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Assessing GPT-4 for cell type annotation in 
single-cell RNA-seq analysis

Wenpin Hou    1   & Zhicheng Ji    2 

Here we demonstrate that the large language model GPT-4 can accurately 
annotate cell types using marker gene information in single-cell RNA 
sequencing analysis. When evaluated across hundreds of tissue and cell 
types, GPT-4 generates cell type annotations exhibiting strong concordance 
with manual annotations. This capability can considerably reduce the 
effort and expertise required for cell type annotation. Additionally, we have 
developed an R software package GPTCelltype for GPT-4’s automated cell 
type annotation.

Cell type annotation is a fundamental step in single-cell RNA 
sequencing (scRNA-seq) analysis. This process is often laborious and 
time-consuming, requiring a human expert to compare genes highly 
expressed in each cell cluster with canonical cell type marker genes. 
Although automated cell type annotation methods have been devel-
oped (Supplementary Table 1), manual annotation using marker genes 
remains widely used.

Generative pre-trained transformers (GPT), including GPT-3.5 and 
GPT-4, are large language models designed for language understanding 
and generation. Recent studies have demonstrated their effectiveness 
in biomedical contexts1,2. In this Brief Communication, we hypothesize 
that GPT-4 can accurately annotate cell types, transitioning the annota-
tion process from manual to a semi- or even fully automated procedure 
(Fig. 1a). GPT-4 offers cost-efficiency and seamless integration into 
existing single-cell analysis pipelines such as Seurat3, avoiding the need 
for building additional pipelines and collecting high-quality reference 
datasets. The vast training data of GPT-4 enables broader applications 
across various tissues and cell types, and its chatbot nature allows for 
user-driven annotation refinement (Fig. 1a,b).

We systematically assessed GPT-4’s cell type annotation perfor-
mance across ten datasets4–12, covering five species and hundreds of 
tissue and cell types, and including both normal and cancer samples 
(Supplementary Table 2). GPT-4 was queried using GPTCelltype, a soft-
ware tool we developed (Methods). For competing methods, we evalu-
ated GPT-3.5, a prior version of GPT-4, and CellMarker2.013, SingleR14 
and ScType15, which are automatic cell type annotation methods that 
provide references applicable to a large number of tissues (Methods 
and Supplementary Table 1). Cell type annotations by GPT-4 or com-
peting methods were evaluated based on their agreement with manual 
annotations provided by the original studies. The degree of agreement 

was measured using a numeric score (Methods). Supplementary Table 3 
presents an example of evaluating GPT-4 cell type annotations in human 
prostate tissue, and details of all cell type annotations and their evalu-
ation results are included in Supplementary Table 4.

We first explored different factors that may affect the annotation 
accuracy of GPT-4 (Fig. 2a and Supplementary Table 5). We found that 
GPT-4 performs best when using the top ten differential genes, and 
when differential genes are derived using the two-sided Wilcoxon 
test. GPT-4 exhibits similar accuracy across various prompt strate-
gies, including a basic prompt strategy, a chain-of-thought16-inspired 
prompt strategy that includes reasoning steps, and a repeated prompt 
strategy (Methods). In subsequent analyses, both GPT-4 and GPT-3.5 
used the basic prompt strategy with the top ten differential genes 
obtained from Wilcoxon test as inputs for applicable datasets.

GPT-4’s annotations fully or partially match manual annotations 
in over 75% of cell types in most studies and tissues (Fig. 2b), demon-
strating its competency in generating expert-comparable cell type 
annotations. This agreement is particularly high for marker genes 
from literature searches, with at least 70% fully match rate in most 
tissues. Though lower for genes identified by differential analysis, the 
agreement remains high. However, results from datasets published 
before September 2021 should be interpreted cautiously as they pre-
date GPT-4’s training cutoff. GPT-4 performs better for immune cells 
like granulocytes compared to other cell types (Fig. 2b). It identifies 
malignant cells in colon and lung cancer datasets but struggles with B 
lymphoma, potentially due to a lack of distinct gene sets. The identifi-
cation of malignant cells could benefit from other approaches such as 
copy number variation9. Performance dips slightly in small cell popula-
tions comprising no more than ten cells (Fig. 2b), possibly due to the 
limited available information. GPT-4 annotations fully match manual 
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In contrast, other methods like SingleR and ScType require additional 
steps to reprocess the gene expression matrices. Compared to other 
methods that are free of charge, GPT-4 incurs a $20 monthly fee for 
using online web portal. Cost of GPT-4 API is linearly correlated with the 
number of queried cell types and does not exceed $0.1 for all queries 
in this study (Fig. 2f).

We further assessed GPT-4’s robustness in complex real data 
scenarios (Fig. 1c) with simulated datasets (Methods). GPT-4 can 
distinguish between pure and mixed cell types with 93% accuracy, 
and differentiate between known and unknown cell types with 99% 
accuracy (Fig. 2g). When the input gene set includes fewer genes 
or is contaminated with noise, GPT-4’s performance decreases but 
remains high (Fig. 2g). These results demonstrate GPT-4’s robustness 
in various scenarios.

Finally, we assessed the reproducibility of GPT-4’s annotations 
using prior simulation studies (Methods). GPT-4 generated identi-
cal annotations for the same marker genes in 85% of cases (Fig. 2h), 
indicating high reproducibility. Annotations of two GPT-4 versions 
showed identical agreement scores in most cases, with a Cohen’s κ of 
0.65, demonstrating substantial consistency (Fig. 2i).

While GPT-4 excels in cell type annotation, which surpasses 
existing methods, there are limitations to consider. Firstly, the undis-
closed nature of GPT-4’s training corpus makes verifying the basis of  

annotations more frequently in major cell types (for example, T cells) 
than in subtypes (for example, CD4 memory T cells), while over 75% of 
subtypes still achieve full or partial matches (Fig. 2b).

The low agreement between GPT-4 and manual annotations in 
some cell types does not necessarily imply that GPT-4’s annotation is 
incorrect. For instance, cell types classified as stromal cells include 
fibroblasts and osteoblasts expressing type I collagen genes, and 
chondrocytes expressing type II collagen genes. For cells manually 
annotated as stromal cells, GPT-4 assigns cell type annotations with 
higher granularity (for example, fibroblasts and osteoblasts), resulting 
in partial matches and a lower agreement. For cell types that are manu-
ally annotated as stromal cells but identified by GPT-4 as fibroblasts or 
osteoblasts, type I collagen genes show substantially higher expres-
sion than type II collagen genes (Fig. 2c). This agrees with the pattern 
observed in cells manually annotated as chondrocytes, fibroblasts, and 
osteoblasts (Fig. 2c), suggesting that GPT-4 provides more accurate 
cell type annotations for stromal cells.

GPT-4 substantially outperforms other methods based on aver-
age agreement scores (Methods and Fig. 2d). Using GPTCelltype as 
the interface, GPT-4 is also notably faster (Fig. 2e), partly due to its 
utilization of differential genes from the standard single-cell analysis 
pipelines such as Seurat3. Given the integral role of these pipelines, 
we regard the differential genes as immediately available for GPT-4. 
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Fig. 1 | Examples of GPT-4’s cell type annotation and comparisons with other methods. a, Comparison of cell type annotations by human experts, GPT-4, and other 
automated methods. b, Example of GPT-4 annotating human prostate cells with increasing granularity. c, Example of GPT-4 annotating single, mixed and new cell types.
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its annotations challenging, thus requiring human evaluation to  
ensure annotation quality and reliability. Secondly, human involvement 
in the optional fine-tuning of the model may affect reproducibility  
due to subjectivity and could limit the scalability of the model in 
large datasets. Thirdly, high noise levels in scRNA-seq data and unre-
liable differential genes can adversely affect GPT-4’s annotations.  
Lastly, over-reliance on GPT-4 risks artificial intelligence halluci-
nation. We recommend validation of GPT-4’s cell type annotations  
by human experts before proceeding with downstream analyses.

While this study focuses on the standard version of GPT-4, 
fine-tuning GPT-4 with high-quality reference marker gene lists could 
further improve cell type annotation performance, utilizing services 
such ‘GPTs’ provided by OpenAI.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-024-02235-4.
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Fig. 2 | Performance evaluation. a, Average agreement scores for varying 
numbers of top differential genes, statistical tests for differential analysis, and 
prompt strategies. b, Proportion of cell types with varying agreement levels 
in each study and tissue, most abundant broad cell types, malignant cells, 
different cell population sizes, and major cell types versus cell subtypes. c, log2-
transformed ratio of type I (COL1A1 and COL1A2) and II (COL2A1) collagen gene 
expression. d,e, Comparison of average agreement scores (d) and running times 
(e). In e, n = 59 for GPT-4 and GPT-3.5 and n = 36 for ScType and SingleR. Each 

boxplot shows the distribution (center: median; bounds of box: first and third 
quartiles; bounds of whiskers: data points within 1.5× interquartile range from 
the box; minima; maxima) of running time. f, Financial cost of querying GPT-4 
API versus cell type numbers. g, GPT-4’s performance in identifying mixed/single 
cell types and known/unknown cell types, and under different subsampling and 
noise levels in multiple simulation rounds (dots). h, Reproducibility of GPT-4 
annotations. i, Consistency of agreement scores between two versions of GPT-4.
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Methods
Dataset collection
For the HuBMAP Azimuth project, manually annotated cell types 
and their marker genes were downloaded from the Azimuth website 
(https://azimuth.hubmapconsortium.org/). Azimuth provides cell type 
annotations for each tissue at different granularity levels. We selected 
the level of granularity with the fewest number of cell types, provided 
that there are more than ten cell types within that level. Details of how 
marker genes were generated are not reported by Azimuth.

For the GTEx5 dataset, manually annotated cell types, differ-
ential gene lists and gene expression matrices were downloaded 
directly from the publication5. In the original study, gene expres-
sion raw counts were library-size-normalized and log-transformed 
after adding a pseudocount of 1 with SCANPY17. ComBat18 was used 
to account for the protocol- and sex-specific effects with SCANPY17. 
Welch’s t-test was then performed to identify differential genes that 
compare one cell type against the rest. For each cell type, genes were 
ranked increasingly by P values, and genes with the same P values were 
further ranked decreasingly by t-statistics. Top 10, 20 and 30 differ-
ential genes were used in this study. Lists of marker genes through 
literature search and the corresponding cell types were downloaded 
from the same study5, and only cell types with at least five marker 
genes were used.

For the HCL6 dataset, manually annotated cell types, differential 
gene lists and the gene expression matrix were downloaded directly 
from the publication6. In the original study, gene expression raw 
counts underwent a batch removal process to facilitate cross-tissue 
comparison and were subsequently normalized by library size and 
log-transformed after adding a pseudocount of 1. Two-sided Wil-
coxon rank-sum test was then performed to identify differential 
genes comparing one cell type against the rest using Seurat3. Differ-
ential genes were further selected by log fold change larger than 0.25, 
Bonferroni-adjusted P value smaller than 0.1, and expressed in at least 
15% of cells in either population. For each cell type, genes were ranked 
increasingly by P values, and genes with the same P values were further 
ranked decreasingly by two-sided Wilcoxon test statistics. Top 10, 20 
and 30 differential genes were used in this study.

For the Mouse Cell Atlas (MCA)7 dataset, manually annotated 
cell types, differential gene lists and gene expression matrix were 
downloaded directly from the publication6. In the original study, gene 
expression raw counts underwent a batch removal process to facilitate 
cross-tissue comparison, and Seurat3 was used to perform preproc-
essing and differential analysis. For each cell type, genes were ranked 
increasingly by P values, and genes with the same P values were further 
ranked decreasingly by log fold change. Top 10, 20 and 30 differential 
genes were used in this study.

For non-model mammal dataset12, manually annotated cell types 
and lists of marker genes through literature search were downloaded 
directly from the original study.

For Tabula Sapiens (TS)8, B-cell lymphoma (BCL)9, lung cancer11 
and colon cancer10 datasets, manually annotated cell types and raw 
gene expression count matrices were downloaded directly from 
original studies. Raw counts were normalized by library size and 
log-transformed after adding a pseudocount of 1. Seurat FindAllMark-
ers() function with default settings was used to obtain differential 
genes by comparing one cell type with the rest within each tissue. 
Briefly, genes with at least 0.25 log fold change between two cell popu-
lations and detected in at least 10% of cells in either cell population 
were retained. Two-sided Wilcoxon rank-sum test was then performed 
for differential analysis. In addition, two-sided two-sample t-test was 
also performed for differential analysis using the FindAllMarkers() 
function with default settings. For each cell type, genes were ranked 
increasingly by P values, and genes with the same P values were further 
ranked decreasingly by log fold changes. Top 10, 20 and 30 differential 
genes were used in this study.

Cell type annotation methods
GPT-4 and GPT-3.5. All GPT-4 (13 June 2023 version) and GPT-3.5  
(13 June 2023 version) cell type annotations in this study were per-
formed using GPTCelltype, an R software package we developed as an 
interface for GPT models. GPTCelltype takes marker genes or top dif-
ferential genes as input, and automatically generates prompt message 
using the following template with the basic prompt strategy:

‘Identify cell types of TissueName cells using the following mark-
ers separately for each row. Only provide the cell type name. Do not 
show numbers before the name. Some can be a mixture of multiple 
cell types.\n GeneList’.

Here ‘TissueName’ is a variable that will be replaced with the actual 
name of the tissue (for example, human prostate), and ‘GeneList’ is a 
list of marker genes or top differential genes. Genes for the same cell 
population are joined by comma (,), and gene lists for different cell 
populations are separated by the newline character (\n). GPT-4 or GPT-
3.5 was then queried using the generated prompt message through 
OpenAI API, and the returned information was parsed and converted 
to cell type annotations.

For chain-of-thought prompt strategy, the following sentence 
was added to the beginning of the message generated by the basic 
prompt strategy: ‘Because CD3 gene is a marker gene of T cells, if CD3 
gene is included in the marker gene list of an unknown cell type, the 
cell type is likely to be T cells, a subtype of T cells, or a mixed cell type 
containing T cells’.

For repeated prompt strategy, GPT-4 was queried with the basic 
prompt strategy repeatedly for five times. The annotation result that 
appears most frequently among the five queries was selected as the 
final cell type annotation.

GPT-4 (23 March 2023 version) cell type annotations were per-
formed by manually copying and pasting prompt messages to GPT-4 
online web interface (https://chat.openai.com/). The prompt message 
was constructed using the following template:

‘Identify cell types of TissueName cells using the following mark-
ers. Identify one cell type for each row. Only provide the cell type name. 
\n GeneList’.

Computationally identified differential genes in eight scRNA-seq 
datasets and canonical marker genes identified through literature 
search in two datasets were used as inputs to GPT-4 and GPT-3.5 (Sup-
plementary Table 2). Cell type annotation for HCL and MCA was per-
formed and evaluated once by aggregating all tissues, similar to the 
original studies. In other studies, cell type annotation was performed 
and evaluated within each tissue.

SingleR. SingleR14 (version 1.4.1) R package was used to perform cell 
type annotations with default settings. For HCL and MCA datasets, 
the gene expression matrices after batch effect removal, library size 
normalization and log transformation across all tissues were used as 
input. For all other datasets, SingleR was performed separately within 
each tissue, and the input is the log-transformed and library-size 
normalized gene expression matrix. The built-in Human Primary 
Cell Atlas reference19 was used as the reference dataset for all SingleR 
annotations. SingleR generates single-cell level cell type annotations 
by returning an assignment score matrix for each single cell and each 
cell type label in the reference. To convert single-cell level annotations 
to cell-cluster level annotations, for each manually annotated cell type, 
we assigned the reference label with assignment scores summed across 
all single cells in that manually annotated cell type as the predicted 
cell type annotation.

ScType. ScType15 (version 1.0) R package was used to perform cell type 
annotations with default settings. To meet the need for computational 
efficiency when working with large datasets, we developed an in-house 
version of ScType. We utilized vectorization to optimize the most 
time-consuming steps, while still generating the same output of the 
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original ScType software. The input gene expression matrices to ScType 
were the same as used in SingleR described above. The built-in cell  
type marker database was used as the reference for all ScType annota-
tions. Manually annotated cell types were treated as cell clusters and 
given as inputs to ScType. ScType directly generates cluster-level cell 
type annotations.

CellMarker2.0. CellMarker2.0 (ref. 13) only provides an online user 
interface and does not have a software implementation. We used the 
exact same marker gene sets or top ten differential gene sets identified 
by two-sided Wilcoxon tests for GPT-4 and GPT-3.5 cell type annotations 
as inputs of CellMarker2.0.

Evaluations of cell type annotations
Cell type annotations by GPT-4 or competing methods were compared 
to manual annotations provided by the original studies. Each manu-
ally or automatically identified cell type annotation was assigned an 
unambiguous cell ontology (CL) name20 and a broad cell type name 
when applicable. A pair of manually and automatically identified cell 
type annotations was classified as ‘fully match’ if they have the same 
annotation term or available CL cell ontology name, ‘partially match’ if 
they have the same or subordinate (for example, fibroblast and stromal 
cell) broad cell type name but different annotations and CL cell ontol-
ogy names, and ‘mismatch’ if they have different broad cell type names, 
annotations and CL cell ontology names.

To facilitate comparison, we assigned agreement scores of 1, 0.5 
and 0 to cases of ‘fully match’, ‘partially match’ and ‘mismatch’ respec-
tively, and calculated average scores within each dataset across cell 
types and tissues.

Simulation studies and reproducibility
To generate simulation datasets, we used canonical cell type markers 
through GTEx literature search of human breast cells, the top ten dif-
ferential genes from the human colon cancer dataset, and the top ten dif-
ferential genes from the vasculature tissue of the TS dataset as templates. 
Simulation studies were performed separately for the three tissue types.

To generate simulation datasets of mixed cell types, marker genes 
for each mixed cell type were created by combining the marker gene 
lists of two randomly selected cell types. Ten mixed cell types were 
generated in each simulation iteration. Additionally, we incorporated 
the original cell type markers of ten randomly chosen cell types as 
negative controls of single cell types. This entire simulation process 
was repeated five times. Subsequently, GPT-4 was queried using these 
simulated marker gene lists, and its performance in differentiating 
between mixed and single cell types was assessed.

To generate simulation datasets of unknown cell types, we compiled 
a list of all human genes using the Bioconductor org.Hs.eg.db package21. 
In each simulation iteration, ten simulated unknown cell types were 
generated. The marker genes for each unknown cell type were produced 
by combining ten randomly selected human genes. Additionally, we 
included ten real cell types and their marker genes as negative controls 
of known cell types, similar to the previous simulation study. This entire 
simulation process was repeated five times. Subsequently, GPT-4 was 
queried using these simulated marker gene lists, and its performance 
in distinguishing between known and unknown cell types was assessed.

To generate simulation datasets with partial marker gene informa-
tion, we randomly subsampled 25%, 50% or 75% of the original marker 
genes. The simulation process was repeated five times. Subsequently, 
GPT-4 was queried using these subsampled marker gene lists, and the 
performance was assessed by agreement scores.

To generate simulation datasets with contaminated information, 
we added randomly selected human genes to the original marker gene 
list. The numbers of randomly selected genes are 25%, 50% or 75% of 
the number of original marker genes. The simulation process was 
repeated five times. Subsequently, GPT-4 was queried using these 

subsampled marker gene lists, and the performance was assessed by 
agreement scores.

We assessed the reproducibility of GPT-4 responses by leveraging 
the repeated querying of GPT-4 with identical marker gene lists of the 
same negative control cell types in simulation studies. For each cell 
type, reproducibility is defined as the proportion of instances in which 
GPT-4 generates the most prevalent cell type annotation. For instance, 
in the case of vascular endothelial cells, GPT-4 produces ‘endothelial 
cells’ eight times and ‘blood vascular endothelial cells’ once. Conse-
quently, the most prevalent cell type annotation is ‘endothelial cells’, 
and the reproducibility is calculated as 8

9
= 0.89.

GPT-4 API financial cost
According to information provided by OpenAI, the application pro-
gramming interface (API) cost for running GPT-4 13 June 2023 ver-
sion is $0.03 for every thousand input tokens and $0.06 for every 
thousand output tokens. For each query, we obtained i and o, which 
represent the numbers of input tokens and output tokens respectively, 
through the OpenAI API. The total API financial cost is thus calculated 
as $(0.00003i + 0.00006o).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data used in this manuscript are all downloaded from publicly 
available data sources. Specifically, HubMAP Azimuth data were down-
loaded from the Azimuth website (https://azimuth.hubmapconsor-
tium.org/). GTEx manually annotated cell types and differential gene 
lists were downloaded from the supplementary materials of the original 
study5. GTEx gene expression matrix was downloaded from the GTEx 
website (https://gtexportal.org/home/datasets). Marker genes from lit-
erature search were downloaded from the supplementary materials of 
the original study5. HCL manually annotated cell types and differential 
gene lists were downloaded from the supplementary materials of the 
original study6. HCL gene expression matrix was downloaded from fig-
share (https://figshare.com/articles/dataset/HCL_DGE_Data/7235471). 
MCA manually annotated cell types and differential gene lists were 
downloaded from the supplementary materials of the original study7. 
MCA gene expression matrix was downloaded from figshare (https://
figshare.com/s/865e694ad06d5857db4b). BCL gene expression matrix 
and manually annotated cell types were downloaded from Zenodo 
(https://zenodo.org/record/7813151). Colon cancer gene expression 
matrix and manually annotated cell types were downloaded from GEO 
under accession number GSE132465. Lung cancer gene expression 
matrix and manually annotated cell types were downloaded from 
GEO under accession number GSE131907. TS gene expression matrix 
and manually annotated cell types were downloaded from UCSC Cell 
Browser (https://cells.ucsc.edu/?ds=tabula-sapiens). Marker genes 
and cell type annotations for the non-model mammal dataset were 
downloaded from the supplementary materials of the original study12. 
All relevant information about data is described in Methods. All data 
generated in this study are included in the supplementary tables.

Code availability
The GPTCelltype package (v.1.0.0) is provided as an open-source 
software package with a detailed user manual available in the GitHub 
repository at https://github.com/Winnie09/GPTCelltype. The software is 
released in Zenodo under https://doi.org/10.5281/zenodo.8317406 for all 
versions (ref. 22). All codes to reproduce the presented analyses are pub-
licly available in the GitHub repository at https://github.com/Winnie09/
GPTCelltype_Paperand also in Zenodo under https://doi.org/10.5281/
zenodo.8317410 (https://zenodo.org/record/8317410) (ref. 23). R version 
4.0.2 was used to perform the analyses in the manuscript.
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