Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Fast and high-resolution mapping of elastic properties of biomolecules and polymers with bimodal AFM

Abstract

Fast, high-resolution mapping of heterogeneous interfaces with a wide elastic modulus range is a major goal of atomic force microscopy (AFM). This goal becomes more challenging when the nanomechanical mapping involves biomolecules in their native environment. Over the years, several AFM-based methods have been developed to address this goal. However, none of these methods combine sub-nanometer spatial resolution, quantitative accuracy, fast data acquisition speed, wide elastic modulus range and operation in physiological solutions. Here, we present detailed procedures for generating high-resolution maps of the elastic properties of biomolecules and polymers using bimodal AFM. This requires the simultaneous excitation of the first two eigenmodes of the cantilever. An amplitude modulation (AM) feedback acting on the first mode controls the tip–sample distance, and a frequency modulation (FM) feedback acts on the second mode. The method is fast because the elastic modulus, deformation and topography images are obtained simultaneously. The method is efficient because only a single data point per pixel is needed to generate the aforementioned images. The main stages of the bimodal imaging are sample preparation, calibration of the instrument, tuning of the microscope and generation of the nanomechanical maps. In addition, with knowledge of the deformation, bimodal AFM enables reconstruction of the true topography of the surface. It takes ~9 h to complete the whole procedure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bimodal AM–FM.
Fig. 2: Calibration of the spring constants and quality factors using the thermal noise spectra.
Fig. 3: Bimodal AFM images of a block copolymer.
Fig. 4: Cantilever excitation in bimodal AM–FM.
Fig. 5: Apparent and true topographic maps.
Fig. 6: Bimodal AFM maps of a purple membrane in buffer.
Fig. 7: Bimodal AFM maps of a 20S proteasome in liquid.
Fig. 8: Elastic modulus and deformation maps.

Similar content being viewed by others

References

  1. Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    CAS  PubMed  Google Scholar 

  2. Dufrêne, Y. F. et al. Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat. Nanotechnol. 12, 295–307 (2017).

    PubMed  Google Scholar 

  3. Garcia, R., Magerle, R. & Perez, R. Nanoscale compositional mapping with gentle forces. Nat. Mater. 6, 405–411 (2007).

    CAS  PubMed  Google Scholar 

  4. Proksch, R. et al. Practical loss tangent imaging with amplitude-modulated atomic force microscopy. J. Appl. Phys. 119, 134901 (2016).

    Google Scholar 

  5. Wang, D. & Russell, T. P. Advances in atomic force microscopy for probing polymer structure and properties. Macromolecules 51, 3–24 (2018).

    CAS  Google Scholar 

  6. Rodriguez, T. R. & Garcia, R. Compositional mapping of surfaces in atomic force microscopy by excitation of the second normal mode of the microcantilever. Appl. Phys. Lett. 84, 449–451 (2004).

    CAS  Google Scholar 

  7. Martinez, N. F., Patil, S., Lozano, J. R. & Garcia, R. Enhanced compositional sensitivity in atomic force microscopy by the excitation of the first two flexural modes. Appl. Phys. Lett. 89, 2–4 (2006).

    Google Scholar 

  8. Proksch, R. Multifrequency, repulsive-mode amplitude-modulated atomic force microscopy. Appl. Phys. Lett. 89, 1–4 (2006).

    Google Scholar 

  9. Garcia, R. & Herruzo, E. T. The emergence of multifrequency force microscopy. Nat. Nanotechnol. 7, 217–226 (2012).

    CAS  PubMed  Google Scholar 

  10. Raman, A. et al. Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy. Nat. Nanotechnol. 6, 809–814 (2011).

    CAS  PubMed  Google Scholar 

  11. Sahin, O., Magonov, S., Su, C., Quate, C. F. & Solgaard, O. An atomic force microscope tip designed to measure time-varying nanomechanical forces. Nat. Nanotechnol. 2, 507–514 (2007).

    PubMed  Google Scholar 

  12. Zhang, S., Aslan, H., Besenbacher, F. & Dong, M. Quantitative biomolecular imaging by dynamic nanomechanical mapping. Chem. Soc. Rev. 43, 7412–7429 (2014).

    CAS  PubMed  Google Scholar 

  13. Santos, S., Lai, C.-Y., Olukan, T. & Chiesa, M. Multifrequency AFM: from origins to convergence. Nanoscale 9, 5038–5043 (2017).

    CAS  PubMed  Google Scholar 

  14. Platz, D., Tholén, E. A., Pesen, D. & Haviland, D. B. Intermodulation atomic force microscopy. Appl. Phys. Lett. 92, 153106 (2008).

    Google Scholar 

  15. Jesse, S., Kalinin, S. V., Proksch, R., Baddorf, A. P. & Rodriguez, B. J. The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale. Nanotechnology 18, 435503 (2007).

    Google Scholar 

  16. Amo, C. A., Perrino, A. P., Payam, A. F. & Garcia, R. Mapping elastic properties of heterogeneous materials in liquid with Angstrom-scale resolution. ACS Nano 11, 8650–8659 (2017).

    CAS  PubMed  Google Scholar 

  17. Heinz, W. F. & Hoh, J. H. Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope. Trends Biotechnol. 17, 143–150 (1999).

    CAS  PubMed  Google Scholar 

  18. Dufrêne, Y. F., Martínez-Martín, D., Medalsy, I., Alsteens, D. & Müller, D. J. Multiparametric imaging of biological systems by force–distance curve-based AFM. Nat. Methods 10, 847–854 (2013).

    PubMed  Google Scholar 

  19. Young, T. J. et al. The use of the PeakForceTM quantitative nanomechanical mapping AFM-based method for high-resolution Young’s modulus measurement of polymers. Meas. Sci. Technol. 22, 125703 (2011).

    Google Scholar 

  20. Dokukin, M. E. & Sokolov, I. Quantitative mapping of the elastic modulus of soft materials with HarmoniX and PeakForce QNM AFM modes. Langmuir 28, 16060–16071 (2012).

    CAS  PubMed  Google Scholar 

  21. Pfreundschuh, M., Martinez-Martin, D., Mulvihill, E., Wegmann, S. & Muller, D. J. Multiparametric high-resolution imaging of native proteins by force-distance curve-based AFM. Nat. Protoc. 9, 1113–1130 (2014).

    CAS  PubMed  Google Scholar 

  22. Amo, C. A. & Garcia, R. Fundamental high-speed limits in single-molecule, single-cell, and nanoscale force spectroscopies. ACS Nano 10, 7117–7124 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Stark, M., Stark, R. W., Heckl, W. M. & Guckenberger, R. Inverting dynamic force microscopy: from signals to time-resolved interaction forces. Proc. Natl. Acad. Sci. USA 99, 8473–8478 (2002).

    CAS  PubMed  Google Scholar 

  24. Shamitko-Klingensmith, N., Molchanoff, K. M., Burke, K. A., Magnone, G. J. & Legleiter, J. Mapping the mechanical properties of cholesterol-containing supported lipid bilayers with nanoscale spatial resolution. Langmuir 28, 13411–13422 (2012).

    CAS  PubMed  Google Scholar 

  25. Platz, D., Forchheimer, D., Tholén, E. A. & Haviland, D. B. Interaction imaging with amplitude-dependence force spectroscopy. Nat. Commun. 4, 1360 (2013).

    PubMed  Google Scholar 

  26. Payam, A. F., Martin-Jimenez, D. & Garcia, R. Force reconstruction from tapping mode force microscopy experiments. Nanotechnology 26, 1–12 (2015).

    CAS  Google Scholar 

  27. Dong, M., Husale, S. & Sahin, O. Determination of protein structural flexibility by microsecond force spectroscopy. Nat. Nanotechnol. 4, 514–517 (2009).

    CAS  PubMed  Google Scholar 

  28. Lü, J., Yang, J., Dong, M. & Sahin, O. Nanomechanical spectroscopy of synthetic and biological membranes. Nanoscale 6, 7604–7608 (2014).

    PubMed  Google Scholar 

  29. Martinez-Martin, D., Herruzo, E. T., Dietz, C., Gomez-Herrero, J. & Garcia, R. Noninvasive protein structural flexibility mapping by bimodal dynamic force microscopy. Phys. Rev. Lett. 106, 1–4 (2011).

    Google Scholar 

  30. Herruzo, E. T., Perrino, A. P. & Garcia, R. Fast nanomechanical spectroscopy of soft matter. Nat. Commun. 5, 3126 (2014).

    PubMed  Google Scholar 

  31. Kocun, M., Labuda, A., Meinhold, W., Revenko, I. & Proksch, R. Fast, high resolution, and wide modulus range nanomechanical mapping with bimodal tapping mode. ACS Nano 11, 10097–10105 (2017).

    CAS  PubMed  Google Scholar 

  32. Labuda, A., Kocun, M., Meinhold, W., Walters, D. & Proksch, R. Generalized Hertz model for bimodal nanomechanical mapping. Beilstein J. Nanotechnol. 7, 970–982 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Rabe, U. et al. Imaging and measurement of local mechanical material properties by atomic force acoustic microscopy. Surf. Interface Anal. 33, 65–70 (2002).

    CAS  Google Scholar 

  34. Killgore, J. P. et al. Viscoelastic property mapping with contact resonance force microscopy. Langmuir 27, 13983–13987 (2011).

    CAS  PubMed  Google Scholar 

  35. Tetard, L., Passian, A. & Thundat, T. New modes for subsurface atomic force microscopy through nanomechanical coupling. Nat. Nanotechnol. 5, 105–109 (2010).

    CAS  PubMed  Google Scholar 

  36. Kawai, S. et al. Systematic achievement of improved atomic-scale contrast via bimodal dynamic force microscopy. Phys. Rev. Lett. 103, 1–4 (2009).

    Google Scholar 

  37. Herruzo, E. T. & Garcia, R. Theoretical study of the frequency shift in bimodal FM-AFM by fractional calculus. Beilstein J. Nanotechnol. 3, 198–206 (2012).

    PubMed  PubMed Central  Google Scholar 

  38. Herruzo, E. T., Asakawa, H., Fukuma, T. & Garcia, R. Three-dimensional quantitative force maps in liquid with 10 piconewton, angstrom and sub-minute resolutions. Nanoscale 5, 2678–2685 (2013).

    CAS  PubMed  Google Scholar 

  39. Ebeling, D. & Solares, S. D. Amplitude modulation dynamic force microscopy imaging in liquids with atomic resolution: comparison of phase contrasts in single and dual mode operation. Nanotechnology 24, 135702 (2013).

    PubMed  Google Scholar 

  40. Ooe, H. et al. Amplitude dependence of image quality in atomically-resolved bimodal atomic force microscopy. Appl. Phys. Lett. 109, 141603 (2016).

    Google Scholar 

  41. Kawai, S., Eren, B., Marot, L. & Meyer, E. Graphene synthesis via thermal polymerization of aromatic quinone molecules. ACS Nano 8, 5932–5938 (2014).

    CAS  PubMed  Google Scholar 

  42. Naitoh, Y. et al. Subatomic-scale force vector mapping above a Ge(001) dimer using bimodal atomic force microscopy. Nat. Phys. 13, 663–667 (2017).

    CAS  Google Scholar 

  43. Ebeling, D., Eslami, B. & Solares, S. D. J. Visualizing the subsurface of soft matter: simultaneous topographical imaging, depth modulation, and compositional mapping with triple frequency atomic force microscopy. ACS Nano 7, 10387–10396 (2013).

    CAS  PubMed  Google Scholar 

  44. Thompson, H. T., Barroso-Bujans, F., Herrero, J. G., Reifenberger, R. & Raman, A. Subsurface imaging of carbon nanotube networks in polymers with DC-biased multifrequency dynamic atomic force microscopy. Nanotechnology 24, 135701 (2013).

    PubMed  Google Scholar 

  45. Perrino, A. P., Ryu, Y. K., Amo, C. A., Morales, M. P. & Garcia, R. Subsurface imaging of silicon nanowire circuits and iron oxide nanoparticles with sub-10 nm spatial resolution. Nanotechnology 27, 275703 (2016).

    CAS  PubMed  Google Scholar 

  46. Li, J. W., Cleveland, J. P. & Proksch, R. Bimodal magnetic force microscopy: separation of short and long range forces. Appl. Phys. Lett. 94, 163118 (2009).

    Google Scholar 

  47. Dietz, C., Herruzo, E. T., Lozano, J. R. & Garcia, R. Nanomechanical coupling enables detection and imaging of 5 nm superparamagnetic particles in liquid. Nanotechnology 22, 125708 (2011).

    PubMed  Google Scholar 

  48. Schwenk, J. et al. Bimodal magnetic force microscopy with capacitive tip-sample distance control. Appl. Phys. Lett. 107, 132407 (2015).

    Google Scholar 

  49. Nowak, D. et al. Nanoscale chemical imaging by photoinduced force microscopy. Sci. Adv. 2, e1501571 (2016).

    PubMed  PubMed Central  Google Scholar 

  50. Ambrosio, A., Devlin, R. C., Capasso, F. & Wilson, W. L. Observation of nanoscale refractive index contrast via photoinduced force microscopy. ACS Photonics 4, 846–851 (2017).

    CAS  Google Scholar 

  51. Nguyen, H. K., Ito, M. & Nakajima, K. Elastic and viscoelastic characterization of inhomogeneous polymers by bimodal atomic force microscopy. Jpn. J. Appl. Phys. 55, 08NB06 (2016).

    Google Scholar 

  52. Dietz, C. Sensing in-plane nanomechanical surface and sub-surface properties of polymers: local shear stress as function of the indentation depth. Nanoscale 10, 460–468 (2018).

    CAS  Google Scholar 

  53. Bubendorf, A., Walheim, S., Schimmel, T. & Meyer, E. A robust AFM-based method for locally measuring the elasticity of samples. Beilstein J. Nanotechnol. 9, 1–10 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Patil, S., Martinez, N. F., Lozano, J. R. & Garcia, R. Force microscopy imaging of individual protein molecules with sub-pico Newton force sensitivity. J. Mol. Recognit. 20, 516–523 (2007).

    CAS  PubMed  Google Scholar 

  55. Lamour, G., Yip, C. K., Li, H. & Gsponer, J. High intrinsic mechanical flexibility of mouse prion nanofibrils revealed by measurements of axial and radial Young’s moduli. ACS Nano 8, 3851–3861 (2014).

    CAS  PubMed  Google Scholar 

  56. Ricci, M., Quinlan, R. A. & Voïtchovsky, K. Sub-nanometre mapping of the aquaporin–water interface using multifrequency atomic force microscopy. Soft Matter 13, 187–195 (2017).

    CAS  Google Scholar 

  57. Al-Rekabi, Z. & Contera, S. Multifrequency AFM reveals lipid membrane mechanical properties and the effect of cholesterol in modulating viscoelasticity. Proc. Natl. Acad. Sci. USA 115, 2658–2663 (2018).

    CAS  PubMed  Google Scholar 

  58. Lai, C. Y., Santos, S. & Chiesa, M. Systematic multidimensional quantification of nanoscale systems from bimodal atomic force microscopy data. ACS Nano 10, 6265–6272 (2016).

    CAS  PubMed  Google Scholar 

  59. Bose, K., Lech, C. J., Heddi, B. & Phan, A. T. High-resolution AFM structure of DNA G-wires in aqueous solution. Nat. Commun. 9, 1959 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. González-Domínguez, I., Gutiérrez-Granados, S., Cervera, L., Gòdia, F. & Domingo, N. Identification of HIV-1-based virus-like particles by multifrequency atomic force microscopy. Biophys. J. 111, 1173–1179 (2016).

    PubMed  PubMed Central  Google Scholar 

  61. Cartagena-Rivera, A. X., Wang, W. H., Geahlen, R. L. & Raman, A. Fast, multi-frequency, and quantitative nanomechanical mapping of live cells using the atomic force microscope. Sci. Rep. 5, 1–11 (2015).

    Google Scholar 

  62. Guan, D., Charlaix, E., Qi, R. Z. & Tong, P. Noncontact viscoelastic imaging of living cells using a long-needle atomic force microscope with dual-frequency modulation. Phys. Rev. Appl. 8, 1–10 (2017).

    Google Scholar 

  63. Martinez, N. F. et al. Bimodal atomic force microscopy imaging of isolated antibodies in air and liquids. Nanotechnology 19, 384011 (2008).

    CAS  PubMed  Google Scholar 

  64. Loganathan, M. & Bristow, D. A. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy. Rev. Sci. Instrum. 85, 043703 (2014).

    PubMed  Google Scholar 

  65. Dietz, C., Schulze, M., Voss, A., Riesch, C. & Stark, R. W. Bimodal frequency-modulated atomic force microscopy with small cantilevers. Nanoscale 7, 1849–1856 (2015).

    CAS  PubMed  Google Scholar 

  66. Penedo, M. et al. Selective enhancement of individual cantilever high resonance modes. Nanotechnology 26, 485706 (2015).

    PubMed  Google Scholar 

  67. Ruppert, M. G. & Moheimani, S. O. R. High-bandwidth multimode self-sensing in bimodal atomic force microscopy. Beilstein J. Nanotechnol. 7, 284–295 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lozano, J. R. & Garcia, R. Theory of multifrequency atomic force microscopy. Phys. Rev. Lett. 100, 8–11 (2008).

    Google Scholar 

  69. Stark, R. W. Bistability, higher harmonics, and chaos in AFM. Mater. Today 13, 24–32 (2010).

    Google Scholar 

  70. Aksoy, M. D. & Atalar, A. Force spectroscopy using bimodal frequency modulation atomic force microscopy. Phys. Rev. B 83, 075416 (2011).

    Google Scholar 

  71. Lozano, J. R., Kiracofe, D., Melcher, J., Garcia, R. & Raman, A. Calibration of higher eigenmode spring constants of atomic force microscope cantilevers. Nanotechnology 21, 465502 (2010).

    PubMed  Google Scholar 

  72. Forchheimer, D., Platz, D., Tholén, E. A. & Haviland, D. B. Model-based extraction of material properties in multifrequency atomic force microscopy. Phys. Rev. B 85, 1–7 (2012).

    Google Scholar 

  73. An, S., Solares, S. D., Santos, S. & Ebeling, D. Energy transfer between eigenmodes in multimodal atomic force microscopy. Nanotechnology 25, 475701 (2014).

    PubMed  Google Scholar 

  74. Santos, S. Phase contrast and operation regimes in multifrequency atomic force microscopy. Appl. Phys. Lett. 104, 143109 (2014).

    Google Scholar 

  75. Solares, S. D. & Chawla, G. Triple-frequency intermittent contact atomic force microscopy characterization: simultaneous topographical, phase, and frequency shift contrast in ambient air. J. Appl. Phys. 108, 054901 (2010).

    Google Scholar 

  76. Chawla, G. & Solares, S. D. Mapping of conservative and dissipative interactions in bimodal atomic force microscopy using open-loop and phase-locked-loop control of the higher eigenmode. Appl. Phys. Lett. 99, 074103 (2011).

    Google Scholar 

  77. Naitoh, Y., Ma, Z., Li, Y. J., Kageshima, M. & Sugawara, Y. Simultaneous observation of surface topography and elasticity at atomic scale by multifrequency frequency modulation atomic force microscopy. J. Vac. Sci. Technol. B 28, 1210–1214 (2010).

    CAS  Google Scholar 

  78. Garcia, R. & Proksch, R. Nanomechanical mapping of soft matter by bimodal force microscopy. Eur. Polym. J. 49, 1897–1906 (2013).

    CAS  Google Scholar 

  79. Lozano, J. R. & Garcia, R. Theory of phase spectroscopy in bimodal atomic force microscopy. Phys. Rev. B 79, 014110 (2009).

    Google Scholar 

  80. Uchihashi, T., Kodera, N. & Ando, T. Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy. Nat. Protoc. 7, 1193–1206 (2012).

    CAS  PubMed  Google Scholar 

  81. Sneddon, I. N. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57 (1965).

    Google Scholar 

  82. Knoll, A., Magerle, R. & Krausch, G. Tapping mode atomic force microscopy on polymers: where is the true sample surface? Macromolecules 34, 4159–4165 (2001).

    CAS  Google Scholar 

  83. Wang, D., Fujinami, S., Nakajima, K. & Nishi, T. True surface topography and nanomechanical mapping measurements on block copolymers with atomic force microscopy. Macromolecules 43, 3169–3172 (2010).

    CAS  Google Scholar 

  84. San Paulo, A. & Garcia, R. High-resolution imaging of antibodies by tapping-mode atomic force microscopy: attractive and repulsive tip-sample interaction regimes. Biophys. J. 78, 1599–1605 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Perrino, A. P. & Garcia, R. How soft is a single protein? The stress–strain curve of antibody pentamers with 5 pN and 50 pm resolutions. Nanoscale 8, 9151–9158 (2016).

    CAS  PubMed  Google Scholar 

  86. Lai, C.-Y., Santos, S. & Chiesa, M. Reconstruction of height of sub-nanometer steps with bimodal atomic force microscopy. Nanotechnology 27, 075701 (2016).

    PubMed  Google Scholar 

  87. Lai, C.-Y., Santos, S. & Chiesa, M. General interpretation and theory of apparent height in dynamic atomic force microscopy. RSC Adv. 5, 80069–80075 (2015).

    CAS  Google Scholar 

  88. Casuso, I., Kodera, N., Le Grimellec, C., Ando, T. & Scheuring, S. Contact-mode high-resolution high-speed atomic force microscopy movies of the purple membrane. Biophys. J. 97, 1354–1361 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Gottlieb, S. et al. Thermal scanning probe lithography for the directed self-assembly of block copolymers. Nanotechnology 28, 175301 (2017).

    CAS  PubMed  Google Scholar 

  90. Lorenzoni, M. et al. Assessing the local nanomechanical properties of self-assembled block copolymer thin films by peak force tapping. Langmuir 31, 11630–11638 (2015).

    CAS  PubMed  Google Scholar 

  91. Umeda, N., Ishizaki, S. & Uwai, H. Scanning attractive force microscope using photothermal vibration. J. Vac. Sci. Technol. B 9, 1318 (1991).

    CAS  Google Scholar 

  92. Herruzo, E. T. & Garcia, R. Frequency response of an atomic force microscope in liquids and air: magnetic versus acoustic excitation. Appl. Phys. Lett. 91, 89–92 (2007).

    Google Scholar 

  93. Labuda, A. et al. Calibration of higher eigenmodes of cantilevers. Rev. Sci. Instrum. 87, 073705 (2016).

    PubMed  Google Scholar 

  94. Rabe, M., Verdes, D. & Seeger, S. Understanding protein adsorption phenomena at solid surfaces. Adv. Colloid Interface Sci. 162, 87–106 (2011).

    CAS  PubMed  Google Scholar 

  95. Butt, H.-J. & Jaschke, M. Calculation of thermal noise in atomic force microscopy. Nanotechnology 6, 1–7 (1995).

    Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the European Research Council (ERC–AdG–340177; 3DNanoMech) and grants CSD2010-00024 and MAT2016-76507-R from the Ministerio de Economía y Competitividad. This work received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Marie Sklodowska-Curie grant agreement 721874 (SPM2.0). We also acknowledge fellowships FPU15/04622 (C.A.A.) and BES-2017-081907 (V.G.G.) from the Ministerio de Educación.

Author information

Authors and Affiliations

Authors

Contributions

S.B., V.G.G. and A.P.P. performed the experiments. C.A.A. deduced the analytical expressions. S.B. and V.G.G. drafted the procedure. R.G. designed the experiments, supervised development of the theory, wrote the introduction and edited the manuscript. All the authors discussed the results and revised the manuscript.

Corresponding author

Correspondence to Ricardo Garcia.

Ethics declarations

Competing interests

R.G. holds two US patents on bimodal AFM (7,921,466 B2 and 7,958,563 B2). The bimodal configuration presented in the Protocol is not described in those patents. The other authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Amo, C. A., Perrino, A. P., Payam, A. F. & Garcia, R. ACS Nano 11, 8650–8659 (2017): https://pubs.acs.org/doi/10.1021/acsnano.7b04381

Herruzo, E. T., Perrino, A. P., & Garcia, R. Nat. Commun. 5, 3126 (2014): https://www.nature.com/articles/ncomms4126

Martinez-Martin, D., Herruzo, E. T., Dietz, C., Gomez-Herrero, J. & Garcia, R. Phys. Rev. Lett. 106, 198101 (2011): https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.106.198101

Lozano, J. R. & Garcia, R. Phys. Rev. Lett. 100, 076102 (2008): https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.076102

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benaglia, S., Gisbert, V.G., Perrino, A.P. et al. Fast and high-resolution mapping of elastic properties of biomolecules and polymers with bimodal AFM. Nat Protoc 13, 2890–2907 (2018). https://doi.org/10.1038/s41596-018-0070-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-018-0070-1

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing