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Structure of the human 20S U5 snRNP
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The 20S U5 small nuclear ribonucleoprotein particle (snRNP) is a 17-subunit 
RNA–protein complex and a precursor of the U4/U6.U5 tri-snRNP, the  
major building block of the precatalytic spliceosome. CD2BP2 is a hallmark 
protein of the 20S U5 snRNP, absent from the mature tri-snRNP. Here we 
report a high-resolution cryogenic electron microscopy structure of  
the 20S U5 snRNP, shedding light on the mutually exclusive interfaces 
utilized during tri-snRNP assembly and the role of the CD2BP2 in facilitating 
this process.

In eukaryotes, the removal of noncoding introns from pre-mRNAs 
is catalyzed by the large and dynamic spliceosome complex1.  
The spliceosome assembles de novo on each intron from small  
nuclear ribonucleoprotein particles (snRNPs) and numerous pro-
tein factors. The 39-subunit U4/U6.U5 tri-snRNP is the largest preas-
sembled building block of the spliceosome, which joins the splicing  
pathway at the precatalytic (pre-B) stage and delivers two  
components of the RNA catalytic core, the U5 and U6 snRNAs, 
in their inactive configurations requiring further remodeling2,3. 
Despite recent progress in the mechanistic understanding of spli-
ceosome assembly, the biogenesis and recycling of its building blocks  
remain elusive.

Several factors associate with the tri-snRNP components but are 
absent in mature particles; hence, they are believed to play roles in 
tri-snRNP biogenesis and/or recycling. These include the U5 snRNP 
binding proteins: AAR2 (refs. 4,5), CD2BP2 (U5-52K; Saccharomyces 
cerevisiae Lin1)6,7, TSSC4 (refs. 8,9) and ZNHIT2 (refs. 10–12), as well 
as the U4/U6 annealing factor SART3 (S.cerevisiae Prp24)13–15. Mecha-
nistically, the exact roles and the interplay of these assembly factors 
remain poorly understood.

The 20S U5 snRNP isolated from HeLa cells contains at least 
16 subunits, including its hallmark protein CD2BP2 (refs. 16,17),  
which also plays a role in the binding of the CD2 receptor18. Con-
ditional knockout (KO) of CD2BP2 in mice leads to growth defects 
and premature death during embryonic development19. In its role 
as a splicing factor, CD2BP2 binds to DIM1 (U5-15K) with its GYF  
domain, forming a protein–protein interface that differs from 
the canonical binding mode to sequence motifs in the CD2  
antigens16,18. Lin1, the yeast homolog of CD2BP2, was reported to 

bind PRP8, suggesting a possible mode of its recruitment to the U5 
snRNP complex20.

Although 20S U5 snRNP was first isolated several decades ago17, its 
molecular structure and the function of CD2BP2 remain unknown. In this 
Brief Communication, we investigate how CD2BP2 interacts with other 
components of the U5 snRNP and how it facilitates tri-snRNP formation.

First, we analyzed the steady-state composition of the spli-
ceosomal snRNPs in the absence of CD2BP2. We purified snRNP 
using anti-2,2,7-trimethylguanosine (TMG) antibody-coupled resin 
from nuclear extracts (NE) prepared either from wild-type (WT) 
HEK293T cells or a homozygous CRISPR–Cas9 CD2BP2 KO cell line 
(CD2BP2KO; Extended Data Fig. 1a–c). The composition of both sam-
ples was compared by quantitative mass spectrometry (Fig. 1a). As 
expected, we observe a clear depletion of the CD2BP2 in the KO sample 
as well as a subtle, but consistent, underrepresentation of nearly all 
U5 snRNP subunits in the KO condition. U4/U6 and tri-snRNP specific 
components are also affected, yet, to a lesser extent, while the U2 snRNP 
proteins remained virtually unchanged, as their assembly into snRNPs 
is not expected to depend on CD2BP2. As such, these results point to a 
subtle defect in the U5 and U4/U6.U5 tri-snRNP assembly in the absence 
of CD2BP2. Yet, we could not observe a noteworthy impact on the cell 
viability and in vitro splicing efficiency under the conditions tested 
(Extended Data Fig. 1e). Interestingly, another U5 snRNP assembly 
factor, AAR2, is significantly enriched in snRNPs isolated from the 
CD2BP2KO cells. This could be due to the upregulation of the AAR2 in 
the absence of CD2BP2 or due to a failure in the CD2BP2-dependent 
conversion of AAR2-containing U5 snRNP into 20S U5 snRNP during the 
biogenesis. The latter seems more probable, as the expression levels 
of AAR2 in NE of WT and KO cell lines are largely unchanged (Extended 
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DIM1 are not visible in our structure. A hook-shaped extension of 
the CD2BP2D1 bridges the PRP8RT/En and PRP8Nterm domains and prob-
ably stabilizes their relative orientation, which differs from the 
one observed in the tri-snRNP (Fig. 1 and Extended Data Fig. 7a,b). 
CD2BP2D1 occupies the surface of PRP8 that accommodates several 
different factors during the splicing cycle, including AAR2 in the U5 
snRNP precursor5,23, DIM1 in tri-snRNP and the precatalytic spliceo-
some2,21, as well as RNF113 in Bact24 and CWF19L2 in the postsplicing 
ILS complexes25 (Fig. 2 and Extended Data Fig. 7c).

Interestingly, the CD2BP2GYF domain delivers DIM1 to the U5 
snRNP, which then competes with CD2BP2D1 for the same binding 
site on PRP8. The interface of DIM1 that contacts PRP8 in tri-snRNP 
is most probably occupied by the CD2BP2GYF domain, as shown in the 
crystal structure16. Therefore, CD2BP2 constitutes a two-layered buffer 
blocking the DIM1–PRP8 interaction by simultaneously binding to the 
interfaces on both PRP8 and DIM1 (Fig. 2). Based on our structural data, 
we believe that at least two functions of CD2BP2 should be considered. 
First, it facilitates the recruitment of PRP6 and DIM1, both of which 
are critical for the tri-snRNP formation. PRP6, together with PRP8, 
forms an interface that is necessary for PRP31 (and U4/U6 di-snRNP) 
anchoring, which is then further stabilized by the PRP6TPR domain, 
forming a bridge between U4/U6 and U5 snRNPs (Fig. 2). PRP6 and 
CD2BP2 interact directly7 (Extended Data Figs. 8 and 9). Therefore, 
CD2BP2-mediated prerecruitment of PRP6 to the U5 snRNP would 
probably enhance the efficiency of the tri-snRNP formation. Second, 
CD2BP2 acts as a placeholder preventing PRP8RT/En association with 
its numerous binding partners in a wrong spatiotemporal context.  
A similar mechanism is utilized by some factors involved in ribosome 
biogenesis26. Both of the above functions could serve to ensure the 

Data Fig. 1g). This data provide evidence that CD2BP2 is indeed involved 
in the U5 snRNP assembly and establish a functional link to another U5 
snRNP assembly factor AAR2.

Next, to gain insights into the structure of the 20S U5 snRNP, 
we engineered HEK293F cells to express a 3xFLAG_TEV_SBP-tagged 
CD2BP2 and used it to purify a 17-subunit complex containing the U5 
snRNA, seven Sm core proteins and nine other factors (Extended Data 
Table 1 and Extended Data Fig. 2). The composition of the complex is in 
good agreement with previous reports7,17 and, interestingly, includes 
an additional assembly factor, TSCC4 (not resolved in the struc-
ture)8,9. We determined a cryogenic electron microscopy (cryo-EM) 
structure of the CD2BP2-bound 20S U5 snRNP complex at the 3.1 Å 
resolution (Fig. 1, Table 1, Methods and Extended Data Figs. 3–5). 
The architecture of the 20S U5 snRNP closely resembles that of the 
U5 snRNP captured as a part of the tri-snRNP2,21 and in low-resolution 
U5 snRNP studies22. At least three major states are present in our 20S 
U5 snRNP reconstruction (Extended Data Fig. 6). State I contains 
most of the components and is referred to as the 20S U5 snRNP here-
after. State II is missing two helicases, BRR2 and DDX23, and may 
represent an earlier stage of the U5 snRNP assembly (Extended Data  
Fig. 6). State III contains particles missing the Sm ring, most probably 
damaged during the vitrification process. In all reconstructions, 
PRP8 provides the scaffold for the entire complex and interacts with 
multiple other subunits (Fig. 1). PRP6 is present in the sample, but 
only its N-terminal helices are visible, and the tetratricopeptide (TPR) 
repeat remains disordered. We observed two well-defined densities 
located near PRP8RT/En and PRP8Nterm domains, which were assigned 
to CD2BP2 domains D1 (62-130) and D2 (150-233), respectively  
(Fig. 1). The CD2BP2GYF domain (280-341) and its binding partner 

a
BRR2

BRR2

DDX23

PRP8

PRP8
PRP8

SNU114
CD2BP2D2

CD2BP2D2

CD2BP2D2
PRP6

PRP6

Sm

40K
Sm

SNU114

U5 snRNA U5 snRNA

90°

Sm

b

40K

DDX23

D1 D2 GYFCD2BP2
341

c

e

CD2BP2D1

CD2BP2D1

W119

Q542 H545
R116

PRP8RT/EN

PRP8Nterm

d

f

CD2BP2D2

CD2BP2D1

62 130 150 233 280

–2.5
0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

–1.5 –0.5 0.5

log2(CD2BP2KO/WT)
CD2BP2KO:CD2BP2WT

AAR2

TMG pull-down

–l
og

10
(P

 v
al

ue
)

TSSC4U2 proteins

U4/U6+tri-snRNP
proteins

U5 proteins

CD2BP2

1.5 2.5

Fig. 1 | Cryo-EM structure of the 20S U5 snRNP. a, Quantitative mass 
spectrometry analysis of snRNPs isolated via TMG agarose from WT or CD2BP2-
KO HEK293T cells. A moderated two-sided t-test was applied for statistical 
analysis. b, Experimental cryo-EM map of the 20S U5 snRNP colored by the 
subunit identity fitted into the low-pass filtered map at the lower contour level.  

c, Atomic model of the 20S U5 snRNP shown in the same orientation as in  
b. d, Orthogonal view of the atomic model. e, Zoomed-in view of the  
PRP8–CD2BP2 interaction highlighting the extended hook-like domain.  
f, Domain architecture of CD2BP2.
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correct order of events during the formation of complex intersubunit 
interfaces within tri-snRNP.

The remaining question is how CD2BP2 displacement is  
regulated. Our data shows that DIM1 competes with CD2BP2 for the 
same binding site on PRP8. We could not locate DIM1 in our map, but 
we observed some additional, low-resolution density near U5 snRNA, 
which most probably belongs to DIM1/CD2BP2GYF (Extended Data  
Fig. 6 and 9). Our cross-linking mass spectrometry (XL-MS) data  
detect DIM1–CD2BP2GYF and 40K–CD2BP2GYF interactions consistent 
with this putative location (Extended Data Fig. 9). Therefore, it is 
possible that DIM1 remains constrained in this position and cannot 
engage in the competition with CD2BP2D1. Recruitment of the U4/
U6 di-snRNP would trigger a large-scale movement of PRP6 (Fig. 2). 
Since PRP6 and CD2BP2 interact with one another (Extended Data 
Figs. 8 and 9), such movement of PRP6 could exert a force on CD2BP2, 
displacing it from PRP8 and liberating DIM1, allowing it to adopt its 
final location.

It has been previously shown that CD2BP2 undergoes phospho-
rylation, which in principle, could also regulate its displacement27,28. 

One of the putative phosphorylation sites lies at the interface between 
CD2BP2D1 and PRP8Nterm (Extended Data Fig. 8) and could potentially 
modulate their affinity. However, phosphorylation of CD2BP2 does 
not appear necessary for the in vitro reconstitution of the tri-snRNP, 
and its function remains unclear27.

Although our data indicate that CD2BP2 is required for the 
tri-snRNP formation and acts downstream of AAR2, we cannot  
discriminate whether its role concerns predominantly the initial  
biogenesis of the U5 snRNP or its potential recycling from postsplic-
ing complexes. As such, more work is required to shed light on the  
interplay between these two factors and their roles in respective 
pathways.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, Source data, Extended data, Supplementary Information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41594-024-01250-5.
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Methods
CD2BP2 KO cell line generation
Two guide RNAs were designed to delete 420 bp of the genomic locus 
near the translation start site of the CD2BP2 gene and cloned into the 
PX458 vector (pSpCas9(BB)-2A-GFP; a gift from Feng Zhang; Addgene 
plasmid no. 48138) using pairs of annealed oligonucleotides as follows:

SG1_FW:CACCGaaagtgaccttccaaggcgt+SG1_REV:aaacacg 
ccttggaaggtcactttC; SG2_FW:CACCGACACTCTTTGGATAGCGATG
+SG2_REV:aaacCATCGCTATCCAAAGAGTGTC.

HEK293T cells (ATCC CRL-3216) were seeded in a 6-well plate at a 
density of 0.3 × 106 cells per well and incubated for 24 h in Dulbecco’s 
modified Eagle medium (Gibco) supplemented with 5% fetal bovine 
serum and penicillin/streptomycin (Thermo Fisher Scientific). Then, 
1 µg of each guide RNA-containing PX458 plasmid was transfected into 
the cells using Lipofectamine 2000 (Thermo Fisher Scientific), follow-
ing the manufacturer recommendations. After 5 days of growth, cells 
were trypsinized with trypsin-EDTA 0.05% (Thermo Fisher Scientific), 
and single cells showing green fluorescent protein (GFP) signal were 
sorted into 96-well plates using a BD FACSAria IIu (BD Biosciences) 
sorter. Clonal cell lines were expanded over the period of 2 weeks and 
analyzed for the presence of the desired deletion using polymerase 
chain reaction (PCR; 52K_FW: GATCCAGAGGGTCCGCTCC; 52K_REV: 
CCTTCCTCCATCTCCTCCTGC) and western blotting with anti-CD2BP2 
antibodies (Thermo Fisher Scientific; PA5-59603; RRID:AB_2639539).

TMG agarose immunoaffinity chromatography and 
quantitative mass spectrometry
NEs from HEK293T WT and CD2BP2KO were prepared following the origi-
nal Dignam protocol29. TMG agarose beads (TMG mouse antibodies, 
K121, agarose conjugate, Merck NA02A) were preblocked by incubation 
with 0.1% BSA in phosphate-buffered saline (PBS) buffer for 1 h at 8 °C, 
then washed with two bead volumes (CV) of the immunoprecipita-
tion (IP) buffer (20 mM Tris-HCl pH 7.9; 150 mM KCl) supplemented 
with protease inhibitor cocktail (Roche cOmplete). TMG-beads were 
added to NEs to the final volume of 10% and incubated ON at 8 °C, with 
shaking. TMG-beads were collected in Mini Bio-Spin chromatography 
columns, Bio-Rad, by centrifugation for 30 s at 2,500g at 8 °C. After two 
wash steps with the IP buffer, beads were eluted by boiling for 10 min 
with the buffer containing 50 mM Tris-HCl pH 7.9, 150 mM KCl and 
0.5% sodium dodecyl sulfate (SDS). The eluates from the experiment 
performed in triplicates were analyzed by a TMT-plex quantitative mass 
spectrometry as previously described30.

Western Blotting
For the TMG pull-down eluates and NEs, equal amounts of total protein 
or fractions after glycerol gradient were separated by sodium dodecyl 
sulfate polyacrylamide gel electrophoresis using WedgeWell 4–20% 
Tris-glycine system, Invitrogen. The transfer to the polyvinylidene dif-
luoride (PVDF) membrane was done in the Trans-Blot Turbo system, 
Bio-Rad, using a Turbo-transfer buffer. The following primary rabbit pol-
yclonal antibodies were used: CD2BP2 (Sigma, HPA061309), DIM1 (Pro-
teintech, 27646-1-AP), PRP6 (Invitrogen, PA5-61428) and SNU114/EFTUD2 
(Invitrogen, PA5-96559). The secondary antibody was goat anti-rabbit 
IgG HRP-conjugate (Abcam, ab205718). Mouse monoclonal conjugated 
antibodies were anti-FLAG M2-peroxidase (Sigma, A8592), anti-GAPDH 
(Invitrogen MA515738HRP) and anti-HA-Tag F-7 HRP-conjugate (San-
taCruz, sc-7392). The blots were visualized using Pierce ECL Western 
Blotting Substrate, Thermo Fisher Scientific, and documented on the 
ChemiDoc MP imaging system and ImageLab, Bio-Rad.

For the PRP6-CD2BP2 pull-down experiment, HEK293T cells 
were seeded into 6-well plates 24 h before transfection at a density 
of 500,000 cells per well in 1.5 ml Dulbecco’s modified Eagle medium 
medium with 10% fetal bovine serum. Plasmids containing 3xHA_
PRP6270-941 and 3xFLAG_CD2BP2, both under CMV promoters, were 
mixed 1:1 and a total of 1 µg of DNA was diluted into in 50 µl of opti-MEM 

and mixed with 3 µg of polyethylenimine (PEI) MAX 40K in 50 µl of 
opti-MEM and incubated at room temperature for 10 min. Transfec-
tion solutions were added drop by drop to each well. The cells were 
collected by centrifugation 48 h after transfection, lysed in 400 µl of 
lysis buffer (150 mM KCl, 20 mM K-HEPES pH 7.8 and 0.1% Triton X-100) 
and sonicated for 10 s at 30% amplitude. The lysates were cleared by 
centrifugation in a table-top centrifuge at 20,000g at 4 °C for 30 min. 
The supernatant was incubated for 2 h with 5% (v/v) of FLAG-agarose 
to capture the bait protein. Affinity resin was washed three times with 
ten resin volumes of buffer 3 (150 mM KCl and 20 mM K-HEPES pH 7.8) 
and subsequently resuspended in SDS sample buffer and heated up to 
95 °C for 5 min to release bound proteins. Input and elution fractions 
were analyzed by western blotting.

A PVDF membrane (Merck) was activated for 5 min in 100% EtOH 
and incubated for 5 min in the transfer buffer (1× Tris-glycine, 20% 
EtOH). A wet transfer was performed for 60–90 min at 30 V in an Inv-
itrogen XCell II Blot Module. The membrane was blocked with 5% milk 
in PBS supplemented with 0.2% Tween 20 (PBST) for 1 h at room tem-
perature. Primary antibodies were added in the following dilutions: 
anti-HA 1:5,000 ((HA-7) HRP ab49969, Abcam); anti-FLAG 1:5,000 (HRP 
sigma A8592-.2MG). The membrane was washed three times for 5 min 
with 20 ml of PBST, and chemiluminescence was detected with an HRP 
substrate kit (Pierce ECL Western Blotting Substrate) in a ChemiDoc 
imager (Bio-Rad).

In vitro splicing assay
AdML-M3 pre-mRNA substrate was obtained by run-off 
in vitro T7-transcription31, capped by VCE, NEB and labeled with 
fluorescein-5-thiosemicarbazyde at the 3′ end as previously described32. 
NEs prepared from WT or CD2BP2KO cells were used. The typical reac-
tion contained 30 mM KCl, 3 mM MgCl2, 2 mM ATP, 20 mM creatine 
phosphate, 20 nM RNA AdML_M3 RNA substrate and 40% NE. Splicing 
reactions were assembled in 20 µl volume and incubated for 2 h at 
30 °C. RNA was then isolated by phenol/chloroform extraction and 
ethanol precipitation and analyzed by denaturing 6% polyacrylamide 
gel electrophoresis in 7 M urea. Fluorescence of the RNA substrate and 
splicing product was visualized on ChemiDoc MP.

3xFLAG_TEV_SBP_CD2BP2 cell line generation
Open Reading Frame of CD2BP2 was cloned into a modified pFLAG_
CMV10 vector containing an N-terminal 3xFLAG_TEV_SBP affinity tag. 
FreeStyle 293-F cells were transfected with this plasmid, and a stable, 
polyclonal cell line was derived through G418 antibiotic selection. 
Expression of the target protein was confirmed by western blot analysis.

Purification of the 20S U5 snRNP for cryo-EM analysis
Suspension culture of FreeStyle 293-F cells was grown in the FreeStyle 
medium (Thermo Fisher Scientific) to the density of ~2 × 106 cells ml−1 in 
an orbital shaker (Infors) at 37 °C, 8% CO2 and 90 rpm. The cell culture 
was collected by centrifugation, and NE was prepared following the 
original Dignam protocol29. After the final dialysis step, samples were 
aliquoted and flash-frozen in liquid nitrogen. For each preparation, an 
aliquot of NE was thawed on ice, and the salt concentration was adjusted 
to the final 500 mM KCl. EZview Red anti-FLAG M2 Affinity Gel (Sigma) 
was added to 10% (v/v) of the reaction volume and incubated overnight 
at 8 °C with shaking. The resin was washed three times with 10 column 
volumes (CV) of the wash buffer 1 (20 mM K-HEPES pH 7.9, 500 mM 
KCl, 2 mM MgCl2, 0.1% Igepal CA-630 and 5% glycerol), and complexes 
were eluted by incubation in 1 CV of wash buffer 1 supplemented with 
10% (v/v) of TEV protease (1 mg ml−1), for 3 h at room temperature. A 
second-step purification was performed by incubation FLAG eluate 
with 5% total volume of Pierce high-capacity streptavidin agarose for 
3 h at 8 °C with shaking. Beads were washed three times with 10 CV of 
the wash buffer 2 (20 mM K-HEPES pH 7.9, 500 mM KCl, 2 mM MgCl2). 
Samples were eluted from the resin by several incubations with 0.5 CV 
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of wash buffer 2 supplemented with 10 mM biotin for 15 min on ice. The 
eluate was loaded onto a 4 ml 10–30% glycerol gradient containing 
20 mM K-HEPES pH 7.9, 500 mM KCl, 2 mM MgCl2, 0.1% Igepal CA-630 
and 0–0.1% glutaraldehyde33 and centrifuged for 16 h at 35,000 rpm 
at 4 °C (Beckman Coulter Ultracentrifuge Optima L-90K). The peak 
fraction of the glycerol gradient was analyzed by negative staining 
EM, and the fractions containing most homogeneous particles were 
dialyzed against a buffer containing 20 mM K-HEPES pH 7.9, 150 mM 
KCl and 2 mM MgCl2 and used directly for grid preparation without 
further manipulations.

Cryo-EM data collection and processing
The sample was applied to 300 mesh Quantifoil R 1.2/1.3 grids covered 
with 3 nm continuous carbon, which had been glow-discharged for 30 s 
at 15 mA at 0.4 mbar using the Pelco EasiGlow. The grids were plunge 
frozen in liquid ethane after applying 2 µl at 4 °C, 100 % humidity and 
blotting for 2 s at blot force −5 in a Vitrobot Mark IV. The grids were 
screened on a Glacios 200 kV microscope equipped with a Falcon III 
detector and transferred to a Titan Krios microscope operating at 
300 kV equipped with a Gatan Energy filter34. A total of 8,506 micro-
graphs were recorded using SerialEM35 and a K2 direct electron detector 
at a magnification of 130,000×, a defocus between −1.5 and −3.5 µm 
with a dose rate of 4.6 e− per pixel per second and inserted energy slit at 
20 eV, as well as the 70 µm objective aperture. The total dose was 40.5 
e− Å−2, accumulated in 40 frames at a final pixel size of 1.045 Å. All image 
processing was done using cryoSPARC v3.3 (ref. 36). For preprocessing, 
we used patch motion correction and determined the contrast transfer 
function (CTF) parameters using patch CTF estimation. Using the blob 
picker functionality, 503,581 particles were picked and extracted in a 
504-pixel box. After binning two times, the particles were subjected to 
two-dimensional classification to create templates for template pick-
ing, which resulted in 490,503 picked particles. These particles were 
subjected to two-dimensional classification, ab initio reconstruction, 
followed by three-dimensional structure heterogeneous refinement 
until a homogeneous subpopulation of 76,918 particles was identified. 
Nonuniform refinement resulted in a final 3.1 Å resolution map based 
on the 0.143 Fourier Shell Correlation (FSC) criterion37,38. The obtained 
map was sharpened by applying a B-factor of −55 Å2.

Model building and structural analysis
Atomic coordinates of the U5 snRNP components extracted from 
the structure of the human tri-snRNP21 (PDB ID: 6qw6) were used as 
templates for modeling. Individual chains were fitted into the cryo-EM 
density as rigid bodies using UCSF Chimera39, the components with 
well-resolved density were manually adjusted and rebuilt in Coot 
v0.9.8.5 (ref. 40). Other components with poorly resolved densities 
(that is, BRR2, PRP8RNaseH, PRP8Jab1/MPN, DDX23, Sm ring, 40K) were 
docked into the map as rigid bodies and left in their original form. 
CD2BP2 binding sites were initially identified by an exhaustive in silico 
AlphaFold2-based search41,42 for all possible interactions with other U5 
snRNP components, using a previously described approach43.

Atomic models were initially refined with Refmac Servalcat v5.8.0267 
(ref. 44) with secondary structure restraints generated with ProSMART45 
via the CCP-EM software suite46. Final models were refined in real space 
in Phenix47 and validated in Molprobity48. Structural representations for 
figures were prepared with Pymol (Schrödinger) and ChimeraX49.

Cross-linking and mass spectrometry analysis
CD2BP2 complex at 3 mg ml−1 was incubated with 0.25 mM or 1 mM BS3 
for 30 min at 30 °C with shaking at 600 rpm (ThermoMixer, Eppen-
dorf), and the cross-linking reaction was quenched by the addition of 
Tris-Cl pH 7.5 to the final concentration of 50 mM and incubated for 
10 min at 35 °C at 600 rpm. Then, samples were mixed with 0.05 (v/v) 
of RapiGest and, after the addition of 10 mM DTT, incubated at 50 °C 
for 30 min, with shaking at 600 rpm. Subsequently, 2-chloroacetamide 

was added to 50 mM final concentration, and samples were incubated 
at 25 °C for 30 min at 600 rpm, protected from direct light. Proteins 
were digested with 1:50 (m/m ratio) of trypsin and 1:100 of LysC for 16 h 
at 37 °C. Digestion was stopped by adding 0.5% (v/v) of trifluoroacetic 
acid. Further analysis was performed by EMBL Proteomics Core Facil-
ity in Heidelberg.

Digested peptides were concentrated and desalted using an OASIS 
HLB µElution Plate (Waters), according to manufacturer instructions. 
Crosslinked peptides were enriched using size exclusion chroma-
tography50. In brief, desalted peptides were reconstituted with size 
exclusion chromatograph buffer (30% (v/v) acetonitrile (ACN) in 0.1% 
(v/v) trifluoroacetic acid (TFA)) and fractionated using a Superdex 
Peptide PC 3.2/30 column (GE) on a 1200 Infinity high-performance 
liquid chromatography system (Agilent) at a flow rate of 0.05 ml min−1. 
Fractions eluting between 50–70 µl were evaporated to dryness and 
reconstituted in 30 µl 4% (v/v) ACN in 1% (v/v) FA.

Collected fractions were analyzed by liquid chromatography‐cou-
pled tandem mass spectrometry using an UltiMate 3000 RSLC nano 
liquid chromatography system (Dionex) fitted with a trapping cartridge 
(µ-Precolumn C18 PepMap 100, 5 µm, 300 µm × 5 mm, 100 Å) and an 
analytical column (nanoEase M/Z HSS T3 column 75 µm × 250 mm C18, 
1.8 µm, 100 Å, Waters). Trapping was carried out with a constant flow of 
trapping solvent (0.05% trifluoroacetic acid in water) at 30 µl min−1 onto 
the trapping column for 6 min. Subsequently, peptides were eluted 
and separated on the analytical column using a gradient composed 
of solvent A (3% dimethyl sulfoxide and 0.1% formic acid in water) and 
solvent B (3% dimethyl sulfoxide and 0.1% formic acid in acetonitrile) 
with a constant flow of 0.3 µl min−1. The outlet of the analytical column 
was coupled directly to an Orbitrap Fusion Lumos (Thermo Scientific) 
mass spectrometer using the nanoFlex source.

The peptides were introduced into the Orbitrap Fusion Lumos via 
a Pico-Tip Emitter 360 µm × 20 µm; 10 µm tip (CoAnn Technologies) 
and an applied spray voltage of 2.1 kV, and the instrument was oper-
ated in positive mode. The capillary temperature was set at 275 °C. 
Only charge states of 4–8 were included. The dynamic exclusion was 
set to 30 s and the intensity threshold was 5 × 104. Full mass scans were 
acquired for a mass range 350–1,700 m/z in profile mode in the orbitrap 
with resolution of 120,000. The AGC target was set to standard and the 
injection time mode was set to auto. The instrument was operated in 
data-dependent acquisition mode with a cycle time of 3 s between mas-
ter scans and tandem mass spectrometry (MS/MS) scans were acquired 
in the Orbitrap with a resolution of 30,000, with a fill time of up to 
100 ms and a limitation of 2 × 105 ions (AGC target). A normalized colli-
sion energy of 32 was applied. MS2 data were acquired in profile mode.

All data were analyzed using the cross-linking module in Mass Spec 
Studio v2.4.0.3524 (www.msstudio.ca, ref. 51). Parameters were set as 
follows: trypsin (K/R only), charge states 3–8, peptide length 7–50, 
percent E-value threshold of 50, mass spectrometry (MS) mass toler-
ance of 10 ppm, tandem mass spectrometry mass tolerance of 10 and 
elution width of 0.5 min. BS3 cross-links residue pairs were constrained 
to KSTY on one end and one of KSTY on the other. Identifications were 
manually validated, and cross-links with an E-value corresponding to 
<0.05% false discovery rate (FDR) were rejected. The data export from 
the Studio was filtered to retain only cross-links with a unique pair of 
peptide sequences and a unique set of potential residue sites.

Structural and functional analysis of the XL-MS data were per-
formed with XiView52.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Structural data have been deposited in PDB and EMDB under the fol-
lowing accession codes: PDB 8Q91 and EMD-18267 for the 20S U5 snRNP 
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core structure and PDB 8RC0 and EMD-19041 for the complete model of 
the 20S U5 snRNP. Other atomic coordinates used in this study for the 
comparisons purposes are available from the PDB under the following 
accession codes: 6QW6 for the U4/U6.U5 tri-snRNP, 6FF4 for the Bact 
complex; 6ID0 for the human ILS complex and 4I43 for AAR2–PRP8 
complex. Quantitative proteomics and XL-MS data are provided as 
source data together with this manuscript. Other data and materials 
created within this study will be made available upon request. Source 
data are provided with this paper.
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Extended Data Fig. 1 | CD2BP2 knock out and its impact on pre-mRNA  
splicing and snRNPs assembly. a, experimental design used in CRISPR/Cas9-
mediated CD2BP2KO generation; b, genotyping of the CD2BP2KO clones using  
PCR as indicated in panel a; c, Western blot analysis of the knockout cell lines  
with anti-CD2BP2 antibodies and GAPDH used as a loading control;  
d, Western blot of the NE and TMG pull-down fractions used in Fig. 1 a probed for 
the presence of CD2BP2 and SNU114; e, In vitro splicing assay of the AdML-M3 
pre-mRNA substrate in the nuclear extract prepared from WT or CD2BP2KO cell 

lines; f, Western blot of the glycerol gradient fractions probed with U5 snRNP-
specific antibodies, showing depletion of DIM1 from 20 S U5 snRNP in CD2BP2 
KO condition; g, Quantitative mass spectrometry measurement of the AAR2 
abundance in the input nuclear extracts (NE) and TMG pull-down fractions 
(TMG-PD) from WT and CD2BP2 knock-out cell lines. Experiments in b-e were 
performed in single biological replicates, while d-g were done in triplicates with 
consistent outcomes.
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Extended Data Fig. 2 | Purification of the 20S U5 snRNP from HEK293F cells. 
a, experimental workflow used in sample preparation; b, SDS-PAGE analysis of 
the SBP eluates used subsequently for the Grafix gradient; c, a list of proteins 
present in the 20S U5 snRNP preparation; d, UREA-PAGE analysis of the RNAs 
extracted from SBP eluate of the CD2BP2-purified sample or NE used as a control. 
RNAs were stained with SYBR Gold and detected using Bio-Rad Chemidoc; 
e, 20S U5 snRNP sample analysed on the Superose 6 3.2/300 size exclusion 

chromatography column; f, the same sample analysed on a non-cross-linking 10–
30% glycerol gradient and detected by Western blot with anti-FLAG antibodies. 
The migration of the thyroglobulin size marker is indicated with the grey arrow; 
g, a typical micrograph of negatively stained Grafix fractions used subsequently 
for cryo-EM analysis. Experiments in panels b,d,g and f, were performed in 
triplicates with consistent outcomes.
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Extended Data Fig. 3 | Cryo-EM data processing chart. Processing chart for the 
20S U5 snRNP. The dataset contained compositionally heterogeneous snRNP, 
which were separated by heterogeneous refinement. This was then followed by 

non-uniform refinement. References are depicted in grey. Numbers indicate 
particle numbers unless otherwise stated. Extended Data Fig. 6 contains a more 
detailed comparison of the final three reconstructions.
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Extended Data Fig. 4 | Global and local resolution analysis of the cryo-EM 
reconstructions obtained in this study. Graphs based on the 3.1 Å, determined 
with cryoSPARC v3.3.2 unless otherwise indicated. a, Fourier Shell Correlation 
(FSC) of the final 3.1 Å cryo-EM map with different masks; b, Guinier plot used 
to determine the b-factor of 54.8 Å2; c, Angular distribution shows no major 

preferential orientation; d, FSC curves of the final three reconstructions;  
e, Local resolution plotted on the isosurface of the locally filtered state I map at 
a low contour level. The core of the particle shown in panel f, is indicated with a 
dotted line.
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Extended Data Fig. 5 | Examples of the atomic model fitting into the cryo-EM 
density of the 20S U5 snRNP. a, Representative examples of PRP8 and SNU114, 
U5 RNA and CD2BP2 areas resolved at high-resolution. The Sm ring is an example 

of a low-resolution fitting. b, Fourier Shell Correlation (FSC) of the model vs map 
shows good agreement up to 3.2 Å (FSC = 0.5 cut-off).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Three major compositional states are present in the 
reconstruction of the 20S U5 snRNP. a, Low-pass filtered reconstructions of 
the three states present in the reconstruction highlighting the key differences 
between them; b, Atomic models of the highlighted components fitted into the 
corresponding maps. State I represents the fully assembled complex referred 
to as the 20S U5 snRNP; state II has overall very similar architecture, but no clear 
density for BRR2 and DDX23 was observed; state III misses Sm ring and 40K 
and most likely represents broken particles. A comparison of state I and state 
II shows that BRR2 and DDX23 stabilise each other, as their presence is largely 

correlated. It has been previously shown that DDX23 binding to BRR2 is mutually 
exclusive with TSSC4 (ref. 9). Therefore, the absence of DDX23/BRR2 in one of 
the classes could, in principle, represent a state where TSSC4 is bound to BRR2 
and prevents its DDX23-mediated stable docking to the body of the complex. 
However, we could not see density for TSSC4 in any of these reconstructions even 
though putative TSSC4-PRP8 interface could be predicted with AlphaFold2; c, 
Unassigned density located near 40K, CD2BP2 and PRP8 most likely represents 
DIM/CD2BP2GYF domain.
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Extended Data Fig. 7 | PRP8 conformation in the 20S U5 snRNP.  
a, superposition of PRP8 from 20S U5 snRNP structure (this work), U4/U6.U5 tri-
snRNP21 (PDB:6QW6) and Bact spliceosome24 (PDB:6FF4) showing the movement 
of the PRP8Nterm with respect to PRP8RT/EN in different splicing complexes. The 
position of this domain in 20S U5 snRNP is likely stabilised by CD2BP2D1;  

b, a cartoon representation highlighting the movement described in panel a.  
c, CD2BP2 binding surface on PRP8RT/EN domain is occupied by different factors 
in other splicing complexes: RNF113 in Bact spliceosome24 and CW19L2 in post-
splicing ILS complex25.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Putative CD2BP2-PRP6 interface and phosphorylation 
sites in CD2BP. a, putative phosphorylation sites in CD2BP2 detected in high-
throughput experiments53,54 mapped on the primary sequence representation; 
b, Interaction network of CD2BP2 Serine 118, a putative phosphorylation site that 
is well resolved in the structure; c and d, a cartoon representation and the PAE 
plot of the AlphaFold2 model of the CD2BP2-PRP6 binary complex; e, AlphaFold2 

model of the full-length PRP6-CD2BP2 complex coloured based on pLDDT score 
(prediction confidence metric); f, Western blot analysis of the FLAG-tag pull-
down experiment from HEK293T cells co-expressing 3xFLAG-CD2BP2 and 3xHA-
PRP6TPR, confirming direct interaction between the two proteins. Experiment in 
panel f was performed in a single biological replicate.
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Extended Data Fig. 9 | BS3 cross-linking and mass spectrometry analysis of 
the 20S U5 snRNP. a, distribution of the Cα-Cα distances mapped on the core U5 
snRNP structure. The majority of the inter- and intra-molecular cross-links fall 
within 35 Å distance, consistent with the chemical nature of the cross-linker; b, 
visualisation of the high-confidence cross-links (Match score > 180) with respect 
to their position in their target proteins; c, mapping of the high-confidence 
cross-links onto the structure of the 20S U5 snRNP; d and e, unfiltered cross-links 

from two independent experiments (0.25 mM and 1 mM BS3) mapped on the 
sequences of CD2BP2, DIM1, PRP6 and 40K. These contacts support the model, 
wherein C-terminus of CD2BP2 and DIM1 are located near 40K. PRP6 TPR repeats 
appear to form multiple cross-links with CD2BP2, consistent with the AF2 model 
and biochemical data (Extended Data Fig. 8). XL-MS data was analysed and 
visualized in the xiView52.
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Extended Data Table 1 | Solution mass spectrometry analysis of the purified 20 S U5 snRNP

Proteins in the table were sorted based on their Top3 values in a descending order. 1The Top3 value is the average log10 MS1 intensity of the three most abundant peptides for each protein and 
serves as an estimator for the average abundance. 2These proteins are typical contaminants present in the preparation.
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Structural data has been deposited in PDB and EMDB under the following accession codes: PDB 8Q91 and EMD-18267 for the 20S U5 snRNP core structure and PDB 
8RC0 and EMD-19041 for the complete model of the 20S U5 snRNP. Other atomic coordinates used in this study for the comparisons purposes are available from 
the PDB under the following accession codes: 6QW6 for the U4/U6.U5 tri-snRNP, 6FF4 for the Bact complex; 6ID0 for the human ILS complex and 4I43 for Aar2-Prp8 
complex. Other data and materials created within this study will be made available upon request.
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Sample size cryo-EM data sample size was determined by the data processing outcome yielding a desired resolution.
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Replication Quantitative proteomics experiments were performed in three biological replicates. 
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Antibodies used Anti-2,2,7-Trimethylguanosine Mouse antibodies, K121, Agarose Conjugate, Merck NA02A 
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DIM1 (Proteintech, 27646-1-AP), 1: 3000 
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SNU114/EFTUD2 (Invitrogen, PA5-96559) 1:5000 
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 anti-HA-Tag F-7 (SantaCruz, sc-7392), 1:5000

Validation validation performed by manufacturers
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Cell line source(s) HEK293T (ATCC),Freestyle 293 cells (ThermoFisher)
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