Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Amygdala and anterior cingulate transcriptomes from individuals with bipolar disorder reveal downregulated neuroimmune and synaptic pathways

Abstract

Recent genetic studies have identified variants associated with bipolar disorder (BD), but it remains unclear how brain gene expression is altered in BD and how genetic risk for BD may contribute to these alterations. Here, we obtained transcriptomes from subgenual anterior cingulate cortex and amygdala samples from post-mortem brains of individuals with BD and neurotypical controls, including 511 total samples from 295 unique donors. We examined differential gene expression between cases and controls and the transcriptional effects of BD-associated genetic variants. We found two coexpressed modules that were associated with transcriptional changes in BD: one enriched for immune and inflammatory genes and the other with genes related to the postsynaptic membrane. Over 50% of BD genome-wide significant loci contained significant expression quantitative trait loci (QTL) (eQTL), and these data converged on several individual genes, including SCN2A and GRIN2A. Thus, these data implicate specific genes and pathways that may contribute to the pathology of BD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of significant differentially expressed features (FDR < 5%) overall and by brain region.
Fig. 2: Results of WGCNA analysis.
Fig. 3: Summary of eQTL and sQTL (FDR < 1%) in loci suggested by the PGC GWAS of BP.
Fig. 4: Gene-visualization plots and accompanying SNP–feature scatterplots for the lead SNP with significant eQTL and/or sQTL (FDR < 1%).
Fig. 5: Scatterplot of Z-score test statistics from the TWAS of genes in the sACC versus the amygdala.

Similar content being viewed by others

Data availability

All data generated in this study are made available through the PsychENCODE Consortium. Access to the data is managed by the NIMH Repository and Genomics Resource, and the data are distributed via Synapse under the BipSeq study (syn5844980). Instructions for accessing the data through the NIMH Repository and Genomics Resource are provided here: https://www.nimhgenetics.org/resources/psychencode. More information about browsing the available data and instructions for accessing the data are also provided in the PsychENCODE Knowledge Portal at https://psychencode.synapse.org/.

Code availability

Code for all analyses described here is available on GitHub at https://github.com/LieberInstitute/zandiHyde_bipolar_rnaseq. The code has also been submitted to Zenodo at https://doi.org/10.5281/zenodo.4463984.

References

  1. Craddock, N. & Sklar, P. Genetics of bipolar disorder. Lancet 381, 1654–1662 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Stahl, E. A. et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet. 51, 793–803 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sullivan, P. F. et al. Psychiatric genomics: an update and an agenda. Am. J. Psychiatry 175, 15–27 (2018).

    Article  PubMed  Google Scholar 

  4. Gallagher, M. D. & Chen-Plotkin, A. S. The post-GWAS era: from association to function. Am. J. Hum. Genet. 102, 717–730 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. GTEx Consortium et al. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).

    Article  PubMed Central  Google Scholar 

  6. Roth, R. B. et al. Gene expression analyses reveal molecular relationships among 20 regions of the human CNS. Neurogenetics 7, 67–80 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Kang, H. J. et al. Spatio-temporal transcriptome of the human brain. Nature 478, 483–489 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Drevets, W. C., Savitz, J. & Trimble, M. The subgenual anterior cingulate cortex in mood disorders. CNS Spectr. 13, 663–681 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Strakowski, S. M. et al. The functional neuroanatomy of bipolar disorder: a consensus model. Bipolar Disord. 14, 313–325 (2012).

    Article  PubMed  Google Scholar 

  10. Gandal, M. J. et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 362, eaat8127 (2018).

  11. Jaffe, A. E. et al. Developmental and genetic regulation of the human cortex transcriptome illuminate schizophrenia pathogenesis. Nat. Neurosci. 21, 1117–1125 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cruceanu, C. et al. Transcriptome sequencing of the anterior cingulate in bipolar disorder: dysregulation of G protein-coupled receptors. Am. J. Psychiatry 172, 1131–1140 (2015).

    Article  PubMed  Google Scholar 

  13. Darby, M. M., Yolken, R. H. & Sabunciyan, S. Consistently altered expression of gene sets in postmortem brains of individuals with major psychiatric disorders. Transl. Psychiatry 6, e890 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim, S., Hwang, Y., Webster, M. J. & Lee, D. Differential activation of immune/inflammatory response-related co-expression modules in the hippocampus across the major psychiatric disorders. Mol. Psychiatry 21, 376–385 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Akula, N. et al. RNA-sequencing of the brain transcriptome implicates dysregulation of neuroplasticity, circadian rhythms and GTPase binding in bipolar disorder. Mol. Psychiatry 19, 1179–1185 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Akula, N., Wendland, J. R., Choi, K. H. & McMahon, F. J. An integrative genomic study implicates the postsynaptic density in the pathogenesis of bipolar disorder. Neuropsychopharmacology 41, 886–895 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Hu, J. et al. Systematically characterizing dysfunctional long intergenic non-coding RNAs in multiple brain regions of major psychosis. Oncotarget 7, 71087–71098 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ramaker, R. C. et al. Post-mortem molecular profiling of three psychiatric disorders. Genome Med. 9, 72 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pacifico, R. & Davis, R. L. Transcriptome sequencing implicates dorsal striatum-specific gene network, immune response and energy metabolism pathways in bipolar disorder. Mol. Psychiatry 22, 441–449 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Luykx, J. J., Giuliani, F., Giuliani, G. & Veldink, J. Coding and non-coding RNA abnormalities in bipolar disorder. Genes 10, 946 (2019).

  21. Modabbernia, A., Taslimi, S., Brietzke, E. & Ashrafi, M. Cytokine alterations in bipolar disorder: a meta-analysis of 30 studies. Biol. Psychiatry 74, 15–25 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Pinto, J. V. et al. Neuron–glia interaction as a possible pathophysiological mechanism of bipolar disorder. Curr. Neuropharmacol. 16, 519–532 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rao, J. S., Harry, G. J., Rapoport, S. I. & Kim, H. W. Increased excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from bipolar disorder patients. Mol. Psychiatry 15, 384–392 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Söderlund, J. et al. Elevation of cerebrospinal fluid interleukin-1β in bipolar disorder. J. Psychiatry Neurosci. 36, 114–118 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Stertz, L., Magalhães, P. V. S. & Kapczinski, F. Is bipolar disorder an inflammatory condition? The relevance of microglial activation. Curr. Opin. Psychiatry 26, 19–26 (2013).

    Article  PubMed  Google Scholar 

  26. Varma, V. R. et al. α-2 macroglobulin in Alzheimer’s disease: a marker of neuronal injury through the RCAN1 pathway. Mol. Psychiatry 22, 13–23 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Guerreiro, R. et al. TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 368, 117–127 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Hook, V. et al. Cathepsin B in neurodegeneration of Alzheimer’s disease, traumatic brain injury, and related brain disorders. Biochim. Biophys. Acta Proteins Proteom. 1868, 140428 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sims, R. et al. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat. Genet. 49, 1373–1384 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Diniz, B. S. et al. History of bipolar disorder and the risk of dementia: a systematic review and meta-analysis. Am. J. Geriatr. Psychiatry 25, 357–362 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Drange, O. K. et al. Genetic overlap between Alzheimer’s disease and bipolar disorder implicates the MARK2 and VAC14 genes. Front. Neurosci. 13, 220 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Alda, M. Pharmacogenetics of lithium response in bipolar disorder. J. Psychiatry Neurosci. 24, 154–158 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu, T., Zhang, L., Joo, D. & Sun, S.-C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2, 17023 (2017).

  34. Elhaik, E. & Zandi, P. Dysregulation of the NF-κB pathway as a potential inducer of bipolar disorder. J. Psychiatr. Res. 70, 18–27 (2015).

    Article  PubMed  Google Scholar 

  35. Wake, H., Moorhouse, A. J. & Nabekura, J. Functions of microglia in the central nervous system—beyond the immune response. Neuron Glia Biol. 7, 47–53 (2011).

    Article  PubMed  Google Scholar 

  36. Dresselhaus, E. C. & Meffert, M. K. Cellular specificity of NF-κB function in the nervous system. Front. Immunol. 10, 1043 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Purcell, S. M. et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 506, 185–190 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Goes, F. S. et al. De novo variation in bipolar disorder. Mol. Psychiatry 26, 4127–4136 (2021).

    Article  PubMed  Google Scholar 

  39. Toma, C. et al. An examination of multiple classes of rare variants in extended families with bipolar disorder. Transl. Psychiatry 8, 65 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

    Article  PubMed Central  Google Scholar 

  41. Ben-Shalom, R. et al. Opposing effects on NaV1.2 function underlie differences between SCN2A variants observed in individuals with autism spectrum disorder or infantile seizures. Biol. Psychiatry 82, 224–232 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wolff, M. et al. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain 140, 1316–1336 (2017).

    Article  PubMed  Google Scholar 

  43. Sanders, S. J. et al. Progress in understanding and treating SCN2A-mediated disorders. Trends Neurosci. 41, 442–456 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Selten, J.-P., Lundberg, M., Rai, D. & Magnusson, C. Risks for nonaffective psychotic disorder and bipolar disorder in young people with autism spectrum disorder: a population-based study. JAMA Psychiatry 72, 483–489 (2015).

    Article  PubMed  Google Scholar 

  45. Baek, J.-H., Rubinstein, M., Scheuer, T. & Trimmer, J. S. Reciprocal changes in phosphorylation and methylation of mammalian brain sodium channels in response to seizures. J. Biol. Chem. 289, 15363–15373 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Myers, S. J. et al. Distinct roles of GRIN2A and GRIN2B variants in neurological conditions. F1000Res. 8, F1000 Faculty Rev-1940 (2019).

  47. de Sousa, R. T. et al. Genetic studies on the tripartite glutamate synapse in the pathophysiology and therapeutics of mood disorders. Neuropsychopharmacology 42, 787–800 (2017).

    Article  PubMed  Google Scholar 

  48. Itokawa, M. et al. Genetic analysis of a functional GRIN2A promoter (GT)n repeat in bipolar disorder pedigrees in humans. Neurosci. Lett. 345, 53–56 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Fountoulakis, K. N. The possible involvement of NMDA glutamate receptor in the etiopathogenesis of bipolar disorder. Curr. Pharm. Des. 18, 1605–1608 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Li, M. et al. Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science 362, eaat7615 (2018).

  51. Lipska, B. K. et al. Critical factors in gene expression in postmortem human brain: focus on studies in schizophrenia. Biol. Psychiatry 60, 650–658 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Zalcman, S. & Endicott, J. Diagnostic evaluation after death, developed for NIMH neurosciences research branch. Department of Research Assessment and Training, New York State Psychiatric Institute, NY, NY (1983).

  53. Kelly, T. M. & Mann, J. J. Validity of DSM-III-R diagnosis by psychological autopsy: a comparison with clinician ante-mortem diagnosis. Acta Psychiatr. Scand. 94, 337–343 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Deep-Soboslay, A. et al. Reliability of psychiatric diagnosis in postmortem research. Biol. Psychiatry 57, 96–101 (2005).

    Article  PubMed  Google Scholar 

  55. First, M. B., Spitzer, R. L., Gibbon, M. & Williams, J. B. W. Structured Clinical Interview for DSM-IV Axis I Disorders, Clinician Version (SCID-CV) (American Psychiatric Press, 1996).

  56. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders-IV-TR. Washington, DC (2000).

  57. Babraham Bioinformatics. FastQC https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2016).

  58. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. McDonnell Genome Institute, T. G. L. RegTools https://regtools.readthedocs.io/en/latest/

  63. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Steijger, T. et al. Assessment of transcript reconstruction methods for RNA-seq. Nat. Methods 10, 1177–1184 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Collado-Torres, L. & Jaffe, A. E. jaffelab: Commonly Used Functions by the Jaffe Lab https://github.com/LieberInstitute/jaffelab (2017).

  68. Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Delaneau, O., Coulonges, C. & Zagury, J.-F. Shape-IT: new rapid and accurate algorithm for haplotype inference. BMC Bioinformatics 9, 540 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  70. 1000 Genomes Project Consortium et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  Google Scholar 

  71. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sherry, S. T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hinrichs, A. S. et al. The UCSC Genome Browser Database: update 2006. Nucleic Acids Res. 34, D590–D598 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Collado-Torres, L. et al. Regional heterogeneity in gene expression, regulation, and coherence in the frontal cortex and hippocampus across development and schizophrenia. Neuron 103, 203–216 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Collado-Torres, L. et al. Flexible expressed region analysis for RNA-seq with derfinder. Nucleic Acids Res. 45, e9 (2017).

    Article  PubMed  Google Scholar 

  76. Buja, A. & Eyuboglu, N. Remarks on parallel analysis. Multivariate Behav. Res. 27, 509–540 (1992).

    Article  CAS  PubMed  Google Scholar 

  77. Leek, J. T. & Storey, J. D. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 3, 1724–1735 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Jaffe, A. E. et al. qSVA framework for RNA quality correction in differential expression analysis. Proc. Natl Acad. Sci. USA 114, 7130–7135 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jaffe, A. E. et al. Decoding shared versus divergent transcriptomic signatures across cortico-amygdala circuitry in PTSD and depressive disorders. Preprint at bioRxiv https://doi.org/10.1101/2021.01.12.426438 (2021).

  82. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. JR Stat. Soc. Series B Stat. Methodol. 57, 289–300 (1995).

    Google Scholar 

  83. Tran, M. N. et al. Single-nucleus transcriptome analysis reveals cell type-specific molecular signatures across reward circuitry in the human brain. Preprint at bioRxiv https://doi.org/10.1101/2020.10.07.329839 (2020).

  84. Jew, B. et al. Accurate estimation of cell composition in bulk expression through robust integration of single-cell information. Nat. Commun. 11, 1971 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Li, Y. I. et al. Annotation-free quantification of RNA splicing using LeafCutter. Nat. Genet. 50, 151–158 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Ongen, H., Buil, A., Brown, A. A., Dermitzakis, E. T. & Delaneau, O. Fast and efficient QTL mapper for thousands of molecular phenotypes. Bioinformatics 32, 1479–1485 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245–252 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Institute of Mental Health (R01MH105898). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We gratefully acknowledge the contributions of the Offices of the Chief Medical Examiner of Maryland, Washington, DC and Northern Virginia for collaborating in the accession of post-mortem human brain donations that were used in this study. L.B. Bigelow and members of the Neuropathology Section of the LIBD made important contributions to the clinical characterization and diagnosis of donors. B. Barry also contributed to analyses of the RNA-seq data. Finally, we express our gratitude to families of the brain donors whose generosity made this study possible.

Author information

Authors and Affiliations

Authors

Contributions

P.P.Z. contributed to the study design, data analysis and data interpretation, and he led writing the manuscript. A.E.J. contributed to study design, data processing, data analysis and writing the manuscript. L.C.-T. contributed to data processing, data analysis and writing the manuscript. F.S. and M.P. contributed to data analysis and data interpretation. E.E.B., L.H.-M., A.S. and Y.L. contributed to data analysis. C.A.R. contributed to data interpretation and writing the manuscript. T.M.H. and J.E.K. contributed to study design, data collection and generation, data interpretation and writing the manuscript. D.R.W. and F.S.G. contributed to study design, data interpretation and writing the manuscript. All authors have approved the manuscript and agreed to take responsibility for their contribution to the work.

Corresponding authors

Correspondence to Peter P. Zandi or Thomas M. Hyde.

Ethics declarations

Competing interests

A.E.J. is now a full-time employee and shareholder of Neumora Therapeutics, a for-profit biotechnology company, which is unrelated to the contents of this manuscript. D.R.W. is on the scientific advisory board of Sage Therapeutics. All other authors report no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Matthew Girgenti, Donna Werling, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7

Reporting Summary

Supplementary Tables

Supplementary Tables 1–7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zandi, P.P., Jaffe, A.E., Goes, F.S. et al. Amygdala and anterior cingulate transcriptomes from individuals with bipolar disorder reveal downregulated neuroimmune and synaptic pathways. Nat Neurosci 25, 381–389 (2022). https://doi.org/10.1038/s41593-022-01024-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-022-01024-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing