Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanics and pharmacology of substrate selection and transport by eukaryotic ABC exporters

Abstract

Much structural information has been amassed on ATP-binding cassette (ABC) transporters, including hundreds of structures of isolated domains and an increasing array of full-length transporters. The structures capture different steps in the transport cycle and have aided in the design and interpretation of computational simulations and biophysics experiments. These data provide a maturing, although still incomplete, elucidation of the protein dynamics and mechanisms of substrate selection and transit through the transporters. We present an updated view of the classical alternating-access mechanism as it applies to eukaryotic ABC transporters, focusing on type I exporters. Our model helps frame the progress in, and remaining questions about, transporter energetics, how substrates are selected and how ATP is consumed to perform work at the molecular scale. Many human ABC transporters are associated with disease; we highlight progress in understanding their pharmacology through the lens of structural biology and describe how this knowledge suggests approaches to pharmacologically targeting these transporters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural similarities in ABCB, ABCC and ABCD exporters in contrast to ABCA and ABCG transporters.
Fig. 2: Experimentally identified substrate-interacting residues suggest binding-site diversity among ABC exporters.
Fig. 3: Consensus thermodynamic model for transport by ABC exporters.
Fig. 4: Structural insights into ABC-transporter pharmacology.

Similar content being viewed by others

References

  1. Ford, R. C. & Beis, K. Learning the ABCs one at a time: structure and mechanism of ABC transporters. Biochem. Soc. Trans. 47, 23–36 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Cui, J. & Davidson, A. L. ABC solute importers in bacteria. Essays Biochem. 50, 85–99 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Davidson, A. L., Dassa, E., Orelle, C. & Chen, J. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol. Mol. Biol. Rev. 72, 317–64 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Decottignies, A. & Goffeau, A. Complete inventory of the yeast ABC proteins. Nat. Genet. 15, 137–145 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Vasiliou, V., Vasiliou, K. & Nebert, D. W. Human ATP-binding cassette (ABC) transporter family. Hum. Genom. 3, 281–290 (2009).

    Article  CAS  Google Scholar 

  6. Garcia, O., Bouige, P., Forestier, C. & Dassa, E. Inventory and comparative analysis of rice and Arabidopsis ATP-binding cassette (ABC) systems. J. Mol. Biol. 343, 249–265 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Quazi, F., Lenevich, S. & Molday, R. S. ABCA4 is an N-retinylidene-phosphatidylethanolamine and phosphatidylethanolamine importer. Nat. Commun. 3, 925 (2012).

    Article  PubMed  CAS  Google Scholar 

  8. Xiong, J., Feng, J., Yuan, D., Zhou, J. & Miao, W. Tracing the structural evolution of eukaryotic ATP binding cassette transporter superfamily. Sci. Rep. 5, 16724 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Theodoulou, F. L. & Kerr, I. D. ABC transporter research: going strong 40 years on. Biochem. Soc. Trans. 43, 1033–1040 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Riordan, J. R. et al. Amplification of P-glycoprotein genes in multidrug-resistant mammalian cell lines. Nature 316, 817–819 (1985).

    Article  CAS  PubMed  Google Scholar 

  11. Robey, R. W. et al. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer 18, 452–464 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cavalheiro, M., Pais, P., Galocha, M. & Teixeira, M. C. Host-pathogen interactions mediated by MDR transporters in fungi: as pleiotropic as it gets! Genes (Basel) 9, E332 (2018).

    Article  CAS  Google Scholar 

  13. Du, D. et al. Multidrug efflux pumps: structure, function and regulation. Nat. Rev. Microbiol. 16, 523–539 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Moitra, K. & Dean, M. Evolution of ABC transporters by gene duplication and their role in human disease. Biol. Chem. 392, 29–37 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Gaudet, R. & Wiley, D. C. Structure of the ABC ATPase domain of human TAP1, the transporter associated with antigen processing. EMBO J. 20, 4964–4972 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hung, L. W. et al. Crystal structure of the ATP-binding subunit of an ABC transporter. Nature 396, 703–707 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Chen, J., Lu, G., Lin, J., Davidson, A. L. & Quiocho, F. A. A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle. Mol. Cell 12, 651–661 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Scapin, G., Potter, C. S. & Carragher, B. Cryo-EM for small molecules discovery, design, understanding, and application. Cell Chem. Biol. 25, 1318–1325 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Frank, J. Advances in the field of single-particle cryo-electron microscopy over the last decade. Nat. Protoc. 12, 209–212 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jardetzky, O. Simple allosteric model for membrane pumps. Nature 211, 969–970 (1966).

    Article  CAS  PubMed  Google Scholar 

  21. Wen, P. C., Verhalen, B., Wilkens, S., Mchaourab, H. S. & Tajkhorshid, E. On the origin of large flexibility of P-glycoprotein in the inward-facing state. J. Biol. Chem. 288, 19211–19220 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jin, M. S., Oldham, M. L., Zhang, Q. & Chen, J. Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans. Nature 490, 566–569 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, J., Jaimes, K. F. & Aller, S. G. Refined structures of mouse P-glycoprotein. Protein Sci. 23, 34–46 (2014).

    Article  PubMed  CAS  Google Scholar 

  24. Lee, J. Y., Yang, J. G., Zhitnitsky, D., Lewinson, O. & Rees, D. C. Structural basis for heavy metal detoxification by an Atm1-type ABC exporter. Science 343, 1133–1136 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Esser, L. et al. Structures of the multidrug transporter P-glycoprotein reveal asymmetric ATP binding and the mechanism of polyspecificity. J. Biol. Chem. 292, 446–461 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Alam, A. et al. Structure of a zosuquidar and UIC2-bound human-mouse chimeric ABCB1. Proc. Natl Acad. Sci. USA 115, E1973–E1982 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Johnson, Z. L. & Chen, J. ATP binding enables substrate release from multidrug resistance protein 1. Cell 172, 81–89.e10 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Dawson, R. J. & Locher, K. P. Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett. 581, 935–938 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Barth, K. et al. Conformational coupling and trans-inhibition in the human antigen transporter ortholog TmrAB resolved with dipolar EPR spectroscopy. J. Am. Chem. Soc. 140, 4527–4533 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Kim, Y. & Chen, J. Molecular structure of human P-glycoprotein in the ATP-bound, outward-facing conformation. Science 359, 915–919 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Hutter, C. A. J. et al. The extracellular gate shapes the energy profile of an ABC exporter. Nat. Commun. 10, 2260 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kodan, A. et al. Structural basis for gating mechanisms of a eukaryotic P-glycoprotein homolog. Proc. Natl Acad. Sci. USA 111, 4049–4054 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bountra, K. et al. Structural basis for antibacterial peptide self-immunity by the bacterial ABC transporter McjD. EMBO J. 36, 3062–3079 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Choudhury, H. G. et al. Structure of an antibacterial peptide ATP-binding cassette transporter in a novel outward occluded state. Proc. Natl Acad. Sci. USA 111, 9145–9150 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alam, A., Kowal, J., Broude, E., Roninson, I. & Locher, K. P. Structural insight into substrate and inhibitor discrimination by human P-glycoprotein. Science 363, 753–756 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Loo, T. W., Bartlett, M. C. & Clarke, D. M. Drug binding in human P-glycoprotein causes conformational changes in both nucleotide-binding domains. J. Biol. Chem. 278, 1575–1578 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Johnson, Z. L. & Chen, J. Structural basis of substrate recognition by the multidrug resistance protein MRP1. Cell 168, 1075–1085.e9 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Penczek, P. A., Kimmel, M. & Spahn, C. M. Identifying conformational states of macromolecules by eigen-analysis of resampled cryo-EM images. Structure 19, 1582–1590 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Loveland, A. B. & Korostelev, A. A. Structural dynamics of protein S1 on the 70S ribosome visualized by ensemble cryo-EM. Methods 137, 55–66 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Frank, G. A. et al. Cryo-EM analysis of the conformational landscape of human P-glycoprotein (ABCB1) during its catalytic cycle. Mol. Pharmacol. 90, 35–41 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Harpole, T. J. & Delemotte, L. Conformational landscapes of membrane proteins delineated by enhanced sampling molecular dynamics simulations. Biochim. Biophys. Acta 1860, 909–926 (2018).

    Article  CAS  Google Scholar 

  42. Marinelli, F. & Faraldo-Gómez, J. D. Ensemble-biased metadynamics: a molecular simulation method to sample experimental distributions. Biophys. J. 108, 2779–2782 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lefèvre, F. & Boutry, M. Towards identification of the substrates of ATP-binding cassette transporters. Plant Physiol. 178, 18–39 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. Dean, M., Rzhetsky, A. & Allikmets, R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 11, 1156–1166 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Cole, S. P. Multidrug resistance protein 1 (MRP1, ABCC1), a “multitasking” ATP-binding cassette (ABC) transporter. J. Biol. Chem. 289, 30880–30888 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Litman, T., Druley, T. E., Stein, W. D. & Bates, S. E. From MDR to MXR: new understanding of multidrug resistance systems, their properties and clinical significance. Cell. Mol. Life Sci. 58, 931–959 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Pedersen, J. M. et al. Substrate and method dependent inhibition of three ABC-transporters (MDR1, BCRP, and MRP2). Eur. J. Pharm. Sci. 103, 70–76 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Loo, T. W., Bartlett, M. C. & Clarke, D. M. Transmembrane segment 7 of human P-glycoprotein forms part of the drug-binding pocket. Biochem. J. 399, 351–359 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Loo, T. W., Bartlett, M. C. & Clarke, D. M. Simultaneous binding of two different drugs in the binding pocket of the human multidrug resistance P-glycoprotein. J. Biol. Chem. 278, 39706–39710 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Loo, T. W. & Clarke, D. M. Identification of residues within the drug-binding domain of the human multidrug resistance P-glycoprotein by cysteine-scanning mutagenesis and reaction with dibromobimane. J. Biol. Chem. 275, 39272–39278 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Loo, T. W. & Clarke, D. M. Thiol-reactive drug substrates of human P-glycoprotein label the same sites to activate ATPase activity in membranes or dodecyl maltoside detergent micelles. Biochem. Biophys. Res. Commun. 488, 573–577 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Aller, S. G. et al. Structure of P-glycoprotein reveals a molecular basis for poly specific drug binding. Science 323, 1718–1722 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nicklisch, S. C. et al. Global marine pollutants inhibit P-glycoprotein: environmental levels, inhibitory effects, and cocrystal structure. Sci. Adv. 2, e1600001 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Oldham, M. L., Grigorieff, N. & Chen, J. Structure of the transporter associated with antigen processing trapped by herpes simplex virus. eLife 5, e21829 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lehnert, E. & Tampé, R. Structure and dynamics of antigenic peptides in complex with TAP. Front. Immunol. 8, 10 (2017).

    PubMed  PubMed Central  Google Scholar 

  56. Koopmann, J. O., Post, M., Neefjes, J. J., Hämmerling, G. J. & Momburg, F. Translocation of long peptides by transporters associated with antigen processing (TAP). Eur. J. Immunol. 26, 1720–1728 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Ritz, U. et al. Impaired transporter associated with antigen processing (TAP) function attributable to a single amino acid alteration in the peptide TAP subunit TAP1. J. Immunol. 170, 941–946 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Armandola, E. A. et al. A point mutation in the human transporter associated with antigen processing (TAP2) alters the peptide transport specificity. Eur. J. Immunol. 26, 1748–1755 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Baldauf, C., Schrodt, S., Herget, M., Koch, J. & Tampé, R. Single residue within the antigen translocation complex TAP controls the epitope repertoire by stabilizing a receptive conformation. Proc. Natl Acad. Sci. USA 107, 9135–9140 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Geng, J., Pogozheva, I. D., Mosberg, H. I. & Raghavan, M. Use of functional polymorphisms to elucidate the peptide binding site of TAP complexes. J. Immunol. 195, 3436–3448 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Deverson, E. V. et al. Functional analysis by site-directed mutagenesis of the complex polymorphism in rat transporter associated with antigen processing. J. Immunol. 160, 2767–2779 (1998).

    CAS  PubMed  Google Scholar 

  62. Lehnert, E. et al. Antigenic peptide recognition on the human ABC transporter TAP resolved by DNP-enhanced solid-state NMR spectroscopy. J. Am. Chem. Soc. 138, 13967–13974 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Nöll, A. et al. Crystal structure and mechanistic basis of a functional homolog of the antigen transporter TAP. Proc. Natl Acad. Sci. USA 114, E438–E447 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Mi, W. et al. Structural basis of MsbA-mediated lipopolysaccharide transport. Nature 549, 233–237 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Loo, T. W., Bartlett, M. C. & Clarke, D. M. Substrate-induced conformational changes in the transmembrane segments of human P-glycoprotein. Direct evidence for the substrate-induced fit mechanism for drug binding. J. Biol. Chem. 278, 13603–13606 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Spadaccini, R., Kaur, H., Becker-Baldus, J. & Glaubitz, C. The effect of drug binding on specific sites in transmembrane helices 4 and 6 of the ABC exporter MsbA studied by DNP-enhanced solid-state NMR. Biochim. Biophys. Acta 1860, 833–840 (2018).

    Article  CAS  Google Scholar 

  67. Szewczyk, P. et al. Snapshots of ligand entry, malleable binding and induced helical movement in P-glycoprotein. Acta Crystallogr. D. Biol. Crystallogr. 71, 732–741 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Perez, C. et al. Structure and mechanism of an active lipid-linked oligosaccharide flippase. Nature 524, 433–438 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Szöllősi, D., Rose-Sperling, D., Hellmich, U. A. & Stockner, T. Comparison of mechanistic transport cycle models of ABC exporters. Biochim. Biophys. Acta 1860, 818–832 (2018).

    Article  CAS  Google Scholar 

  70. Moeller, A. et al. Distinct conformational spectrum of homologous multidrug ABC transporters. Structure 23, 450–460 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dastvan, R., Mishra, S., Peskova, Y. B., Nakamoto, R. K. & Mchaourab, H. S. Mechanism of allosteric modulation of P-glycoprotein by transport substrates and inhibitors. Science 364, 689–692 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gu, R. X. et al. Conformational changes in the antibacterial peptide ATP binding cassette transporter McjD revealed by molecular dynamics simulations. Biochemistry 54, 5989–5998 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Grossmann, N. et al. Mechanistic determinants of the directionality and energetics of active export by a heterodimeric ABC transporter. Nat. Commun. 5, 5419 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Csanády, L., Vergani, P. & Gadsby, D. C. Structure, gating, and regulation of the Cftr anion channel. Physiol. Rev. 99, 707–738 (2019).

    Article  PubMed  CAS  Google Scholar 

  75. Pan, L. & Aller, S. G. Allosteric role of substrate occupancy toward the alignment of P-glycoprotein nucleotide binding domains. Sci. Rep. 8, 14643 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Procko, E., Ferrin-O’Connell, I., Ng, S. L. & Gaudet, R. Distinct structural and functional properties of the ATPase sites in an asymmetric ABC transporter. Mol. Cell 24, 51–62 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Mishra, S. et al. Conformational dynamics of the nucleotide binding domains and the power stroke of a heterodimeric ABC transporter. eLife 3, e02740 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Collauto, A., Mishra, S., Litvinov, A., McHaourab, H. S. & Goldfarb, D. Direct spectroscopic detection of ATP turnover reveals mechanistic divergence of ABC exporters. Structure 25, 1264–1274.e3 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Verhalen, B. et al. Energy transduction and alternating access of the mammalian ABC transporter P-glycoprotein. Nature 543, 738–741 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Borst, P. & Elferink, R. O. Mammalian ABC transporters in health and disease. Annu. Rev. Biochem. 71, 537–592 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Procko, E. & Gaudet, R. Antigen processing and presentation: TAPping into ABC transporters. Curr. Opin. Immunol. 21, 84–91 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Eggensperger, S. & Tampé, R. The transporter associated with antigen processing: a key player in adaptive immunity. Biol. Chem. 396, 1059–1072 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Palmeira, A., Sousa, E., Vasconcelos, M. H. & Pinto, M. M. Three decades of P-gp inhibitors: skimming through several generations and scaffolds. Curr. Med. Chem. 19, 1946–2025 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Ma, J. & Biggin, P. C. Substrate versus inhibitor dynamics of P-glycoprotein. Proteins 81, 1653–1668 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Dawson, R. J. & Locher, K. P. Structure of a bacterial multidrug ABC transporter. Nature 443, 180–185 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Perez, C. et al. Structural basis of inhibition of lipid-linked oligosaccharide flippase PglK by a conformational nanobody. Sci. Rep. 7, 46641 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ho, H. et al. Structural basis for dual-mode inhibition of the ABC transporter MsbA. Nature 557, 196–201 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Praest, P., Liaci, A.M., Forster, F. & Wiertz, E. New insights into the structure of the MHC class I peptide-loading complex and mechanisms of TAP inhibition by viral immune evasion proteins. Mol. Immunol. https://doi.org/10.1016/j.molimm.2018.03.020 (2018).

  89. Herbring, V., Bäucker, A., Trowitzsch, S. & Tampé, R. A dual inhibition mechanism of herpesviral ICP47 arresting a conformationally thermostable TAP complex. Sci. Rep. 6, 36907 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Oldham, M. L. et al. A mechanism of viral immune evasion revealed by cryo-EM analysis of the TAP transporter. Nature 529, 537–540 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Parreira, B. et al. Persistence of the ABCC6 genes and the emergence of the bony skeleton in vertebrates. Sci. Rep. 8, 6027 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Lee, J. Y. et al. Crystal structure of the human sterol transporter ABCG5/ABCG8. Nature 533, 561–564 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Taylor, N. M. I. et al. Structure of the human multidrug transporter ABCG2. Nature 546, 504–509 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Borghi, L., Kang, J., Ko, D., Lee, Y. & Martinoia, E. The role of ABCG-type ABC transporters in phytohormone transport. Biochem. Soc. Trans. 43, 924–930 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Luo, Y. L. et al. Tissue expression pattern of ABCG transporter indicates functional roles in reproduction of Toxocara canis. Parasitol. Res. 117, 775–782 (2018).

    Article  PubMed  Google Scholar 

  96. Manolaridis, I. et al. Cryo-EM structures of a human ABCG2 mutant trapped in ATP-bound and substrate-bound states. Nature 563, 426–430 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jackson, S. M. et al. Structural basis of small-molecule inhibition of human multidrug transporter ABCG2. Nat. Struct. Mol. Biol. 25, 333–340 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Qian, H. et al. Structure of the human lipid exporter ABCA1. Cell 169, 1228–1239.e10 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Lee, J. Y. & Parks, J. S. ATP-binding cassette transporter AI and its role in HDL formation. Curr. Opin. Lipidol. 16, 19–25 (2005).

    Article  PubMed  Google Scholar 

  100. Smith, P. C. et al. ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol. Cell 10, 139–149 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kodan, A. et al. Inward- and outward-facing X-ray crystal structures of homodimeric P-glycoprotein CmABCB1. Nat. Commun. 10, 88 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Molinski, S. V. et al. Comprehensive mapping of cystic fibrosis mutations to CFTR protein identifies mutation clusters and molecular docking predicts corrector binding site. Proteins 86, 833–843 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. de Wet, H. & Proks, P. Molecular action of sulphonylureas on KATP channels: a real partnership between drugs and nucleotides. Biochem. Soc. Trans. 43, 901–907 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Vergani, P., Lockless, S. W., Nairn, A. C. & Gadsby, D. C. CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains. Nature 433, 876–880 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhang, Z. & Chen, J. Atomic structure of the cystic fibrosis transmembrane conductance regulator. Cell 167, 1586–1597.e9 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Zhang, Z., Liu, F. & Chen, J. Conformational changes in CFTR upon phosphorylation and ATP binding. Cell 170, 483–491.e8 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Liu, F., Zhang, Z., Csanady, L., Gadsby, D. C. & Chen, J. Molecular structure of the human CFTR ion channel. Cell 169, 85–95.e8 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. Zhang, Z., Liu, F. & Chen, J. Molecular structure of the ATP-bound, phosphorylated human CFTR. Proc. Natl Acad. Sci. USA 115, 12757–12762 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tordai, H., Leveles, I. & Hegedűs, T. Molecular dynamics of the cryo-EM CFTR structure. Biochem. Biophys. Res. Commun. 491, 986–993 (2017).

    Article  CAS  PubMed  Google Scholar 

  110. Veit, G. et al. From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations. Mol. Biol. Cell 27, 424–433 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jih, K. Y. & Hwang, T. C. Vx-770 potentiates CFTR function by promoting decoupling between the gating cycle and ATP hydrolysis cycle. Proc. Natl Acad. Sci. USA 110, 4404–4409 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yu, H. et al. Ivacaftor potentiation of multiple CFTR channels with gating mutations. J. Cyst. Fibros. 11, 237–245 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Li, N. et al. Structure of a pancreatic ATP-sensitive potassium channel. Cell 168, 101–110.e10 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Martin, G. M., Kandasamy, B., DiMaio, F., Yoshioka, C. & Shyng, S. L. Anti-diabetic drug binding site in a mammalian KATP channel revealed by Cryo-EM. eLife 6, e31054 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Martin, G. M. et al. Cryo-EM structure of the ATP-sensitive potassium channel illuminates mechanisms of assembly and gating. eLife 6, e24149 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Lee, K. P. K., Chen, J. & MacKinnon, R. Molecular structure of human KATP in complex with ATP and ADP. eLife 6, e32481 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Nichols, C. G. KATP channels as molecular sensors of cellular metabolism. Nature 440, 470–476 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Vedovato, N., Ashcroft, F. M. & Puljung, M. C. The nucleotide-binding sites of sur1: a mechanistic model. Biophys. J. 109, 2452–2460 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Murray and members of the laboratories of R.G. and A. Murray for insightful discussions. This work was funded in part by NIH grant R01GM120996 (to R.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachelle Gaudet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Katarzyna Marcinkiewicz was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srikant, S., Gaudet, R. Mechanics and pharmacology of substrate selection and transport by eukaryotic ABC exporters. Nat Struct Mol Biol 26, 792–801 (2019). https://doi.org/10.1038/s41594-019-0280-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-019-0280-4

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research