Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microglia in neurodegeneration

Abstract

The neuroimmune system is involved in development, normal functioning, aging, and injury of the central nervous system. Microglia, first described a century ago, are the main neuroimmune cells and have three essential functions: a sentinel function involved in constant sensing of changes in their environment, a housekeeping function that promotes neuronal well-being and normal operation, and a defense function necessary for responding to such changes and providing neuroprotection. Microglia use a defined armamentarium of genes to perform these tasks. In response to specific stimuli, or with neuroinflammation, microglia also have the capacity to damage and kill neurons. Injury to neurons in Alzheimer’s, Parkinson’s, Huntington’s, and prion diseases, as well as in amyotrophic lateral sclerosis, frontotemporal dementia, and chronic traumatic encephalopathy, results from disruption of the sentinel or housekeeping functions and dysregulation of the defense function and neuroinflammation. Pathways associated with such injury include several sensing and housekeeping pathways, such as the Trem2, Cx3cr1 and progranulin pathways, which act as immune checkpoints to keep the microglial inflammatory response under control, and the scavenger receptor pathways, which promote clearance of injurious stimuli. Peripheral interference from systemic inflammation or the gut microbiome can also alter progression of such injury. Initiation or exacerbation of neurodegeneration results from an imbalance between these microglial functions; correcting such imbalance may be a potential mode for therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microglia in a normal mouse brain.
Fig. 2: Three proposed functional states of microglia.
Fig. 3: Effectors of microglia function associated with neurodegeneration.
Fig. 4: How microglia damage or kill neurons: There are several direct and indirect tools used by microglia to perform this task.

Similar content being viewed by others

References

  1. Río Hortega, P. Noticia de un nuevo y fácil método para la coloración de la neuroglia y el tejido conjuntivo. Trab. Lab. Invest. Biol. 15, 367–378 (1918).

    Google Scholar 

  2. Giulian, D. & Baker, T. J. Characterization of ameboid microglia isolated from developing mammalian brain. J. Neurosci. 6, 2163–2178 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jung, S. et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20, 4106–4114 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Haynes, S. E. et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat. Neurosci. 9, 1512–1519 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Yang, G., Parkhurst, C. N., Hayes, S. & Gan, W. B. Peripheral elevation of TNF-α leads to early synaptic abnormalities in the mouse somatosensory cortex in experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA 110, 10306–10311 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hickman, S. E., Allison, E. K. & El Khoury, J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J. Neurosci. 28, 8354–8360 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hickman, S. E. et al. The microglial sensome revealed by direct RNA sequencing. Nat. Neurosci. 16, 1896–1905 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e17 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Lawson, L. J., Perry, V. H., Dri, P. & Gordon, S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39, 151–170 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. El Khoury, J. Neurodegeneration and the neuroimmune system. Nat. Med. 16, 1369–1370 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Ransohoff, R. M. & El Khoury, J. Microglia in health and disease. Cold Spring Harb. Perspect. Biol. 8, a020560 (2015).

    Article  PubMed  Google Scholar 

  12. Kierdorf, K. et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat. Neurosci. 16, 273–280 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Tay, T. L. et al. A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nat. Neurosci. 20, 793–803 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, Y. et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 13, 753–760 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Abud, E. M. et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron 94, 278–293.e9 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Muffat, J. et al. Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat. Med. 22, 1358–1367 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ryan, K. J. et al. A human microglia-like cellular model for assessing the effects of neurodegenerative disease gene variants. Sci. Transl. Med. 9, eaai7635 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Gosselin, D. et al. An environment-dependent transcriptional network specifies human microglia identity. Science 356, eaal3222 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Fourgeaud, L. et al. TAM receptors regulate multiple features of microglial physiology. Nature 532, 240–244 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vasek, M. J. et al. A complement-microglial axis drives synapse loss during virus-induced memory impairment. Nature 534, 538–543 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lui, H. et al. Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell 165, 921–935 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhan, Y. et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat. Neurosci. 17, 400–406 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Fuhrmann, M. et al. Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer’s disease. Nat. Neurosci. 13, 411–413 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Krasemann, S. et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47, 566–581.e9 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Healy, L. M. et al. MerTK is a functional regulator of myelin phagocytosis by human myeloid cells. J. Immunol. 196, 3375–3384 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. El Khoury, J. B. et al. CD36 mediates the innate host response to beta-amyloid. J. Exp. Med. 197, 1657–1666 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. El Khoury, J. et al. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat. Med. 13, 432–438 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Selkoe, D. J. & Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 8, 595–608 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Frautschy, S. A. et al. Microglial response to amyloid plaques in APPsw transgenic mice. Am. J. Pathol. 152, 307–317 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. D’Andrea, M. R., Cole, G. M. & Ard, M. D. The microglial phagocytic role with specific plaque types in the Alzheimer disease brain. Neurobiol. Aging 25, 675–683 (2004).

    Article  PubMed  CAS  Google Scholar 

  32. Tooyama, I., Kimura, H., Akiyama, H. & McGeer, P. L. Reactive microglia express class I and class II major histocompatibility complex antigens in Alzheimer’s disease. Brain Res. 523, 273–280 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Martin, E., Boucher, C., Fontaine, B. & Delarasse, C. Distinct inflammatory phenotypes of microglia and monocyte-derived macrophages in Alzheimer’s disease models: effects of aging and amyloid pathology. Aging Cell 16, 27–38 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45, 1452–1458 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jonsson, T. et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N. Engl. J. Med. 368, 107–116 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. El Khoury, J. & Hickman, S.E. Mechanisms of amyloid-beta clearance in Alzheimer’s disease. in Research Progress in Alzheimer’s Disease and Dementia, vol. 4. (ed. Sun, M.-K.) 37–66 (Nova Science Publishers, Hauppauge, NY, USA, 2009).

  37. Frenkel, D. et al. Scara1 deficiency impairs clearance of soluble amyloid-β by mononuclear phagocytes and accelerates Alzheimer’s-like disease progression. Nat. Commun. 4, 2030 (2013).

    Article  PubMed  CAS  Google Scholar 

  38. El Khoury, J. et al. Scavenger receptor-mediated adhesion of microglia to beta-amyloid fibrils. Nature 382, 716–719 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Hong, S. et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352, 712–716 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Coraci, I. S. et al. CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer’s disease brains and can mediate production of reactive oxygen species in response to beta-amyloid fibrils. Am. J. Pathol. 160, 101–112 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gold, M. & El Khoury, J. β-amyloid, microglia, and the inflammasome in Alzheimer’s disease. Semin. Immunopathol. 37, 607–611 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Venegas, C. et al. Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature 552, 355–361 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Hickman, S. E. & El Khoury, J. The neuroimmune system in Alzheimer’s disease: the glass is half full. J. Alzheimers Dis. 33(Suppl 1), S295–S302 (2013).

    PubMed  PubMed Central  Google Scholar 

  44. Oddo, S., Caccamo, A., Kitazawa, M., Tseng, B. P. & LaFerla, F. M. Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol. Aging 24, 1063–1070 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Villemagne, V. L. et al. Aβ-amyloid and tau imaging in dementia. Semin. Nucl. Med. 47, 75–88 (2017).

    Article  PubMed  Google Scholar 

  46. Bisht, K. et al. Dark microglia: a new phenotype predominantly associated with pathological states. Glia 64, 826–839 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ferrer, I. et al. Glial and neuronal tau pathology in tauopathies: characterization of disease-specific phenotypes and tau pathology progression. J. Neuropathol. Exp. Neurol. 73, 81–97 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Asai, H. et al. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat. Neurosci. 18, 1584–1593 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bolós, M. et al. Direct evidence of internalization of tau by microglia in vitro and in vivo. J. Alzheimers Dis. 50, 77–87 (2016).

    Article  PubMed  CAS  Google Scholar 

  50. Lee, D. C. et al. LPS- induced inflammation exacerbates phospho-tau pathology in rTg4510 mice. J. Neuroinflammation 7, 56 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Saman, S. et al. Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J. Biol. Chem. 287, 3842–3849 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Fiandaca, M. S. et al. Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study. Alzheimers Dement. 11, 600–7.e1 (2015).

    Article  PubMed  Google Scholar 

  53. Cherry, J. D. et al. Microglial neuroinflammation contributes to tau accumulation in chronic traumatic encephalopathy. Acta Neuropathol. Commun. 4, 112 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Yoshiyama, Y. et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53, 337–351 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Bhaskar, K. et al. Regulation of tau pathology by the microglial fractalkine receptor. Neuron 68, 19–31 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nash, K. R. et al. Fractalkine overexpression suppresses tau pathology in a mouse model of tauopathy. Neurobiol. Aging 34, 1540–1548 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bemiller, S. M. et al. TREM2 deficiency exacerbates tau pathology through dysregulated kinase signaling in a mouse model of tauopathy. Mol. Neurodegener. 12, 74 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Deng, H., Wang, P. & Jankovic, J. The genetics of Parkinson disease. Ageing Res. Rev. 42, 72–85 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Dickson, D. W. Neuropathology of Parkinson disease. Parkinsonism Relat. Disord. 46(Suppl 1), S30–S33 (2018).

    Article  PubMed  Google Scholar 

  60. McGeer, P. L., Itagaki, S., Boyes, B. E. & McGeer, E. G. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38, 1285–1291 (1988).

    Article  CAS  PubMed  Google Scholar 

  61. Gerhard, A. et al. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol. Dis. 21, 404–412 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Halliday, G. M. & Stevens, C. H. Glia: initiators and progressors of pathology in Parkinson’s disease. Mov. Disord. 26, 6–17 (2011).

    Article  PubMed  Google Scholar 

  63. Croisier, E., Moran, L. B., Dexter, D. T., Pearce, R. K. & Graeber, M. B. Microglial inflammation in the parkinsonian substantia nigra: relationship to alpha-synuclein deposition. J. Neuroinflammation 2, 14 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Su, X. et al. Synuclein activates microglia in a model of Parkinson’s disease. Neurobiol. Aging 29, 1690–1701 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Kim, C. et al. Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat. Commun. 4, 1562 (2013).

    Article  PubMed  CAS  Google Scholar 

  66. Kuhlmann, T. et al. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol. 133, 13–24 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Yamasaki, R. et al. Differential roles of microglia and monocytes in the inflamed central nervous system. J. Exp. Med. 211, 1533–1549 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zrzavy, T. et al. Loss of ‘homeostatic’ microglia and patterns of their activation in active multiple sclerosis. Brain 140, 1900–1913 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ghosh, R. & Tabrizi, S. J. Huntington disease. Handb. Clin. Neurol. 147, 255–278 (2018).

    Article  PubMed  Google Scholar 

  70. Tai, Y. F. et al. Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain 130, 1759–1766 (2007).

    Article  PubMed  Google Scholar 

  71. Pavese, N. et al. Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 66, 1638–1643 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Sapp, E. et al. Early and progressive accumulation of reactive microglia in the Huntington disease brain. J. Neuropathol. Exp. Neurol. 60, 161–172 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Crotti, A. et al. Mutant huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nat. Neurosci. 17, 513–521 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lall, D. & Baloh, R. H. Microglia and C9orf72 in neuroinflammation and ALS and frontotemporal dementia. J. Clin. Invest. 127, 3250–3258 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Henkel, J. S. et al. Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann. Neurol. 55, 221–235 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Turner, M. R. et al. Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol. Dis. 15, 601–609 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Gurney, M. E. et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264, 1772–1775 (1994).

    Article  CAS  PubMed  Google Scholar 

  78. Yamanaka, K. et al. Mutant SOD1 in cell types other than motor neurons and oligodendrocytes accelerates onset of disease in ALS mice. Proc. Natl. Acad. Sci. USA 105, 7594–7599 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Apolloni, S., Amadio, S., Montilli, C., Volonté, C. & D’Ambrosi, N. Ablation of P2X7 receptor exacerbates gliosis and motoneuron death in the SOD1-G93A mouse model of amyotrophic lateral sclerosis. Hum. Mol. Genet. 22, 4102–4116 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Hall, E. D., Oostveen, J. A. & Gurney, M. E. Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS. Glia 23, 249–256 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Liao, B., Zhao, W., Beers, D. R., Henkel, J. S. & Appel, S. H. Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Exp. Neurol. 237, 147–152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Frakes, A. E. et al. Microglia induce motor neuron death via the classical NF-κB pathway in amyotrophic lateral sclerosis. Neuron 81, 1009–1023 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Meissner, F., Molawi, K. & Zychlinsky, A. Mutant superoxide dismutase 1-induced IL-1beta accelerates ALS pathogenesis. Proc. Natl. Acad. Sci. USA 107, 13046–13050 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Harraz, M. M. et al. SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model. J. Clin. Invest. 118, 659–670 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhao, W. et al. Extracellular mutant SOD1 induces microglial-mediated motoneuron injury. Glia 58, 231–243 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  86. O’Rourke, J. G. et al. C9orf72 BAC transgenic mice display typical pathologic features of ALS/FTD. Neuron 88, 892–901 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. O’Rourke, J. G. et al. C9orf72 is required for proper macrophage and microglial function in mice. Science 351, 1324–1329 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Spiller, K. J. et al. Microglia-mediated recovery from ALS-relevant motor neuron degeneration in a mouse model of TDP-43 proteinopathy. Nat. Neurosci. 21, 329–340 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Paolicelli, R. C. et al. TDP-43 depletion in microglia promotes amyloid clearance but also induces synapse loss. Neuron 95, 297–308.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Iaccarino, L. et al. An in vivo 11C-(R)-PK11195 PET and in vitro pathology study of microglia activation in Creutzfeldt-Jakob disease. Mol. Neurobiol. 55, 2856–2868 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Yamasaki, T., Suzuki, A., Hasebe, R. & Horiuchi, M. Flow cytometric detection of PrPSc in neurons and glial cells from prion-infected mouse brains. J. Virol. 92, e01457–17 (2017).

    PubMed  PubMed Central  Google Scholar 

  92. Falsig, J. et al. A versatile prion replication assay in organotypic brain slices. Nat. Neurosci. 11, 109–117 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Sorce, S. et al. The role of the NADPH oxidase NOX2 in prion pathogenesis. PLoS Pathog. 10, e1004531 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Aguzzi, A. & Zhu, C. Microglia in prion diseases. J. Clin. Invest. 127, 3230–3239 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Hafner-Bratkovič, I., Benčina, M., Fitzgerald, K. A., Golenbock, D. & Jerala, R. NLRP3 inflammasome activation in macrophage cell lines by prion protein fibrils as the source of IL-1β and neuronal toxicity. Cell. Mol. Life Sci. 69, 4215–4228 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Xie, W. L. et al. Abnormal activation of microglia accompanied with disrupted CX3CR1/CX3CL1 pathway in the brains of the hamsters infected with scrapie agent 263K. J. Mol. Neurosci. 51, 919–932 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Hughes, M. M., Field, R. H., Perry, V. H., Murray, C. L. & Cunningham, C. Microglia in the degenerating brain are capable of phagocytosis of beads and of apoptotic cells, but do not efficiently remove PrPSc, even upon LPS stimulation. Glia 58, 2017–2030 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Sakai, K. et al. Absence of CD14 delays progression of prion diseases accompanied by increased microglial activation. J. Virol. 87, 13433–13445 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kouadir, M. et al. CD36 participates in PrP(106-126)-induced activation of microglia. PLoS One 7, e30756 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Simonian, N. A. & Coyle, J. T. Oxidative stress in neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 36, 83–106 (1996).

    Article  CAS  PubMed  Google Scholar 

  101. Brown, G. C. & Vilalta, A. How microglia kill neurons. Brain Res. 1628(Pt B), 288–297 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Maezawa, I. & Jin, L. W. Rett syndrome microglia damage dendrites and synapses by the elevated release of glutamate. J. Neurosci. 30, 5346–5356 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gan, L. et al. Identification of cathepsin B as a mediator of neuronal death induced by Abeta-activated microglial cells using a functional genomics approach. J. Biol. Chem. 279, 5565–5572 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Leonardo, C. C., Hall, A. A., Collier, L. A., Gottschall, P. E. & Pennypacker, K. R. Inhibition of gelatinase activity reduces neural injury in an ex vivo model of hypoxia-ischemia. Neuroscience 160, 755–766 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Hickman, S. E. & El Khoury, J. TREM2 and the neuroimmunology of Alzheimer’s disease. Biochem. Pharmacol. 88, 495–498 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Yeh, F. L., Wang, Y., Tom, I., Gonzalez, L. C. & Sheng, M. TREM2 Binds to apolipoproteins, including APOE and CLU/APOJ, and thereby facilitates uptake of amyloid-beta by microglia. Neuron 91, 328–340 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Wang, Y. et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160, 1061–1071 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhao, Y. et al. TREM2 is a receptor for β-amyloid that mediates microglial function. Neuron 97, 1023–1031.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Suárez-Calvet, M. et al. Early changes in CSF sTREM2 in dominantly inherited Alzheimer’s disease occur after amyloid deposition and neuronal injury. Sci. Transl. Med. 8, 369ra178 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Takahashi, K., Rochford, C. D. & Neumann, H. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J. Exp. Med. 201, 647–657 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang, Y. et al. TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. J. Exp. Med. 213, 667–675 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ulland, T. K. et al. TREM2 maintains microglial metabolic fitness in Alzheimer’s disease. Cell 170, 649–663.e13 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Condello, C., Yuan, P., Schain, A. & Grutzendler, J. Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques. Nat. Commun. 6, 6176 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Jay, T. R., von Saucken, V. E. & Landreth, G. E. TREM2 in neurodegenerative diseases. Mol. Neurodegener. 12, 56 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Song, W. M. et al. Humanized TREM2 mice reveal microglia-intrinsic and -extrinsic effects of R47H polymorphism. J. Exp. Med. 215, 745–760 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Paloneva, J. et al. DAP12/TREM2 deficiency results in impaired osteoclast differentiation and osteoporotic features. J. Exp. Med. 198, 669–675 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Satoh, J. et al. Immunohistochemical characterization of microglia in Nasu-Hakola disease brains. Neuropathology 31, 363–375 (2011).

    Article  PubMed  Google Scholar 

  118. Suárez-Calvet, M. et al. sTREM2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early-stage Alzheimer’s disease and associate with neuronal injury markers. EMBO Mol. Med. 8, 466–476 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Lue, L. F. et al. TREM2 protein expression changes correlate with Alzheimer’s disease neurodegenerative pathologies in post-mortem temporal cortices. Brain Pathol. 25, 469–480 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Lill, C. M. et al. The role of TREM2 R47H as a risk factor for Alzheimer’s disease, frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson’s disease. Alzheimers Dement. 11, 1407–1416 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Cady, J. et al. TREM2 variant p.R47H as a risk factor for sporadic amyotrophic lateral sclerosis. JAMA Neurol. 71, 449–453 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Jiang, T. et al. Silencing of TREM2 exacerbates tau pathology, neurodegenerative changes, and spatial learning deficits in P301S tau transgenic mice. Neurobiol. Aging 36, 3176–3186 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Leyns, C. E. G. et al. TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy. Proc. Natl. Acad. Sci. USA 114, 11524–11529 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hickman, S. E. & El Khoury, J. Mechanisms of mononuclear phagocyte recruitment in Alzheimer’s disease. CNS Neurol. Disord. Drug Targets 9, 168–173 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zujovic, V., Schussler, N., Jourdain, D., Duverger, D. & Taupin, V. In vivo neutralization of endogenous brain fractalkine increases hippocampal TNFalpha and 8-isoprostane production induced by intracerebroventricular injection of LPS. J. Neuroimmunol. 115, 135–143 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Liu, Z., Condello, C., Schain, A., Harb, R. & Grutzendler, J. CX3CR1 in microglia regulates brain amyloid deposition through selective protofibrillar amyloid-β phagocytosis. J. Neurosci. 30, 17091–17101 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Morganti, J. M. et al. The soluble isoform of CX3CL1 is necessary for neuroprotection in a mouse model of Parkinson’s disease. J. Neurosci. 32, 14592–14601 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Cardona, A. E. et al. Control of microglial neurotoxicity by the fractalkine receptor. Nat. Neurosci. 9, 917–924 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Thome, A. D., Standaert, D. G. & Harms, A. S. Fractalkine signaling regulates the inflammatory response in an α-synuclein model of Parkinson disease. PLoS One 10, e0140566 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Martin, I. et al. Ribosomal protein s15 phosphorylation mediates LRRK2 neurodegeneration in Parkinson’s disease. Cell 157, 472–485 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lopez-Lopez, A. et al. CX3CR1 is a modifying gene of survival and progression in amyotrophic lateral sclerosis. PLoS One 9, e96528 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Calvo, A. et al. Common polymorphisms of chemokine (C-X3-C motif) receptor 1 gene modify amyotrophic lateral sclerosis outcome: a population-based study. Muscle Nerve 57, 212–216 (2018).

    Article  CAS  PubMed  Google Scholar 

  133. Grizenkova, J., Akhtar, S., Brandner, S., Collinge, J. & Lloyd, S. E. Microglial Cx3cr1 knockout reduces prion disease incubation time in mice. BMC Neurosci. 15, 44 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Striebel, J. F., Race, B., Carroll, J. A., Phillips, K. & Chesebro, B. Knockout of fractalkine receptor Cx3cr1 does not alter disease or microglial activation in prion-infected mice. J. Gen. Virol. 97, 1481–1487 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. PrabhuDas, M. R. et al. A consensus definitive classification of scavenger receptors and their roles in health and disease. J. Immunol. 198, 3775–3789 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Cornejo, F. et al. Scavenger receptor-A deficiency impairs immune response of microglia and astrocytes potentiating Alzheimer’s disease pathophysiology. Brain Behav. Immun. 69, 336–350 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Šerý, O. et al. CD36 gene polymorphism is associated with Alzheimer’s disease. Biochimie 135, 46–53 (2017).

    Article  PubMed  CAS  Google Scholar 

  138. Wilkinson, K., Boyd, J. D., Glicksman, M., Moore, K. J. & El Khoury, J. A high content drug screen identifies ursolic acid as an inhibitor of amyloid beta protein interactions with its receptor CD36. J. Biol. Chem. 286, 34914–34922 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Origlia, N. et al. Microglial receptor for advanced glycation end product-dependent signal pathway drives beta-amyloid-induced synaptic depression and long-term depression impairment in entorhinal cortex. J. Neurosci. 30, 11414–11425 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Vodopivec, I. et al. RAGE does not affect amyloid pathology in transgenic ArcAbeta mice. Neurodegener. Dis. 6, 270–280 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Chitramuthu, B. P., Bennett, H. P. J. & Bateman, A. Progranulin: a new avenue towards the understanding and treatment of neurodegenerative disease. Brain 140, 3081–3104 (2017).

    Article  PubMed  Google Scholar 

  142. Gong, Y. et al. Microglial dysfunction as a key pathological change in adrenomyeloneuropathy. Ann. Neurol. 82, 813–827 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chen, Y. et al. Association of progranulin polymorphism rs5848 with neurodegenerative diseases: a meta-analysis. J. Neurol. 262, 814–822 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Minami, S. S. et al. Progranulin protects against amyloid β deposition and toxicity in Alzheimer’s disease mouse models. Nat. Med. 20, 1157–1164 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Van Kampen, J. M., Baranowski, D. & Kay, D. G. Progranulin gene delivery protects dopaminergic neurons in a mouse model of Parkinson’s disease. PLoS One 9, e97032 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Sleegers, K. et al. Progranulin genetic variability contributes to amyotrophic lateral sclerosis. Neurology 71, 253–259 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Erny, D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18, 965–977 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Vogt, N. M. et al. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 7, 13537 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Minter, M. R. et al. Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease. Sci. Rep. 6, 30028 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sampson, T. R. et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167, 1469–1480.e12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant RF1 AG051506 to J.E.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph El Khoury.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Table 1

Trem2 variants associated with neurodegenerative diseases.

Supplementary Video 1

This is a video taken using two photon microscopy from a Cx3cr1-GFP mouse with a cranial window clearly showing how the microglia processes are constantly moving. When focal injury is induced with a laser in the middle of the field of vision these processes move from the individual cells towards the site of the injury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hickman, S., Izzy, S., Sen, P. et al. Microglia in neurodegeneration. Nat Neurosci 21, 1359–1369 (2018). https://doi.org/10.1038/s41593-018-0242-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-018-0242-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing