spectroscopy using chiral orienting media. J. Indian Inst. Sci. 90, 119–132 (2010).

    CAS  Google Scholar 

  76. Lesot, P. & Courtieu, J. Natural abundance deuterium NMR spectroscopy. Developments and analytical applications in liquids, liquid crystals and solid phases. Prog. Nucl. Magn. Reson. Spectrosc. 55, 128–159 (2009).

    CAS  Google Scholar 

  77. Lei, X. et al. A self-assembled oligopeptide as a versatile NMR alignment medium for the measurement of residual dipolar couplings in methanol. Angew. Chem. Int. Ed. Engl. 56, 12857–12861 (2017).

    CAS  PubMed  Google Scholar 

  78. Arnold, L., Marx, A., Thiele, C. M. & Reggelin, M. Polyguanidines as chiral orienting media for organic compounds. Chem. Eur. J. 16, 10342–10346 (2010).

    CAS  PubMed  Google Scholar 

  79. Krupp, A. & Reggelin, M. Phenylalanine-based polyarylacetylenes as enantiomer-differentiating alignment media. Magn. Reson. Chem. 50, S45–S52 (2012).

    CAS  PubMed  Google Scholar 

  80. Deloche, B. & Samulski, E. T. Short-range nematic-like orientational order in strained elastomers: a deuterium magnetic resonance study. Macromolecules 14, 575–581 (1981).

    CAS  Google Scholar 

  81. Tycko, R., Blanco, F. J. & Ishii, Y. Alignment of biopolymers in strained gels: a new way to create detectable dipole-dipole couplings in high-resolution biomolecular NMR. J. Am. Chem. Soc. 122, 9340–9341 (2000).

    CAS  Google Scholar 

  82. Sass, H.-J. et al. Solution NMR of proteins within polyacrylamide gels: diffusional properties and residual alignment by mechanical stress or embedding of oriented purple membranes. J. Biomol. NMR 18, 303–309 (2000).

    CAS  PubMed  Google Scholar 

  83. Chou, J. et al. A simple apparatus for generating stretched polyacrylamide gels, yielding uniform alignment of proteins and detergent micelles. J. Biomol. NMR 21, 377–382 (2001).

    CAS  PubMed  Google Scholar 

  84. Merle, C. et al. Crosslinked poly(ethylene oxide) as a versatile alignment medium for the measurement of residual anisotropic NMR parameters. Angew. Chem. Int. Ed. Engl. 52, 10309–10312 (2013).

    CAS  PubMed  Google Scholar 

  85. Helleman, E. et al. Mechanical behavior of polymer gels for RDCs and RCSAs collection: NMR imaging study of buckling phenomena. Chem. Eur. J. 22, 16632–16635 (2016).

    Google Scholar 

  86. Hallwass, F. et al. Measurement of residual chemical shift anisotropies in compressed polymethylmethacrylate gels. Automatic compensation of gel isotropic shift contribution. Magn. Reson. Chem. 56, 321–328 (2018).

    CAS  PubMed  Google Scholar 

  87. Liu, Y. et al. Enhanced measurement of residual chemical shift anisotropy for small molecule structure elucidation. Chem. Commun. 54, 4254–4257 (2018).

    CAS  Google Scholar 

  88. Enthart, A. et al. The CLIP/CLAP-HSQC: pure absorptive spectra for the measurement of one-bond couplings. J. Magn. Reson. 192, 314–322 (2008).

    CAS  PubMed  Google Scholar 

  89. Yu, B. et al. More accurate 1 J(CH) coupling measurement in the presence of 3 J(HH) strong coupling in natural abundance. J. Magn. Reson. 215, 10–22 (2012).

    CAS  PubMed  Google Scholar 

  90. Castañar, L. et al. One-shot determination of residual dipolar couplings: application to the structural discrimination of small molecules containing multiple stereocenters. J. Org. Chem. 81, 11126–11131 (2016).

    PubMed  Google Scholar 

  91. Furrer, J., John, M., Kessler, H. & Luy, B. J-Spectroscopy in the presence of residual dipolar couplings: determination of one-bond coupling constants and scalable resolution. J. Biomol. NMR 37, 231–243 (2007).

    CAS  PubMed  Google Scholar 

  92. Garbow, J. R., Weitekamp, D. P. & Pines, A. Bilinear rotation decoupling of homonuclear scalar interactions. Chem. Phys. Lett. 93, 504–509 (1982).

  93. Thiele, C. M. & Bermel, W. Speeding up the measurement of one-bond scalar (1 J) and residual dipolar couplings (1 D) by using non-uniform sampling (NUS). J. Magn. Reson. 216, 134–143 (2012).

    CAS  PubMed  Google Scholar 

  94. Paudel, L. et al. Simultaneously enhancing spectral resolution and sensitivity in heteronuclear correlation NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 52, 11616–11619 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Schrödinger. Schrödinger Release 2017-4: Maestro, https://www.schrodinger.com/releases/release-2017-4 (Schrödinger, New York, 2017).

  96. Chang, G., Guida, W. C. & Still, W. C. An internal-coordinate Monte Carlo method for searching conformational space. J. Am. Chem. Soc. 111, 4379–4386 (1989).

    CAS  Google Scholar 

  97. Sánchez-Pedregal, V. M., Santamaría-Fernández, R. & Navarro-Vázquez, A. Residual dipolar couplings of freely rotating groups in small molecules. Stereochemical assignment and side-chain conformation of 8-phenylmenthol. Org. Lett. 11, 1471–1474 (2009).

    PubMed  Google Scholar 

  98. Thiele, C. M. et al. On the treatment of conformational flexibility when using residual dipolar couplings for structure determination. Angew. Chem. Int. Ed. Engl. 48, 6708–6712 (2009).

    CAS  PubMed  Google Scholar 

  99. Schreckenbach, G. & Ziegler, T. Density functional calculations of NMR chemical shifts and ESR g-tensors. Theor. Chem. Acc. 99, 71–82 (1998).

    CAS  Google Scholar 

  100. Adamo, C. & Barone, B. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters. The mPW and mPW1PW models. J. Chem. Phys. 108, 664–675 (1998).

    CAS  Google Scholar 

  101. Lodewyk, M. W., Siebert, M. R. & Tantillo, D. J. Computational prediction of 1H and 13C chemical shifts: a useful tool for natural product, mechanistic, and synthetic organic chemistry. Chem. Rev. 112, 1839–1862 (2012).

    CAS  PubMed  Google Scholar 

  102. Navarro-Vázquez, A. State of the art and perspectives in the application of quantum chemical prediction of 1H and 13C chemical shifts and scalar couplings for structural elucidation of organic compounds. Magn. Reson. Chem. 55, 29–32 (2017).

    PubMed  Google Scholar 

  103. França, J. A. A. et al. Complete NMR assignment and conformational analysis of 17-α-ethinylestradiol by using RDCs obtained in grafted graphene oxide. Magn. Reson. Chem. 55, 297–303 (2017).

    PubMed  Google Scholar 

  104. Navarro-Vázquez, A., Berdagué, P. & Lesot, P. G. J. Integrated computational protocol for analyzing quadrupolar splittings from natural abundance deuterium NMR spectra in (chiral) oriented media. ChemPhysChem 18, 1252–1266 (2017).

    PubMed  Google Scholar 

  105. Tackie, A. N. et al. Cryptospirolepine—a unique spirononacyclic alkaloid isolated from Cryptolepis sanguinolenta. J. Nat. Prod. 56, 653–670 (1993).

  106. Frisch, M. J. et al. Gaussian 09, http://gaussian.com/glossary/g09/ (Gaussian, Wallingford, CT, 2009).

  107. Willoughby, P. H., Jansma, M. J. & Hoyce, T. R. A guide to small-molecule structure assignment through computation of (1H and 13C) NMR chemical shifts. Nat. Protoc. 9, 643–660 (2014).

    CAS  PubMed  Google Scholar 

  108. O’Boyle, N. M. et al. Open Babel: an open chemical toolbox. J. Cheminform. 3, 33 (2011).

  109. Trigo-Mouriño, P. et al. Structural discrimination in small molecules by accurate measurement of long-range proton-carbon NMR residual dipolar couplings. Angew. Chem. Int. Ed. Engl. 50, 7576–7580 (2011).

    PubMed  PubMed Central  Google Scholar 

  110. Nath, N., d’Auvergne, E. J. & Griesinger, C. Long range residual dipolar couplings: a tool for determining the configuration of small molecules. Angew. Chem. Intl. Ed. Engl. 54, 12706–12710 (2015).

    CAS  Google Scholar 

  111. Tzvetkova, P., Luy, B. & Simova, S. Configuration verification via RDCs on the example of a tetra-substituted pyrrolidine ring. Magn. Reson. Chem. 50, S92–S101 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Y.L., G.E.M., and R.T.W. thank I.E. Ndukwe for work on polymeric gel preparation. A.N.-V. thanks FACEPE (APQ-0507-1.06/15) for financial support. R.R.G. thanks the National Science Foundation for financial support (CHE-1111684). C.G. acknowledges support by the Max Planck Society and the DFG Forschergruppe (DFG FOR 934), as well as the extremely fruitful interactions with the members of this Forschergruppe: M. Reggelin (Darmstadt), M. Köck (Bremerhaven), C. Thiele (Darmstadt), B. Luy (Karlsruhe), and M. Zweckstetter and U. Reinscheid (both from Göttingen). A.N.-V., C.G., and R.R.G. also acknowledge the PhD students, postdoctoral fellows, and colleagues involved in small-molecule anisotropic NMR over the years in their laboratories: L. Verdier, P. Haberz, M. Schmidt, P. Trigo-Mouriño, E. d’Auvergne, H. Sun, N. Nath, J. C. Fuentes, S. B. P. Vemulapalli, N. Karschin, R. Santamaría-Fernández, E. Troche-Pesqueira, L. Gil-Silva, N. V. Tsarevsky, and V. Sánchez-Pedregal.

Author information

Authors and Affiliations

Authors

Contributions

G.E.M. and R.T.W. conceived the idea of writing this protocol; Y.L. and A.N.-V. contributed equally to manuscript writing. G.E.M. contributed the introduction and proposed the organization of the manuscript. R.R.G. contributed backgrounds and methods in gel preparation and gel compression. C.G. contributed theoretical background. All authors contributed to manuscript editing. G.E.M. coordinated the writing of the manuscript.

Corresponding authors

Correspondence to Yizhou Liu or Armando Navarro-Vázquez.

Ethics declarations

Competing interests

A.N.-V. is the author of MSpin and StereoFitter, which are mentioned in the article, and receives royalties from sales of these products. The other authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Nath, N. et al. J. Am. Chem. Soc. 138, 9548–9556 (2016): https://pubs.acs.org/doi/abs/10.1021/jacs.6b04082

Liu, Y. et al. Science 356, eaam5349 (2017): http://science.sciencemag.org/content/356/6333/eaam5349

Troche-Pesqueira, E., Anklin, C., Gil, R. R. & Navarro-Vázquez, A. Angew. Chem. Int. Ed. Engl. 56, 3660–3664 (2017): https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201612454

Supplementary information

Supplementary Methods

Input and output files from MSpin for all of the examples used in this protocol, as well as a step-by-step description of the estrone case

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Navarro-Vázquez, A., Gil, R.R. et al. Application of anisotropic NMR parameters to the confirmation of molecular structure. Nat Protoc 14, 217–247 (2019). https://doi.org/10.1038/s41596-018-0091-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-018-0091-9

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing