Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Chromatin engineering offers an opportunity to advance epigenetic cancer therapy

Misregulation of gene cohorts, which is caused by aberrant chromatin features and is observed in various cancers, has spurred the development and use of epigenetic anti-cancer drugs. Here, we argue that, in addition to small-molecule inhibitors that target chromatin regulators, synthetic reader-effectors that are recruited to abnormal chromatin features have the potential to correct gene misregulation in epigenetic therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Epigenetic interventions target chromatin and coordinate the expression of multiple genes.
Fig. 2: Comparison of loss-of-function versus gain-of-function approaches to perturb chromatin in cancer cells.
Fig. 3: Targeting cohorts of misregulated genes in cancer cells with synthetic reader-effectors.

References

  1. Lungu, C., Pinter, S., Broche, J., Rathert, P. & Jeltsch, A. Nat. Commun. 8, 649 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tekel, S. J., Barrett, C., Vargas, D. & Haynes, K. A. Biochemistry 57, 4707–4716 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Delachat, A. M.-F. et al. Cell Chem. Biol. 25, 51–56.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Sanchez, O. F., Mendonca, A., Carneiro, A. D. & Yuan, C. ACS Sens. 2, 426–435 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Bracken, A. P. & Helin, K. Nat. Rev. Cancer 9, 773–784 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Jene-Sanz, A. et al. Mol. Cell. Biol. 33, 3951–3961 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dawson, M. A. & Kouzarides, T. Cell 150, 12–27 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Tekel, S. J. & Haynes, K. A. Nucleic Acids Res. 45, 7555–7570 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li, H. et al. Oncotarget 5, 587–598 (2014).

    PubMed  PubMed Central  Google Scholar 

  10. Ahuja, N., Sharma, A. R. & Baylin, S. B. Annu. Rev. Med. 67, 73–89 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mahara, S. et al. Proc. Natl Acad. Sci. USA 113, E3735–E3744 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McGarvey, K. M. et al. Cancer Res. 66, 3541–3549 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Kagey, J. D., Kapoor-Vazirani, P., McCabe, M. T., Powell, D. R. & Vertino, P. M. Mol. Cancer Res. 8, 1048–1059 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gibaja, V. et al. Oncogene 35, 558–566 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Baker, T. et al. Oncotarget 6, 32646–32655 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Stuckey, J. I. et al. Nat. Chem. Biol. 12, 180–187 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gough, S. M. et al. Cancer Discov. 4, 564–577 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Falahi, F., Sgro, A. & Blancafort, P. Front. Oncol. 5, 22 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Maeder, M. L. et al. Nat. Biotechnol. 31, 1137–1142 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kungulovski, G. et al. Epigenetics Chromatin 8, 12 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang, G. G. et al. Nature 459, 847–851 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Olney, K. C., Nyer, D. B., Vargas, D. A., Wilson Sayres, M. A. & Haynes, K. A. BMC Syst. Biol. 12, 83 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jullien, D. et al. J. Cell Sci. 129, 2673–2683 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sato, Y., Stasevich, T. J. & Kimura, H. Methods Mol. Biol. 1861, 91–102 (2018).

    Article  PubMed  Google Scholar 

  25. Lara, H. et al. J. Biol. Chem. 287, 29873–29886 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are supported by start-up support from the Wallace H. Coulter Department of Biological Engineering at the Emory School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karmella A. Haynes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baskin, N.L., Haynes, K.A. Chromatin engineering offers an opportunity to advance epigenetic cancer therapy. Nat Struct Mol Biol 26, 842–845 (2019). https://doi.org/10.1038/s41594-019-0299-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-019-0299-6

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research