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RoboEM: automated 3D flight tracing for 
synaptic-resolution connectomics

Martin Schmidt    1 , Alessandro Motta    1, Meike Sievers1,2 & 
Moritz Helmstaedter    1 

Mapping neuronal networks from three-dimensional electron microscopy 
(3D-EM) data still poses substantial reconstruction challenges, in particular 
for thin axons. Currently available automated image segmentation methods 
require manual proofreading for many types of connectomic analysis. 
Here we introduce RoboEM, an artificial intelligence-based self-steering 
3D ‘flight’ system trained to navigate along neurites using only 3D-EM data 
as input. Applied to 3D-EM data from mouse and human cortex, RoboEM 
substantially improves automated state-of-the-art segmentations and 
can replace manual proofreading for more complex connectomic analysis 
problems, yielding computational annotation cost for cortical connectomes 
about 400-fold lower than the cost of manual error correction.

Extracting the dense neuronal connectivity from three-dimensional 
electron microscopy (3D-EM) data of brain tissues poses major com-
putational challenges1–6. Substantial progress in the field has allowed 
us to move from fully manual skeleton reconstructions of neurites3,6–11 
via combinations of skeleton reconstruction and automated segmenta-
tions5,12 to proofreading of automated image segmentation (Fig. 1a). 
This proofreading was initially as laborious as fully manual skeleton 
reconstructions4,13–15 but has recently been made more efficient by 
focused human intervention based on improved automated segmen-
tations1,2,12,16. Yet, even for automated methods claiming super-human 
performance17 or full automation12, when applied to large-scale EM data-
sets, massive manual-annotation efforts are required for the intended 
connectomic analyses2,18–20.

Connectomic analyses differ widely in their reconstruction diffi-
culty: for the analysis of pairs of neighboring synapses along a neurite 
for extraction of learned synaptic configurations1,12, for example, axon 
reconstructions of about 10 µm in length are sufficient, and there-
fore these analyses can already now be fully automated1,12. Obtain-
ing neuron-to-neuron connectomes from cortical tissue, however, 
requires faithful axon reconstruction for at least an additional order 
of magnitude of axonal length, and has so far not been possible fully 
automatically. Intermediate-scale connectomic analyses, aimed at 
axonal synaptic properties for example, demand error-free axonal 
reconstruction in the range of 30–50 µm (corresponding to about 
4–10 synapses per axon stretch, depending on species and tolerable 

error rates of the intended analysis1,21) (Supplementary Note and  
Supplementary Fig. 1). Such error-free lengths are not yet fully  
automatically accessible.

Connectomic image analyses have in common that EM data are 
processed by artificial neural networks to yield voxel-based maps 
reporting plasma membranes17,22–28, or the similarity between pairs 
of image voxels29, or the association of image voxels to the same fore-
ground object30–32. Then, segmentations are computed, and auto-
mated methods for the joining or splitting of these initial segmentation 
objects are currently the main focus of computational improve-
ments17,24,30–36. When automated approaches become insufficient, 
human annotation is used to solve the most challenging of these joining 
or splitting operations, ideally directed to difficult locations by com-
putational means1,2,12,37–41, or by human inspection16,19. The FocusEM1 
toolset is one such focused reconstruction approach, which automati-
cally detects reconstruction errors and asks human annotators to fly 
along axons42 until another segmentation object is reached and thus 
the problematic location resolved (Fig. 1b). Notably, the usage of image 
sequences along neurites for alleviating manual reconstruction was 
already considered in the early days of EM-based neurite tracing43–47. 
More recently, iterative contour tracking methods have been proposed 
to automate the neurite-following process48–51, even if these were not 
yet applied at scale and not learned. Here, by contrast, we wondered 
whether an artificial neural network could learn to directly control the 
steering along neurites in 3D and in an end-to-end fashion.
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image volumes. We (1) defined a continuous 3D steering framework; 
(2) defined a membrane-avoiding flight policy to recover from 
off-centerline positions and noncenterline-aligned orientations; 
(3) trained a CNN on image-steering pairs from on- and off-centerline 
positions and orientations in a supervised manner allowing for  
stable path following during recurrent inference; and (4) defined 

Results
The process of flight tracing along elongated (often very thin) 
neurites via steering commands has an analogy to image-based 
road following in autonomous driving52,53. Based on this analogy, 
we developed a convolutional neural network (CNN) architecture 
to output 3D steering signals directly from neurite-aligned 3D-EM 
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Fig. 1 | Automated neurite tracing for substitution of human annotation 
needs in neuronal network reconstruction. a, Standard workflow for 
connectomic analyses from 3D-EM data: initial volume segmentation  
(two-step process of classification and watershed17,22,24–28, or directly as 
foreground classification30–32); automated agglomeration (based on interfaces 
between segments); manual inspection to resolve remaining errors and reach 
reconstruction quality usable for meaningful connectomic analysis1,2,12,16,19,37–41. 
Data cubes with 10 µm edge lengths are shown. b, RoboEM replaces human 
inspection and correction step by automated connection and/or validation 
flights solving split and merge errors and attaching remaining spine heads1.  
c, Example of the RoboEM flight path along a thin axon in SBEM data1. d, Design 
of RoboEM: volumetric EM data as input for prediction of a steering vector 
that determines the subsequent input. Yellow denotes segmentation mask 

for ‘teaching’ corrective steering signals from off-center locations (during 
training, only). e, Detailed sketch of RoboEM inference setup. f, Calibration 
of reconstruction automation by the difficulty of automatable connectomic 
analyses comes from synaptic pairs-based analyses1,12,37 via extraction of axonal 
properties1,21 (Fig. 2b and Supplementary Fig. 1) to local neuronal circuits.  
g, RoboEM performance in direct comparison to human annotators on 
axon ending (n = 90) and chiasma queries (n = 100) for split and merge error 
resolution1. h, Effect on resource consumption for connectomic dense 
reconstructions. i, Computing costs for state-of-the-art segmentation and 
agglomeration: FFNs32 and local shape descriptors (LSD)25 are compared against 
a dense connectomic reconstruction1 (additionally including costs for synapse 
and type predictions and processing of human and/or RoboEM skeletons).  
EUR, euros.
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a validation strategy for automated error detection (Fig. 1c–e and 
Extended Data Fig. 1a,b).

In particular, we used the Bishop frame54 along interpolated neur-
ite centerline reconstructions to describe the neurites’ local direction-
ality, defined the projection for the neurite-aligned 3D-EM input and 
then used the corresponding Bishop curvatures as the target output 
steering signals that had to be predicted (Fig. 1d). During training 
only, a neurite volume mask (obtained by segment pick-up from an 
oversegmentation) was used to generate off-centerline inputs and cor-
responding target output steering signals back toward the centerline 
(Extended Data Fig. 1b). During inference, predicted Bishop curvatures 
were integrated to yield the next position and orientation (Extended 
Data Fig. 1c). This approach yielded an automated neurite path annota-
tion agent that mimicked the process of human flight-mode annotation 
in 3D (ref. 42) (Supplementary Video 1), called RoboEM.

Next, we investigated to what degree RoboEM could in fact replace 
human annotation, and which kinds of connectomic analysis would 
thus become fully automatable (Fig. 1f). For this, we started with a set 
of dense connectomic analyses of a piece of mammalian neocortex in 
which, based on automated segmentations, human annotators had 
been asked to resolve an automatically identified set of problem loca-
tions consuming a total of 4,000 work hours1. To resolve split errors, 
endings of axons and spine necks had been queried, asking the human 
annotators to continue if possible until the task was automatically 
stopped when another reconstructed object of sufficient size had been 
reached (Fig. 1g). To resolve merger errors, chiasmatic configurations 
of axons had been detected and queried, asking the human annotators 
for proper continuation from one chiasmatic exit into one of the other 
exits (Fig. 1g). We used RoboEM to replace these human annotations. 
For this, we issued RoboEM queries analogous to human annotator 
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Fig. 2 | RoboEM improves state-of-the-art connectomic reconstruction 
results in mammalian cortex. a, Example of dense axon sets used for unbiased 
calibration of reconstruction success. Agglomerates before (top) and after 
RoboEM correction (bottom). b, Quantification of axon split and merge error 
rate for randomly seeded axons, evaluated on various 3D-EM data: human cortex 
multiSEM dataset18 (crosses) (two agglomeration states analyzed (c2,c3) with 8% 
split resolution from c3 to c2); mouse cortex multiSEM dataset (Si150L4,  
https://wklink.org/7122); mouse cortex SBEM dataset1. Purple symbols show 

the effect of applying RoboEM to previous reconstruction. The red dashed line 
denotes the same merge-rate comparison for human data (3.5-fold improved 
split resolution) and mouse data (3.1-fold improved split resolution). Purple 
lines denote RoboEM split-rate improvement with modest merge rate increases 
yielding error rates tolerable for more complex connectomic analyses (Fig. 1f). 
The black dashed line denotes a human annotator-based error resolution (as 
published in ref. 1) shown for comparison.
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queries and required that, additionally, a forward continuation along 
a neurite should be confirmed by tracing the same neurite location 
backward (automatic validation). We found that 76% of the ending 
queries and 78% of the chiasma queries were traced and validated by 
RoboEM without errors (as judged by manual inspection, compared to 
fully manual queries yielding 74 and 94%, respectively). Restricting to 
RoboEM annotations in which forward and backward tracings agreed 
allowed avoiding most merge errors, yielding only 4% of queries with 
RoboEM-introduced tracing errors for ending tasks and 1% for chiasma 
tasks, similar to human annotations.

While this performance indicated that RoboEM could accurately 
replace human annotation for a range of connectomic analyses, we 
wanted to quantify this conclusion explicitly by using connectomic 
analysis itself as the metric for reconstruction success. As described 
above, some connectomic analyses require more reconstruction accu-
racy than others. In particular, we considered: A1, paired same-axon 
same-dendrite synapse analyses aimed at measuring the learned 
fraction of a connectome1; A2, spine rate analyses for identification 
of interneuron dendrites and A3, axonal type analysis based on the 
synaptic target distribution of axons. We then used three types of con-
nectome for comparison: CI, the connectome obtained from the fully 
automated reconstruction, before any focused human annotation1; 
CII, the connectome including 4,000 work hours of human annota-
tion1 and CIII, the connectome obtained from combining the fully 
automated reconstruction CI with RoboEM, yielding a fully automated 
and automatically proofread connectome. We then performed the 
three types of connectomic analysis, which we expected to increase 
in connectomic difficulty.

When applying the analyses A1–A3 to the three stages of con-
nectomes CI–CIII, we found that the analysis of paired synapses for 
quantifying potentially learned synapses in the connectome A1 was 
already possible with the automated connectome state before any 
RoboEM-based corrections (CI, upper bound of fraction of paired 
connections consistent with long term potentiation: CI 11–20%; CII 
16–20%; CIII 13–19%, Extended Data Fig. 2a). However, for obtaining 
correct spine rates for apical dendrites (A2, CI 0.9 ± 0.4; CII 1.3 ± 0.6; 
CIII 1.2 ± 0.5 spines per µm, mean ± s.d., Extended Data Fig. 2b) and the 
true fraction of excitatory axons defined by their spine head prefer-
ence (excitatory axon fractions, A3, CI 75%; CII 87%; CIII 84%, Extended 
Data Fig. 2c), manual or RoboEM-based corrections were required. 
In addition, RoboEM-based corrections recovered the axonal target 
specificities of inhibitory axons onto apical dendrites and smooth 
dendrites, whereas in the automated state before any annotation this 
specificity was not detectable (A3, one-sided Kolmogorov–Smirnov 
test, CI apical dendrites P = 1.0%, smooth dendrites P = 3.6%; CII apical 
dendrites P = 2.7 × 10−4, smooth dendrites P = 1.8 × 10−3 and CIII apical 
dendrites P = 1.9 × 10−5, smooth dendrites P = 7.1 × 10−4, Extended Data 
Fig. 2d). Thus, using the difficulty of connectomic analyses that can be 
fully automated as the criterion for evaluating RoboEM-based error 
correction, we found a shift of automated analysis performance from 
simpler to more complex connectomic problems (Fig. 1f), yielding 
400-fold reduced annotation costs compared to manual error correc-
tion (Fig. 1h). The computational cost was 5- to 80-fold lower than other 
approaches (Fig. 1i and Supplementary Table 4), rendering RoboEM a 
suitable candidate to run automated error correction as a postprocess-
ing step. These results were obtained on 3D-EM data imaged with serial 
block-face scanning electron microscopy (SBEM)55.

Next, we applied RoboEM to data obtained using a state-of-the-art 
high-throughput 3D-EM imaging approach for mm3-scale volumes 
from mammalian brains18,21 (ATUM-multiSEM, where ATUM stands for 
automated tape-collecting ultramicrotome56 followed by multibeam 
scanning electron microscope (multiSEM)57). We used a (150 µm)3 
subvolume centered on cortical layer 4, subsequently referred to as 
‘Si150L4’, cropped from a larger 1.3 × 1.3 × 0.25 mm3 sized 3D-EM dataset 
that had been imaged at 4 × 4 × 35 nm3 voxel size spanning all cortical 

layers of mouse primary somatosensory cortex (S1). In this subvolume, 
we quantified RoboEM performance on axons sampled uniformly 
from the volume (‘densely seeded axons’, Fig. 2a,b). After automated 
agglomeration, we seeded RoboEM at automatically detected endings 
of axon agglomerates, and used it to connect possible missing axonal 
agglomerates (Fig. 2a). As a result, split rates of axons were reduced 
sevenfold (42.7 to 6.0 per mm axon path length) while only modestly 
increasing merger rates (3.3 to 4.5 per mm, Fig. 2b).

To titrate the effect of RoboEM separately for split and merge 
errors, we used the fact that automated agglomerations (before 
RoboEM application) typically have a split-versus-merger parameter 
that can be adjusted independently. We then introduced a similar 
parameter for RoboEM, and could therefore directly compare the split 
rates achieved by automated agglomeration and RoboEM at equal 
merge error rates. We found (Fig. 2b) that the agglomeration solved 
25% of split errors yielding 31.9 splits per mm, while RoboEM solved 79% 
yielding 9.0 splits per mm, compared at 3.9 merge errors per mm axon 
path length. Hence, in this split and/or merge error regime RoboEM 
improves split resolution 3.1-fold over state-of-the-art agglomeration 
(Fig. 2b). The resulting axon reconstructions were comparable to those 
achieved in the local cortical SBEM dataset1 (5.2 split and 6.1 merge 
errors per mm, Fig. 2b).

Similar to thin axons, thin spine necks can pose difficulties for 
automated reconstruction pipelines of 3D-EM data. To assign synapses 
onto spine heads to the correct postsynaptic neuron, spine necks need 
to be reconstructed with high accuracy. We used RoboEM to follow 
automatically detected spine heads along the spine neck back to the 
dendritic shaft of origin. Evaluated on a subvolume (Si11L3) in cortical 
layer 3 sized (11 µm)3 from the above ATUM-multiSEM dataset of mouse 
S1 cortex, we found that spine head attachment recall increased from 
70 to 94%, while retaining high precision of 97% (85 out of 91 test spine 
heads attached to the correct dendrite, 3 out of 91 spine heads attached 
to the wrong dendrite and 3 out of 91 spine heads were unattached, 
of which one could also not be attached manually and was therefore 
counted as true negative).

Finally, we wondered whether RoboEM could also be applied for 
improving existing state-of-the-art automated segmentations that 
are currently being manually proofread and had been generated by 
flood-filling networks (FFN)18,32. We evaluated RoboEM on a subvolume 
of size (150 µm)3 from a recently published mm3-scale ATUM-multiSEM 
dataset from human cortex18 and found that application of RoboEM 
on axonal endings obtained from the dense reconstructions of an FFN 
segmentation32 solved 57% of the splits on a random set of axons traced 
throughout the subvolume. This reduced the split rate from 65 to 28 
splits per mm, reaching split lengths in the range required for auto-
mated connectomic analyses, while increasing merge rate from 1.7 to 3.1 
per mm (in the range of merge rates for connectomic analyses as in ref. 1).  
When comparing the reduction of split errors in FFN versus RoboEM 
at an identical merge error rate (c2, 1.7 mergers per mm), we find that 
the FFN-based agglomeration from c3 to c2 only solves 8% of the split 
errors of c3. By contrast, RoboEM-based agglomeration solves 28% of 
split errors of c3 at identical merge error rate as c2 is thereby 3.5-fold 
more effective in split resolution than FFN (Fig. 2b). A detailed analysis 
of remaining axon merge errors for the two multiSEM reconstructions 
with RoboEM corrections furthermore showed that 86–92% of these 
merge errors are caused by the preceding segmentation or agglomera-
tion, not by RoboEM itself. Further, more than or equal to 83% of major 
merge errors found were in close proximity to 3D data misalignment, 
artifacts and/or missing sections, suggesting that greater robustness 
to these 3D-EM data related issues could help further reduce merge 
errors (Supplementary Table 3 and Supplementary Note).

These results are important for two reasons. First, evaluation 
of automated reconstruction performance on random (‘densely 
seeded’) axons that are not necessarily connected to a soma within 
the mm3-scale volume provides a representative quantification of 
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reconstruction quality for dense connectomic reconstruction. Restric-
tion to soma-proximal axons quantifies results for soma-based proxi-
mal connectomic data, but underestimates reconstruction errors for 
dense axons. For example, the evaluation of FFN in human cortex, 
restricted to axons connected to a soma within the volume under-
estimates split and merge errors of random axons four- to fivefold 
(Extended Data Fig. 3). When using soma-based reconstructions in 
small brain volumes32, error rate quantification is highly biased to 
the much easier-to-reconstruct dendrites and therefore cannot be 
interpreted for axonal reconstructions. Second, for the connectomic 
analysis of axons in cortical neuropil, it is essential to obtain an inter-
pretable number of output synapses along axons automatically. Given a 
certain rate of synapses along axons, this means that there is a minimum 
intersplit distance that needs to be achieved to obtain an interpretable 
number of synapses per axonal segment (Fig. 2b). The rate of synapses 
per axon can vary strongly between neuronal tissue types and species, 
such that axonal reconstructions in human cortex, for example, require 
at least twofold longer intersplit distances (that is, twofold lower split 
error rates) than in mouse cortex to achieve similar synaptic statistics 
per axon (Fig. 2b).

Discussion
In summary, we find that our automated proofreading using RoboEM 
can fully replace human annotation for connectomic analyses of 
increasing difficulty and improve currently available state-of-the-art 
automated segmentations. This is particularly notable for segmen-
tations obtained using FNNs18,32, since FFNs have a certain similarity 
in their design to RoboEM by recursively reconstructing individual 
neurites through prediction of neurite continuation from 3D-EM sub-
volumes. RoboEM, on the other hand, by focusing on centerline neurite 
tracing, may learn some aspects of axonal morphology directly and 
adds a notion of growth inertia to the axonal reconstruction. This ena-
bled reconstruction problems to be solved that were not addressed by 
volume-based methods.

In mm3-scale 3D-EM datasets, the reconstruction of millimeter- to 
centimeter-long axons for obtaining neuron-to-neuron connectomes 
currently demands substantial human proofreading18,19. RoboEM, showing 
3.5-fold better split reduction compared to state-of-the-art agglomeration 
by FFN18, allows for immediate reduction of manual-annotation needs. 
In addition, while we have calibrated RoboEM performance on smaller 
datasets (around 100–150 µm on a side), the obtained results allow us 
to estimate performance of RoboEM for iterative soma-seeded axonal 
reconstructions in larger datasets. By limiting RoboEM error correction 
to iterative soma-seeded axon reconstruction, and taking into account 
the higher accuracy on soma-proximal axons, we estimate RoboEM to 
extend fully automated axon reconstruction by multiple millimeters per 
neuron (Supplementary Note), making fully automated connectomic 
reconstruction at the scale of ‘peta-scale’ volumes containing thousands 
to ten thousand neurons in mammalian cortex and other tissue plausible.

Since RoboEM directly transforms EM image volumes into center-
line tracings of neurites, it allows end-to-end learning of the key connec-
tomic challenge: to follow axons over very long distances, also at locally 
thin stretches. As automated error correction framework, RoboEM 
allows for substantially improved reconstructions while increasing 
compute costs by less than 20% even compared to the recently proposed 
local shape descriptor framework25, which itself is reported to offer 
FFN-scale accuracy at a much reduced computational cost. With the 
direct end-to-end strategy, RoboEM may allow optimization for both 
additional accuracy and computational efficiency, which will be the next 
key challenge in connectomics for exabyte-scale datasets to come58,59.
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Methods
Animal experiments
This section applies to the acquisition of the barrel cortex multiSEM 
dataset of a 28-day-old male mouse (species, Mus musculus, strain 
C57BL/6-J, one animal). The mouse cortex SBEM dataset1 and the human 
cortex multiSEM dataset18 analyzed in this study were taken from the 
respective publications.

All animal-related experimental procedures were performed 
according to the law of animal experimentation issued by the German 
Federal Government under the supervision of local ethics committees 
and according to the guidelines of the Max Planck Society. Experimen-
tal procedures were approved by Regierungspräsidium Darmstadt, file 
number V54-19c20/15-F126/1002.

The animals were bred in captivity at the animal husbandry depart-
ment of the Max Planck Institute for Brain research. The room tem-
perature was 22 °C, relative humidity 55% (±10%) and the light cycle 
was 12 h light/12 h dark. Autoclaved water and feed Sniff standard 
mouse extruded breeding or mouse/rat husbandry both ad libitum was 
provided. Animals were kept in breeding in type 2 long IVC greenline 
cages with red house and nesting material, bedding Lignocel BK8-15, 
under specific pathogen-free conditions.

EM image datasets, segmentations, RoboEM training, 
validation and test sets
RoboEM was developed and tested on a 92.6 × 61.8 × 94.8 µm3 SBEM 
dataset from layer 4 primary somatosensory cortex of a 28-day-old 
mouse previously densely reconstructed1. The tissue was conven-
tionally en bloc stained60 and imaged at 11.24 × 11.24 nm2 and nominal 
cutting thickness of 28 nm. Training and validation axons were sam-
pled from a set of axons seeded by means of presynaptically classified 
segments obtained using SynEM61 and skeleton traced by student 
annotators. To also acquire a volume reconstruction of training axons, 
segments of the oversegmentation obtained using SegEM with param-
eters as set for the whole-cell segmentation of the cortex dataset22 
were picked up and combined. The resulting volume mask was also 
used to iteratively optimize the interpolated skeleton tracing to yield 
a better centerline approximation. A set of 14 axons with 1.2-mm path 
lengths were used for training, and up to 0.7 million weight updates 
corresponding to ~260 epochs were run. The validation set consisted 
of 13 axons with 1.4-mm path length, where branches with less than 
5 µm were excluded for better heuristic error detection. Results on the 
validation sets over the course of training are depicted in Extended Data 
Fig. 1b. A third set of ten axons with 1.7 mm path length seeded from 
a (2.5 µm)3 bounding box was used as a test set (Fig. 2b and Extended 
Data Fig. 1c). These are the same axons as previously used to evaluate 
human and semiautomated segmentation1,42. For automated spine head 
attachment on this dataset, the axon-trained RoboEM was evaluated 
on a random subset of 50 spine heads previously attached by human 
annotators, as well as on the set of spine heads previously used as a test 
set for semiautomated segmentation1.

Next, RoboEM was evaluated on a (150 µm)3 subvolume (data-
set ID Si150L4, https://wklink.org/7122) from a 1.3 × 1.3 × 0.25 mm3 
dataset from the barrel cortex of a 28-day-old male mouse (‘Animal 
experiments’ section) stained following the protocol by Hua et al.62 
with small modifications, sectioned at 35 nm using ATUM56 and imaged 
at 4 × 4 nm2 using multiSEM57. The segmentation and agglomeration 
applied to the dataset at a voxel size of 8 × 8 × 35 nm3 (downsampled in 
xy by a factor of 2) were developed in collaboration with scalable minds 
GmbH, partly based on published approaches. In brief, a 3D U-Net63 
was used to predict per cardinal axis voxel affinities17 from which a 
watershed-based oversegmentation was generated. The segments 
from the oversegmentation were then combined using hierarchical 
agglomeration24. In addition, neurite type predictions, blood vessel and 
nuclei detection were incorporated into the agglomeration to further 
reduce merge errors. Neurite type predictions were also used for spine 

head detection, which was the basis for RoboEM-based spine head 
attachment. For RoboEM training on axons, a training set was acquired 
based on a set of ten soma-seeded axons from layer 4, for which student 
annotators picked up segments from the oversegmentation to acquire 
a volume reconstruction. Here, we then used Kimimaro64 followed by 
subsampling and B-spline interpolation to extract centerline skeletons 
from the volume reconstruction. This yielded a training set with a total 
of 21-mm axon path length. As axon validation set a random ten out 
of 20 axons seeded from a layer 4 bounding box of size (2 µm)3 were 
traced within a (50 µm)3 bounding box yielding 1-mm path length. The 
error rate on the validation set was minimal after 3.35 million gradient 
updates. For the axon test set, another (1.5 µm)3 bounding box within 
layer 4 was densely annotated and a random subset of five axons were 
traced within the (150 µm)3 subvolume Si150L4 yielding 1.7 mm path 
length. A separate RoboEM model was trained on spine head attach-
ment. This training and validation set was generated from a set of 20 
(5 µm)3 bounding boxes sampled within layer 4 and annotated for spine 
heads. A subset of around 1,000 spine heads were volume annotated at 
4 × 4 × 35 nm3 by student annotators from the spine head through the 
spine neck up to the dendritic trunk. Here, we again used Kimimaro64 
to extract centerline skeletons from the volumetric masks for training 
yielding 2 mm of spine neck tracings. Additionally, a random subset 
of 76 spine heads with 0.2-mm path length from the 20 bounding 
boxes was skeleton traced to serve as validation set on which the error 
was minimal after 0.9 million gradient updates. The evaluation was  
done on another randomly selected (5 µm)3 bounding box (Si11L3 
https://wklink.org/2458) containing 91 densely annotated spine head 
to dendritic trunk skeleton tracings.

For the evaluation of RoboEM-based error correction of existing 
state-of-the-art segmentation, we applied RoboEM to a published 
mm3-scale multiSEM dataset18 from human cortex with voxel size 
4 × 4 × 33 nm3 segmented and agglomerated using FFNs32. Specifi-
cally, we focused on a (150 µm)3 bounding box containing 6.5 mm of 
axon path length of the provided ground truth skeleton tracings. The 
published ground truth skeleton tracings in this box were then used to 
evaluate FFN on soma-seeded axons18 (Extended Data Fig. 3). To fine-
tune RoboEM on this dataset, we generated ground truth skeleton trac-
ings of dense seeded axons by sampling a bounding box of size (2.5 µm)3 
within a centered (15 µm)3 bounding box, annotating all processes in 
this bounding box and then sampling a random subset of five axons, 
which were traced throughout the (150 µm)3 bounding box yielding 
1.25 mm path length. Here, skeleton annotations were already done 
with high precision along the centerline such that no postprocessing 
was necessary. The volumetric neurite mask needed for training was 
generated by means of segment pick-up from the c3 FFN segmenta-
tion18. The best RoboEM model checkpoint, based on the validation set 
from the axon training in the mouse cortex ATUM-multiSEM dataset 
(subvolume Si150L4), was then used as initialization and RoboEM was 
trained for another 1.95 million gradient updates until converging in 
terms of reset-based error rates on the training axons. For the evalu-
ation of FFN and RoboEM another bounding box of size (1.5 µm)3 was 
annotated for a random subset of five axons traced throughout the 
(150 µm)3 bounding box of the human cortex multiSEM dataset18, 
yielding 1.4 mm path length.

Neurite flight reconstruction
We phrase the problem of neurite reconstruction from a 3D-EM volume 
as a centerline reconstruction task, in which a neurite is represented 
by a sequence of visited points. A CNN65 is trained on the task of pre-
dicting the local neurite continuation from a neurite-centered and 
-aligned 3D-EM subvolume (Fig. 1d,e and Extended Data Fig. 1a) similar 
to human annotation flight mode42. Integration of the predicted neurite 
continuation yields a new position and orientation, which is used to 
generate the subsequent CNN input. Iterative application of this pro-
cedure turns a starting location and orientation into a neurite skeleton 
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reconstruction using only 3D-EM data and without intermediary steps, 
such as volume segmentation.

The input to the CNN consists of a 96 × 96 × 16 voxel neurite- 
centered and -aligned 3D-EM subvolume that covers, for example 
for axons, a field of view of ~1 × 1 × 0.7 µm3 (Fig. 1e and Extended Data 
Fig. 1a). The third (z) dimension corresponds to the current flight direc-
tion, while the current position is made the center of the fourth z plane. 
The field of view is thus asymmetric along the z direction with more 
contextual information available in forward than in reverse flight direc-
tion. Empirically, this allows for better steering toward the ‘exit’ within 
axonal varicosities. The EM data is projected onto neurite-aligned 
planes by means of trilinear interpolation.

For the CNN architecture, we use seven 3D strided convolutional 
layers, followed by a dropout layer (dropout rate 0.5), three fully con-
nected layers and a last linear layer that estimates the two steering 
commands and the distance to membrane along the flight direction 
(Extended Data Fig. 1a). The two steering commands are the Bishop 
curvatures54 described in more detail below. A two-dimensional CNN 
architecture previously proposed for image-based road following53 
served as a starting point for the architecture in this work. As nonlin-
earity we tested rectified linear units66 (ReLU) and exponential linear 
units67 (ELU), and found ELU to work better (Extended Data Fig. 1b).

For the mathematical formulation of the network’s input and 
output, the Bishop frame, a local orthonormal coordinate system 
spanned by a tangential vector t and two normal vectors n1 and n2 and 
obeying a rotation minimizing property, and the associated Bishop 
curvatures k1 and k2, were found to be particularly suitable54 (Fig. 1d 
and Extended Data Fig. 1a). Here, we define the neurite-aligned projec-
tion planes for the network’s input by means of the normal Bishop 
vectors, while the network’s flight direction corresponds to the tan-
gential vector. The evolution of the Bishop frame unit vectors is cou-
pled via the Bishop curvatures k1 and k2, one for each normal vector 
direction and corresponding to signed curvatures for steering toward 
left to right and up and down, respectively. Note that the signed cur-
vature has previously been used as steering command for left to right 
steering in image-based road following limited to planar curves53. The 
task of predicting the neurite continuation in the form of Bishop 
curvatures can be interpreted as fitting a parabola to the neurite’s 
centerline, where the curvature vector k = k1n1 + k2n2 , determines 
direction and magnitude of bending of this parabola (Fig. 1d and 
Extended Data Fig. 1a).

Training and inference
For training the above-described CNN architecture on the neurite-following 
task, we implemented the CNN in TensorFlow68 and trained with a 
mini-batch size of 128 using RMSProp69 with momentum70,71, for the 
SBEM dataset1 and Adam72, for the multiSEM datasets, on minimizing 
the mean-squared error plus a L2 regularization loss term on the weights. 
Weights for layers with ReLU or ELU activations were initialized following 
He et al.73, and the final layer was initialized following Glorot et al.74.

Similar to a finding by Pomerleau52 for image-based road following, 
we also found that training on the neurite centerline alone does not 
yield good generalization performance during inference, as current 
position and orientation depend on past network decisions and errors 
can accumulate. To achieve stable path following, we trained the CNN 
on off-centerline positions and off directions with correspondingly 
adjusted steering leading back to the neurite centerline, where we refer 
to the mapping from a particular off position, off-direction state to the 
adapted steering as the flight policy.

We derived a greedy flight policy based only on local information 
available to the CNN within the finite field of view (details below). 
We induced the notion of obstacle (that is, the membrane) avoid-
ance through the usage of a dynamic convergence distance set to the 
distance to the plasma membrane along the flight direction, which 
empirically allowed for better performance than a constant value. 

Additionally, we used the distance to plasma membrane as an auxiliary 
loss term during training.

To reconstruct neurites during inference, the steering predictions 
of the CNN for a position and orientation are integrated to a new posi-
tion and orientation used to generate the subsequent input (Extended 
Data Fig. 1a, normal inference). For the random rotation inference mode 
(Extended Data Fig. 1a) we additionally perform a random rotation 
around the tangential after the integration step, which decorrelates 
consecutive inputs and comes at negligible computational cost. In both 
inference modes, given a start position and orientation, the recurrent 
application of the CNN yields a trace of visited points corresponding 
to the network’s prediction of the neurite centerline.

Whereas for an error correction framework, such as FocusEM1, both 
start position and orientation can be provided, for some use cases the 
orientation might not be available. Specifically, for the task of attach-
ing spine heads to their corresponding dendrites, it can be less obvious 
how to compute the start orientation. To apply RoboEM on spine neck 
tracing tasks given only the start positions, we run stochastic forward 
passes through the dropout layer, known as Monte Carlo dropout75,76, 
yielding a sampled distribution of predictions, from which we estimate 
prediction uncertainty. The uncertainty can then be used to select a 
start orientation from a list of candidate orientations or rank tracings 
thereby allowing for a trading off split against merge errors. As there 
is only a single dropout layer after the convolutional layers (Extended 
Data Fig. 1a), the computation for different dropout masks is shared 
up to this point and the overhead of Monte Carlo dropout is negligible 
(<2% in terms of floating point operations for 128 Monte Carlo samples).

B-spline interpolation and RoboEM step size
To get a continuous representation of neurite branches from sparsely 
placed nodes from human skeleton reconstructions, we use degree 4 
B-spline interpolation77 yielding a curve γ ∈ C3. We reparametrize the 
curve to get a curvature adaptive step size ‖ ̇γΔt‖ of

‖ ̇γ‖Δt = f d
1 + p

2
κ
,

where κ = ‖k‖ is the curvature, p = 1 µm the physical size of the projec-
tion plane and f is a step size factor set to f = 1 for training that can be 
adjusted to higher values for inference. While for most evaluations in 
this work, we also used f = 1 during inference, step sizes can be increased 
up to f = 5 yielding correspondingly increased throughput without 
sacrificing accuracy (Extended Data Fig. 1c). A default step size d  
matching the smallest dimension of a voxel, such as d = 11.24 nm in case 
of the L4 SBEM dataset1 at f = 1 ensures that no voxels up to a radius of 
half the projection plane size in the projection plane at the current 
position of the CNN are skipped. To keep the notation uncluttered, 
subsequent formulas are expressed in terms of the arc length para-
metrized curve γ(s) indicated by the parameter s.

Bishop frame
The Bishop frame54 consists of three orthonormal vectors, namely the 
tangential vector t, in this work also termed flight direction, and two 
normal vectors n1, n2. The evolution equations of the Bishop frame and 
the curve γ read as follows:

d
ds

γ = t

d
ds

t = k1n1 + k2n2 ≡ k

d
ds

n1 = −k1t

d
ds

n2 = −k2t.
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Here, k1 and k2 are the Bishop curvatures associated to the normal 
vector n1 and n2, respectively, and k is the curvature vector (Fig. 1d and 
Extended Data Fig. 1a). Flips and rotations around the tangential vector 
applied to both normal vectors and Bishop curvatures are invariance 
transformations that leave k and thereby the evolution of γ and t 
unchanged and are used for data augmentation during training.

The rotation minimizing Bishop frame has weaker requirements 
for a parameterized curve γ than the Frenet–Serret frame often used 
as local coordinate system in differential geometry of parameterized 
curves. Specifically, the Bishop frame of a parametrized curve in 3D 
Euclidean space does not require κ ≠ 0, and only requires γ ∈ C2 instead 
of γ ∈ C3: for details, see ref. 54. Initial conditions in form of start posi-
tion and Bishop frame orientation together with the Bishop curvatures 
uniquely define the centerline curve γ. The integration of above Bishop 
equations during inference was performed with either of two methods: 
(1) forward Euler method followed by Gram–Schmidt orthonormaliza-
tion to maintain an orthonormal basis for the Bishop frame, or  
(2) analytically derived evolution equations for a Bishop frame along 
a parabola. Empirically, we found the latter to work better especially 
for larger step size factors f (Extended Data Fig. 1c).

Flight policy
To derive a flight policy for stable path following during inference, 
the Taylor series expansion up to second order γT  for the known 
neurite centerline curve γ(s) with corresponding Bishop frame t, n1, 
n2 and curvature vector k, and the Taylor series expansion up to 
second order γ

T
 of the unknown off-centerline, off-direction curve 

γ(s), with t, n1, n2, k:

γT(s) = γ + s t + s2

2 k

γ
T
(s) = γ + s t + s2

2 k

were used.
Knowing the current off position γ  and off-direction t, as well 

as the current closest position on the neurite centerline γ with cor-
rect neurite-aligned orientation t and local shape of the curve in 
terms of k, that is correct steering for the on centerline case, we 
derived suitable corrected steering k converging back to the center-
line within some distance sc, that is, which minimizes the future 
distance ‖ΓT‖ defined by:

γT − γ
T⏟⎵⏟⎵⏟

ΓT

= γ − γ⏟
Γ

+s (t − t)⏟⎵⏟⎵⏟
T

+ s2

2 (k − k)⏟⎵⏟⎵⏟
K

.

We therefore require:

∇k‖ΓT(sc)‖
2 = 0,

where ∇k = n1∂k1
+ n2∂k2

. Defining the projection operator 𝒫𝒫n1 ,n2
= 

n1 ⊗ n1 + n2 ⊗ n2, where ⊗ denotes an outer product, the solution for 

k from the above equation reads as follows:

k = 𝒫𝒫n1 ,n2
( 2
s2c
[Γ + sct] + k) .

Iterative application with updated values for γT  at the closest point 
γ from the current position γ yields a stable path following flight policy 
with a free parameter sc controlling the convergence speed. Trajectories 
for different values of sc are plotted in Extended Data Fig. 1b. For this 
work, during training, we set sc to the current distance to membrane 
along the flight direction and thereby train RoboEM on a membrane 
avoidance strategy.

Direction prediction with Monte Carlo dropout
For the direction prediction, as for example needed for spine head 
attachment where only an initial position is given, we sample I = 256 
roughly equidistant orientations ti and run Monte Carlo dropout75 with 
M = 128 samples. From the sampled Bishop curvature predictions kim, 
we compute the mean curvatures 〈κ〉i and the covariances of the Bishop 
curvatures covi per orientation i over the Monte Carlo samples. The 
uncertainty estimate ui is then taken as the square root of the largest 
eigenvalue of the covariance matrix divided by the mean curvature:

ui = √max(eigvals(covi))/⟨κ⟩i.

Using cosine similarity for neighboring angles within 30°,  
we construct a weighted average of uncertainties ûi as

ûi =
ui

2 + 1
2 ∑j

ŵijui

with weights ŵij

ŵij = wij/∑
j
wij

wij = {
⟨ti|tj⟩

16 if arccos(⟨ti|tj⟩) < 30∘

0 otherwise

to give more stable predictions. The orientation with minimal 
averaged uncertainty ûi was used as first orientation candidate. For 
spine head attachment in the mouse cortex ATUM-multiSEM dataset 
(subvolume Si11L3), we used a second candidate that was >110° from 
the first and has again minimal averaged uncertainty among the  
remaining orientations.

Model selection from validation set
To choose a model from a pool of trained models with different learning 
rates, fields of view and so on, we evaluated RoboEM on a validation set 
consisting of human skeleton annotations without any segmentation. 
Specifically, RoboEM was evaluated on linear neurite branches by 
running recurrent inference starting from both sides. In case RoboEM 
reaches a first set of thresholds (Supplementary Table 1) concerning 
the distance or the angle with respect to the ground truth tracing, we 
consider the tracing to be ‘experimental’, that is the progress along the 
ground truth tracing is temporarily not considered until the first set 
of thresholds is not exceeded anymore. If a second set of thresholds  
(Supplementary Table 1) is exceeded, the tracing is classified as erro-
neous and a reset to the closest point on the ground truth before the 
tracing turned experimental is performed. Tracing is stopped, when 
the closest point on the ground truth is at the other end of the axonal 
branch and the tracing is at that time classified as correct.

To relate resets caused by steering errors to merge and split error 
rates, we consider each reset both a merge error into a wrong process 
and a split error due to not continuing the neurite of interest. Hence, 
we count each reset as two errors and report this as a reset-based error 
rate. While this cannot be used to directly compare with segmentation 
error rates, it serves as a metric for model selection.

For model selection on the SBEM L4 dataset1, we find that averaged 
over all models and training iterations the random inference mode out-
performs its normal mode counterpart by 33% (range 12–52%). The best 
performing model on the validation set uses only EM data as input, has 
an ELU activation function, was trained for 700,000 training iterations 
and yielded 17 errors per mm (Extended Data Fig. 1b).

Split and merge error evaluation
For the evaluation of split and merge errors of agglomerations before 
and after RoboEM-based error correction (Fig. 2 and Extended Data 
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Fig. 3), we detected merge errors that extended further than 2.2 µm 
from the ground truth and manually verified that this heuristic accu-
rately detects merge errors. For agglomerations before RoboEM correc-
tions, each merge error was counted as 0.5 and divided by the ground 
truth path length to yield the merge error rate. This is because each 
merge error usually connects two neurites and counting them as one 
error per neurite instead of 0.5 would overestimate the total amount 
of merge errors. For sparse evaluations of RoboEM-based error cor-
rections limited to agglomerates that overlap with the ground truth, 
as done in both multiSEM datasets evaluated in this work, additional 
mergers introduced by RoboEM were counted as one instead of 0.5, 
which accounts for mergers from agglomerates not overlapping with 
ground truth and therefore not observable in a sparse evaluation. For 
split errors, we restricted the set of agglomerates to be evaluated to 
those agglomerates that overlap more than 2.5 µm with the ground 
truth. We introduced this overlap threshold to avoid domination of split 
errors by many small agglomerates or unagglomerated segments along 
thin stretches of axons. Note that despite this overlap length threshold, 
around 90% of the ground truth was still covered.

For the multiSEM datasets, RoboEM-based correction was 
restricted to ending resolution, for which endings were extracted from 
skeleton representations of those agglomerates that overlapped with 
the ground truth annotations. In addition to the RoboEM validation 
strategy, we also made use of subcellular type predictions to decide 
whether a RoboEM tracing should connect two agglomerates. Note that 
type predictions were also used by FFN to avoid merge errors across 
subcellular types18. After agglomerates were reconnected using RoboEM 
tracings, the resulting agglomeration state was evaluated as before.

To test whether RoboEM-based correction also allows for reduced 
split error rates when compared at the same merge error rate as the 
segmentation and/or agglomeration for the two multiSEM datasets, 
the following strategy was used to only apply subsets of RoboEM trac-
ings thereby limiting merge error rates: prediction uncertainty using 
Monte Carlo dropout was quantified for every RoboEM step, then the 
maximum uncertainty over steps was taken and forward and validation 
tracings were combined with a minimum of the two uncertainty scores. 
The rationale was to first score every direction of the validated tracings 
according to the position with maximum uncertainty and then, since 
the forward and backward tracings yielded the same flight path, the 
minimum of those two uncertainty scores was taken to quantify the 
uncertainty of the tracing as a whole. Application of validated RoboEM 
tracings up to percentiles of 0.2, 0.4, 0.6 and 0.8 of tracing uncertain-
ties then yielded partial RoboEM corrections. These were evaluated for 
split and merge error rates and those with minimal split error rates at 
same merge error rate as segmentations/agglomerations were added 
as intermediate points within the split merge error plane of Fig. 2b. 
Specifically, for the mouse cortex multiSEM dataset, application of 
the top 80% of validated RoboEM tracings on the agglomeration at 
85% agglomeration threshold yielded the same merge error rate as 
the agglomeration at 90% agglomeration threshold. Similarly for the 
human cortex multiSEM dataset, the application of the top 40% of 
validated RoboEM tracings on the FFN c3 agglomeration yielded the 
same merge error rate as the FFN c2 agglomeration18.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data necessary to reproduce reported results for the mouse cortex 
SBEM dataset1 are available: https://wklink.org/9276 (raw data), https://
L4dense2019.brain.mpg.de (code and data of the original publica-
tion); trained RoboEM weights, and evaluation data are available in 
the supplement subject to provisions as stated in the code availability 
section (below). Raw data for the mouse cortex multiSEM dataset are 

available: Si11L3 https://wklink.org/2458 (spine head attachment test 
set), Si150L4 https://wklink.org/7122 (axon test set); RoboEM train-
ing data for the mouse cortex multiSEM dataset are available: https://
wklink.org/8172. Raw data and training data for the human cortex 
multiSEM dataset18 were obtained from and are available as detailed 
in ref. 18 at https://h01-release.storage.googleapis.com/landing.html. 
Trained RoboEM weights for mouse and human multiSEM data are 
available on reasonable request to allow usage monitoring accord-
ing to licensing criteria (all source code and binary files are publicly 
available under the limited right to use for the exclusive purpose of 
undertaking academic or not-for-profit research, as further detailed 
in the code availability section below). In addition, data needed to run 
the example code is part of the zipped code package provided in the 
supplementary material subject to provisions as stated in the code 
availability section (below). Source data are provided with this paper.

Code availability
All source code and binary files are publicly available in the supple-
ment under the following provisions: any copyright or patent right is 
owned by and proprietary material of the Max Planck-Gesellschaft zur 
Förderung der Wissenschaften e.V. (MPG). MPG makes no representa-
tions or warranties of any kind concerning the source code and binary 
files, neither express nor implied and the absence of any legal or actual 
defects, whether discoverable or not. The source code and binary files 
available in the supplement are subject to a non-exclusive, revocable, 
non-transferable, and limited right to use for the exclusive purpose 
of undertaking academic or not-for-profit research. Use of the Code 
or binary files or any part thereof for commercial or clinical purposes 
and alterations are strictly prohibited in the absence of a Commercial 
License Agreement from MPG. Download and/or use of the source code 
and binary files under the aforementioned research license comes with 
the acceptance of the license agreement provided with the download.
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Extended Data Fig. 1 | Automated flight reconstruction. (a) 3D Convolutional 
neural network architecture variants processing projections of neurite-aligned 
subvolumes of EM input data and making predictions about neurite continuation 
in terms of a curvature vector; EM data from Motta et al.1. This curvature vector is 
representative of a parabola approximation to the neurite centerline and can be 
integrated during recurrent inference to yield the next position and orientation 
and thereby the next subvolume to be processed. Performing random rotations 
around the flight direction during inference can be considered zero-cost test 
time augmentation that allows to decorrelate subsequent inputs with respect 

to the orientation. The sequence of visited points during recurrent inference 
represents a skeleton reconstruction of the neurite. (b) Training iterations using 
a membrane avoiding flight policy for off-center and off-direction inputs and 
comparing ReLU and ELU activation functions66,67, as well as EM only input versus 
EM and membrane probability maps as input. EM data was used for predicting 
neurite continuation. Random rotation inference mode as depicted in (a) was 
used. (c) Reset-based evaluation of RoboEM for different step size factors f on the 
test set axons from the mouse cortext dataset1. (f = 1.5).
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Extended Data Fig. 2 | Connectomic analyses compared across 
reconstruction states. Analyses based on EM data and reconstructions from 
Motta et al.1 (a) Paired same-axon same-dendrite analysis yielding similar 
fractions of paired synapses that are consistent with Hebbian learning.  
(b) Spine rate analysis yielding underestimates of apical dendrite spine densities 
for the reconstruction state before RoboEM or manual-annotation-based spine 

attachment. (c) Connectomic definition of excitatory and inhibitory axons with 
at least 10 synapses based on fraction of primary spine innervation, compared for 
the automated state (AutoAggl.) before RoboEM, the manual-annotation-based 
split and merge resolution of axons, and RoboEM application. (d) Axonal target 
specificities of excitatory and inhibitory axons.
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Extended Data Fig. 3 | Reconstruction difficulty in proximal (soma-seeded) 
vs. dense (randomly-seeded) axons. Split and merge error rates for random 
and soma-seeded axons in the two published FFN-segmentations on multiSEM 
data from human cortex18. Note that soma-seeded axons are substantially less 

error-prone and therefore not representative for dense axon reconstruction 
performance (proximal axons are usually wider and less convoluted, thus easier 
to reconstruct).
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