Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Application and optimization of CRISPR–Cas9-mediated genome engineering in axolotl (Ambystoma mexicanum)

A Publisher Correction to this article was published on 29 January 2019

This article has been updated

Abstract

Genomic manipulation is essential to the use of model organisms to understand development, regeneration and adult physiology. The axolotl (Ambystoma mexicanum), a type of salamander, exhibits an unparalleled regenerative capability in a spectrum of complex tissues and organs, and therefore serves as a powerful animal model for dissecting mechanisms of regeneration. We describe here an optimized stepwise protocol to create genetically modified axolotls using the CRISPR–Cas9 system. The protocol, which takes 7–8 weeks to complete, describes generation of targeted gene knockouts and knock-ins and includes site-specific integration of large targeting constructs. The direct use of purified CAS9-NLS (CAS9 containing a C-terminal nuclear localization signal) protein allows the prompt formation of guide RNA (gRNA)–CAS9-NLS ribonucleoprotein (RNP) complexes, which accelerates the creation of double-strand breaks (DSBs) at targeted genomic loci in single-cell-stage axolotl eggs. With this protocol, a substantial number of F0 individuals harboring a homozygous-type frameshift mutation can be obtained, allowing phenotype analysis in this generation. In the presence of targeting constructs, insertions of exogenous genes into targeted axolotl genomic loci can be achieved at efficiencies of up to 15% in a non-homologous end joining (NHEJ) manner. Our protocol bypasses the long generation time of axolotls and allows direct functional analysis in F0 genetically manipulated axolotls. This protocol can be potentially applied to other animal models, especially to organisms with a well-characterized transcriptome but lacking a well-characterized genome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: gRNA design.
Fig. 2: Gene knock-in approaches.
Fig. 3: Scheme of preparation of DNA template for gRNA synthesis using a one-step PCR method.
Fig. 4: Scheme of gRNA evaluation using Sanger sequencing or NGS.
Fig. 5: Several targeting construct designs.
Fig. 6: gRNA synthesis and genotyping of F0 CRISPR axolotls.
Fig. 7: Generation and characterization of Pax7:Cherry and Sox2:Cherry knock-in axolotls.

Similar content being viewed by others

Change history

  • 29 January 2019

    In the version of this protocol originally published, the recipe for CAS9 buffer was incorrectly identified as a recipe for sodium acetate solution, and vice versa. These errors have been corrected in the PDF and HTML versions of the paper

References

  1. Voss, S. R., Epperlein, H. H. & Tanaka, E. M. Ambystoma mexicanum, the axolotl: a versatile amphibian model for regeneration, development, and evolution studies. Cold Spring. Harb. Protoc. 2009, pdbemo128 (2009).

    Article  CAS  Google Scholar 

  2. Khattak, S. et al. Optimized axolotl (Ambystoma mexicanum) husbandry, breeding, metamorphosis, transgenesis and tamoxifen-mediated recombination. Nat. Protoc. 9, 529–540 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Khattak, S. et al. Germline transgenic methods for tracking cells and testing gene function during regeneration in the axolotl. Stem Cell Rep. 1, 90–103 (2013).

    Article  CAS  Google Scholar 

  4. Campbell, L. J. et al. Gene expression profile of the regeneration epithelium during axolotl limb regeneration. Dev. Dyn. 240, 1826–1840 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Putta, S. et al. From biomedicine to natural history research: EST resources for ambystomatid salamanders. BMC Genomics 5, 54 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Stewart, R. et al. Comparative RNA-seq analysis in the unsequenced axolotl: the oncogene burst highlights early gene expression in the blastema. PLoS Comput. Biol. 9, e1002936 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Habermann, B. et al. An Ambystoma mexicanum EST sequencing project: analysis of 17,352 expressed sequence tags from embryonic and regenerating blastema cDNA libraries. Genome Biol. 5, R67 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bryant, D. M. et al. A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep. 18, 762–776 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nowoshilow, S. et al. The axolotl genome and the evolution of key tissue formation regulators. Nature 554, 50–55 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Voss, S. R. et al. Gene expression during the first 28 days of axolotl limb regeneration I: Experimental design and global analysis of gene expression. Regeneration 2, 120–136 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sandoval-Guzman, T. et al. Fundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species. Cell Stem Cell 14, 174–187 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Woodcock, M. R. et al. Identification of mutant genes and introgressed tiger salamander DNA in the laboratory axolotl, Ambystoma mexicanum. Sci Rep. 7, 6 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Whited, J. L., Lehoczky, J. A. & Tabin, C. J. Inducible genetic system for the axolotl. Proc. Natl. Acad. Sci. USA 109, 13662–7 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Flowers, G. P., Timberlake, A. T., Mclean, K. C., Monaghan, J. R. & Crews, C. M. Highly efficient targeted mutagenesis in axolotl using Cas9 RNA-guided nuclease. Development 141, 2165–71 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fei, J. F. et al. CRISPR-mediated genomic deletion of Sox2 in the axolotl shows a requirement in spinal cord neural stem cell amplification during tail regeneration. Stem Cell Rep. 3, 444–459 (2014).

    Article  CAS  Google Scholar 

  16. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mali, P., Esvelt, K. M. & Church, G. M. Cas9 as a versatile tool for engineering biology. Nat. Methods 10, 957–963 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).

    Article  PubMed  CAS  Google Scholar 

  20. Fei, J. F. et al. Tissue- and time-directed electroporation of CAS9 protein–gRNA complexes in vivo yields efficient multigene knockout for studying gene function in regeneration. npj Regen. Med. 1, 16002 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fei, J. F. et al. Efficient gene knockin in axolotl and its use to test the role of satellite cells in limb regeneration. Proc. Natl. Acad. Sci. USA 114, 12501–12506 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Smith, J. J. et al. Sal-Site: integrating new and existing ambystomatid salamander research and informational resources. BMC Genomics 6, 181 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Wang, W. et al. Delivery of Cas9 protein into mouse zygotes through a series of electroporation dramatically increases the efficiency of model creation. J Genet. Genomics 43, 319–327 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Albadri, S., Del Bene, F. & Revenu, C. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish. Methods 121–122, 77–85 (2017).

    Article  PubMed  CAS  Google Scholar 

  25. Burger, A. et al. Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes. Development 143, 2025–2037 (2016).

    CAS  PubMed  Google Scholar 

  26. Liang, X., Potter, J., Kumar, S., Ravinder, N. & Chesnut, J. D. Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA. J. Biotechnol. 241, 136–146 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Kim, S., Kim, D., Cho, S. W., Kim, J. & Kim, J. S. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24, 1012–1019 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gagnon, J. A. et al. Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS ONE 9, e98186 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Mircetic, J. et al. Purified Cas9 fusion proteins for advanced genome manipulation. Small Methods 1, 1600052 (2017).

    Article  CAS  Google Scholar 

  30. Hu, P., Zhao, X., Zhang, Q., Li, W. & Zu, Y. Comparison of various nuclear localization signal-fused Cas9 proteins and Cas9 mRNA for genome editing in zebrafish. G3 8, 823–831 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Auer, T. O., Duroure, K., De Cian, A., Concordet, J. P. & Del Bene, F. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res. 24, 142–153 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. He, X. et al. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Res. 44, e85 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Liang, Z. et al. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat. Commun. 8, 14261 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Svitashev, S., Schwartz, C., Lenderts, B., Young, J. K. & Mark Cigan, A. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat. Commun. 7, 13274 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cho, S. W., Lee, J., Carroll, D., Kim, J. S. & Lee, J. Heritable gene knockout in Caenorhabditis elegans by direct injection of Cas9-sgRNA ribonucleoproteins. Genetics 195, 1177–1180 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Paix, A., Folkmann, A., Rasoloson, D. & Seydoux, G. High efficiency, homology-directed genome editing in Caenorhabditis elegans using CRISPR-Cas9 ribonucleoprotein complexes. Genetics 201, 47–54 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee, J. S. et al. RNA-guided genome editing in Drosophila with the purified Cas9 protein. G3 4, 1291–5 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gaj, T., Gersbach, C. A. & Barbas, C. F. 3rd ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31, 397–405 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Joung, J. K. & Sander, J. D. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14, 49–55 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Kuo, T. H. et al. TALEN-mediated gene editing of the thrombospondin-1 locus in axolotl. Regeneration 2, 37–43 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Grabher, C. & Wittbrodt, J. Meganuclease and transposon mediated transgenesis in medaka. Genome Biol. 8, S10 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Saigou, Y., Kamimura, Y., Inoue, M., Kondoh, H. & Uchikawa, M. Regulation of Sox2 in the pre-placodal cephalic ectoderm and central nervous system by enhancer N-4. Dev. Growth Differ. 52, 397–408 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim, E. et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat. Commun. 8, 14500 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Muller, M. et al. Streptococcus thermophilus CRISPR-Cas9 systems enable specific editing of the human genome. Mol. Ther. 24, 636–644 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Lee, C. M., Cradick, T. J. & Bao, G. The Neisseria meningitidis CRISPR-Cas9 system enables specific genome editing in mammalian cells. Mol. Ther. 24, 645–654 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kleinstiver, B. P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kleinstiver, B. P. et al. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat. Biotechnol. 33, 1293–1298 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hu, J. H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57–63 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li, J. et al. Intron targeting-mediated and endogenous gene integrity-maintaining knockin in zebrafish using the CRISPR/Cas9 system. Cell Res. 25, 634–637 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hisano, Y. et al. Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish. Sci. Rep. 5, 8841 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sander, J. D. & Joung, J. K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347–355 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kotani, H., Taimatsu, K., Ohga, R., Ota, S. & Kawahara, A. Efficient multiple genome modifications induced by the crRNAs, tracrRNA and Cas9 protein complex in zebrafish. PLoS ONE 10, e0128319 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Sung, Y. H. et al. Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases. Genome Res. 24, 125–131 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M. & Joung, J. K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32, 279–284 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31, 822–866 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kochetov, A. V. Alternative translation start sites and hidden coding potential of eukaryotic mRNAs. BioEssays 30, 683–691 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Harrison, M. M., Jenkins, B. V., O’Connor-Giles, K. M. & Wildonger, J. A CRISPR view of development. Genes Dev. 28, 1859–1872 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Elewa, A. et al. Reading and editing the Pleurodeles waltl genome reveals novel features of tetrapod regeneration. Nat. Commun. 8, 2286 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Bell, C. C., Magor, G. W., Gillinder, K. R. & Perkins, A. C. A high-throughput screening strategy for detecting CRISPR-Cas9 induced mutations using next-generation sequencing. BMC Genomics 15, 1002 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Sentmanat, M. F., Peters, S. T., Florian, C. P., Connelly, J. P. & Pruett-Miller, S. M. A survey of validation strategies for CRISPR-Cas9 editing. Sci Rep. 8, 888 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Kim, J. M., Kim, D., Kim, S. & Kim, J. S. Genotyping with CRISPR-Cas-derived RNA-guided endonucleases. Nat. Commun. 5, 3157 (2014).

    Article  PubMed  CAS  Google Scholar 

  68. Vouillot, L., Thelie, A. & Pollet, N. Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3 5, 407–415 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Qiu, P. et al. Mutation detection using surveyor nuclease. Biotechniques 36, 702–707 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Ota, S. et al. Efficient identification of TALEN-mediated genome modifications using heteroduplex mobility assays. Genes Cells 18, 450–458 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shigeta, M. et al. Rapid and efficient analysis of gene function using CRISPR-Cas9 in Xenopus tropicalis founders. Genes Cells 21, 755–771 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Zhu, X. et al. An efficient genotyping method for genome-modified animals and human cells generated with CRISPR/Cas9 system. Sci. Rep. 4, 6420 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dahlem, T. J. et al. Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet. 8, e1002861 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Samarut, E., Lissouba, A. & Drapeau, P. A simplified method for identifying early CRISPR-induced indels in zebrafish embryos using high resolution melting analysis. BMC Genomics 17, 547 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Guschin, D. Y. et al. A rapid and general assay for monitoring endogenous gene modification. Methods Mol. Biol. 649, 247–256 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Gansauge, M. T. & Meyer, M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat. Protoc. 8, 737–748 (2013).

    Article  PubMed  CAS  Google Scholar 

  77. Kim, J. H. et al. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS ONE 6, e18556 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pelletier, J. & Sonenberg, N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320–355 (1988).

    Article  CAS  PubMed  Google Scholar 

  79. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Wilton, S. Direct sequencing of PCR products. eLS https://doi.org/10.1038/npg.els.0003769 (2002).

  82. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Brocal, I. et al. Efficient identification of CRISPR/Cas9-induced insertions/deletions by direct germline screening in zebrafish. BMC Genomics 17, 259 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Irion, U., Krauss, J. & Nusslein-Volhard, C. Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. Development 141, 4827–4330 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Armstrong, G. A. et al. Homology directed knockin of point mutations in the zebrafish tardbp and fus genes in ALS using the CRISPR/Cas9 system. PLoS ONE 11, e0150188 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Nakayama, T. et al. Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis 51, 835–843 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pinello, L. et al. Analyzing CRISPR genome-editing experiments with CRISPResso. Nat. Biotechnol. 34, 695–697 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Schuez for outstanding technical support, and B. Gruhl, A. Wagner and S. Kaudel for professional axolotl care. This research was supported by German Research Foundation (DFG) grants DFG 274/3-2 (to E.M.T.), DFG 274/3-3 (to E.M.T.), and DFG 274/2-3/SFB655 (from Cells into Tissues; to E.M.T.); a European Research Council Advanced Investigator grant (294324; to E.M.T.), a Human Frontier Science Program grant (RGP0016/2010; to E.M.T.), Central Funds from the DFG Research Center for Regenerative Therapies Dresden (FZ111; to E.M.T.), National Nature Science Foundation of China (NSFC) grant 31771611 (to J.-F.F.), Research Starting grants from South China Normal University (S82111 and 8S0109; to J.-F.F.) and a China Postdoctoral Science Foundation grant (2018M633067; to W.P.-K.L.).

Author information

Authors and Affiliations

Authors

Contributions

J.-F.F., D.K. and E.M.T. conceived and designed the experiments. J.-F.F., D.K., P.M., T.G., Y.T. and S.N. performed the experiments. W.P.-K.L. and S.K. contributed to the data analysis. J.-F.F., W.P.-K.L. and E.M.T. wrote the manuscript.

Corresponding author

Correspondence to Ji-Feng Fei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Nowoshilow, S. et al. Nature. 554, 50–55 (2018): https://doi.org/10.1038/nature25458

Fei, J.-F. et al. Proc. Natl. Acad. Sci. USA 114, 12501–12506 (2017): https://doi.org/10.1073/pnas.1706855114

Fei, J.-F. et al. Stem Cell Rep. 3, P444–P459 (2014): https://doi.org/10.1016/j.stemcr.2014.06.018

Integrated supplementary information

Supplementary Figure 1 Recommended plate setup for NGS.

The recommended combinations of P5-indexes-forward primers (in total 12, #1–12) and P7-indexes-reverse primers (in total 8, A-H) on a 96-well plate for NGS.

Supplementary Figure 2 Examples of NGS PCR on individual F0 CRISPR axolotls injected with gRNA-CAS9-NLS RNP complexes.

Examples of NGS-PCR1 (a) and NGS-PCR2 (b) on individual F0 CRISPR axolotls from two independent genomic loci:, Tyrosinase and Yap1. Red stars indicate the PCR products carrying large indels, which run faster on the gel than the PCR products amplified from unmodified alleles or those carrying small indels. All products from NGS-PCR2 should be sequenced, since it is impossible to determine the genotype solely by the gel picture (PCR products harbour small indels are indistinguishable from the wild-type PCR product).

Supplementary Figure 3 Examples of NGS analysis of three individual F0 Tyrosinase (Tyr) CRISPR axolotls.

(a) An animal harbouring only two types of modifications (homozygous-type) at the Tyr-gRNA targeted locus. It likely represents modifications which occurred separately on the paternal and maternal alleles in a single cell stage axolotl eggs. (b) A mosaic animal harbouring 100% modified Tyrosinase locus, with many types of indels. (c) An animal with incompletely modified Tyrosinse locus; a proportion (approximately 16%) of the alleles are unmodified. Tyr-gRNA target (red); PAM sequence (blue); characters in squares indicate single nucleotide substitutions (SNS), which appear only at very low percentage and likely represent mutations generated during PCR. Therefore, we categorize the same type of modification with or without SNS as one group.

Supplementary Figure 4 Genomic PCR and Sanger sequence analysis of individual F0 Pax7:Cherry knock-in axolotls.

(a) Genomic PCR of the Pax7 locus of individual F0 Pax7:Cherry knock-in axolotls (animal #1–4) and the negative control (Ctr, un-injected sibling of the F0 knock-in axolotls). Upon NHEJ-mediated insertion of the Cherry reporter gene into the Pax7 locus, approximately 2.8 kb PCR products are amplified using the primer pair Pax7-fw and pA-rev (Fig. 7 and Table 4). (b) Sequence analysis reveals that in-frame scars (5’ integration junctions, animal #1: 15nt deletion; animal #2: 9nt deletion; animal #3: 9nt and 7nt deletions; animal #4: 6nt deletion) are present in all F0 Pax7:Cherry animals. Note: the in-frame integration junctions in the limb (limb junct) and tail (tail junct) from the same individuals are identical in three different knock-in axolotls, animal #1, #2 and #4. All animal experiments were carried out according to relevant Institutional and National regulations. Adapted with permission from Fei, J.F. et al. Efficient gene knockin in axolotl and its use to test the role of satellite cells in limb regeneration. Proc. Natl. Acad. Sci. USA 114, 12501–12506 (2017).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1 and 2 and Supplementary Methods 1 and 2

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, JF., Lou, W.PK., Knapp, D. et al. Application and optimization of CRISPR–Cas9-mediated genome engineering in axolotl (Ambystoma mexicanum). Nat Protoc 13, 2908–2943 (2018). https://doi.org/10.1038/s41596-018-0071-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-018-0071-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing