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Spatially resolved omics technologies are transforming our understanding of 
biological tissues. However, the handling of uni- and multimodal spatial omics 
datasets remains a challenge owing to large data volumes, heterogeneity of 
data types and the lack of flexible, spatially aware data structures. Here we 
introduce SpatialData, a framework that establishes a unified and extensible 
multiplatform file-format, lazy representation of larger-than-memory data, 
transformations and alignment to common coordinate systems. SpatialData 
facilitates spatial annotations and cross-modal aggregation and analysis, the 
utility of which is illustrated in the context of multiple vignettes, including 
integrative analysis on a multimodal Xenium and Visium breast cancer study.

The function of biological tissues is strongly linked to their composition 
and organization. Advances in imaging and spatial molecular profiling 
technologies enable the addressing of these questions by interrogating 
tissue architectures with ever-growing comprehensiveness, resolution 
and sensitivity1,2. Existing spatial molecular profiling methods quantify 
DNA, RNA, protein and/or metabolite abundances in situ3,4. Several of 
these technologies employ light microscopy, providing spatial resolu-
tion of morphological features at length scales from the subcellular to 
entire organisms. Spatial omics technologies are advancing rapidly, and 
individual data modalities and methods feature distinct advantages 

and limitations such as trade-offs in spatial resolution, the extent of 
molecular multiplexing and detection sensitivity. The ability to effi-
ciently integrate and then operate on data from different spatial omics 
modalities promises to be instrumental for the construction of holistic 
views of biological systems.

While progress has been made in the analysis of individual spatial 
omics datasets, integration of uni- and multimodal spatial omics data 
entails important practical challenges not sufficiently addressed by 
existing solutions5–7 (Extended Data Table 1, Supplementary Note 1 
and Supplementary Table 1). Even basic operations such as loading of 
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such as Scanpy14, Squidpy15 and scvi-tools16 can be used for analysis of 
SpatialData objects (Fig. 1f and Supplementary Fig. 2). Taken together, 
the SpatialData framework provides infrastructure for the integration 
and analysis of spatial omics data.

To illustrate the utility of SpatialData for multimodal integra-
tion and analysis, we used the framework to represent and process 
data from a breast cancer study that combines hematoxylin and eosin 
(H&E) images and 10x Genomics Visium and Xenium assays17. The 
study comprises two in situ sequencing datasets (Xenium) and one 
spatial transcriptomics dataset (10x Visium CytAssist) from consecu-
tive sections of a breast cancer tumor. First we used napari-spatialdata 
to define landmark points present in all datasets, followed by alignment 
of all three datasets using transformations to define a CCS (Fig. 2a). As 
a result of the alignment, SpatialData enabled us to identify the com-
mon spatial area, which can be accessed using SpatialData queries 
across datasets.

Next we used the collective information from all three datasets 
to create a shared set of spatial annotations. Briefly, we selected four 
regions of interest (ROIs) based on histological features present in the 
H&E image using napari-spatialdata (Extended Data Fig. 6). We then 
used genome-wide transcriptome information in Visium to estimate 
copy number states (using CopyKat18) and to annotate major genetic 
subclones. Finally we annotated cell types in two Xenium replicates 
by transferring cell-type labels from an independent breast cancer 

datasets into analysis pipelines in a coherent manner is hampered by 
the diversity in data types (for example, tabular data for sequencing 
and tens- to hundreds-of-gigabyte dense arrays for images) and file for-
mats (for example, technology-specific vendor formats). In addition, 
individual spatial omics modalities can differ vastly in spatial resolu-
tion and the spatial regions for data acquisition in a tissue are often not 
aligned. Thus, for integration of such data they must be appropriately 
transformed and aligned to a common coordinate system (CCS), which 
is a prerequisite for the establishment of global common coordinate 
frameworks (CCFs)8. Finally, untangling the complexity of multimodal 
spatial omics datasets requires expert knowledge and motivation 
of approaches that enable large-scale interactive data exploration 
and annotation. Thus, to unlock the full potential of emerging spatial 
multiomics studies2,9 there is a need for computational infrastructures 
to store, explore, analyze and annotate data across the full breadth of 
spatial omics technologies with a unified programmatic interface.

The SpatialData framework enables the findable, accessible, inter-
operable, reusable (FAIR)10 integration of multimodal spatial omics 
data. A language-independent storage format increases the interop-
erability of data sources while the Python library standardizes access 
of, and operation across, different data types. The SpatialData format 
supports all major spatial omics technologies and derived quantities 
(Fig. 1a,c, Supplementary Note 2 and Supplementary Table 2). Briefly, 
spatial datasets are represented using five primitive elements: Images 
(raster images), Labels (for example, raster segmentation masks), 
Points (for example, molecular probes), Shapes (for example, polygon 
regions of interests, array capture locations and so on) and Tables (for 
example, molecular quantifications and annotations) (Supplementary 
Tables 2 and 3). The file format also tracks coordinate transformation 
or alignment steps applied to individual datasets. Dataset collections 
can be stored within a single SpatialData store, thereby facilitating 
joint integrative analyses. The SpatialData format builds on the Open 
Microscopy Environment–Next-Generation File Format (OME–NGFF) 
specifications and leverages the Zarr file format (Supplementary Fig. 1), 
thereby offering performant, interoperable access for both traditional 
file system- and cloud-based storage11,12 (Supplementary Note 3).

The SpatialData Python library represents this format as 
SpatialData objects in memory, which supports lazy loading of 
larger-than-memory data (Fig. 1b). The library also provides reader 
functions for widely used spatial omics technologies (Fig. 1c and Sup-
plementary Table 3), as well as versatile functionalities for manip-
ulating and accessing SpatialData objects and to define CCSs of 
biological tissues8. Briefly, each individual dataset is associated with 
a modality-specific coordinate transformation (Fig. 1b) that includes 
affine transformations and composite operations. Once aligned, a 
collection of datasets can be queried (Extended Data Fig. 1) and aggre-
gated (Extended Data Fig. 2)—for example, using spatial annotations 
at diverse scales (cells, grids, anatomical regions) and both within and 
across modalities. The query and aggregation interfaces also allow for 
the creation of new datasets grouped by biologically informed fac-
tors from large dataset collections, thereby facilitating exploration, 
selected data sharing and access.

SpatialData has a napari plugin for interactive annota-
tion (napari-spatialdata; Fig. 1d and Extended Data Fig. 3). The 
napari-spatialdata plugin can be used for the interactive definition of 
spatial annotations such as drawing regions of interest, or to define 
landmarks for guiding multidataset registration. Static figures and 
graphics can be created using the spatialdata-plot library (Extended 
Data Fig. 4).

The SpatialData library integrates seamlessly with the Python eco-
system by building on standard scientific Python data types. We have 
implemented a PyTorch Dataset class to effectively train deep learning 
models directly from SpatialData objects (Fig. 1e, Supplementary Note 
4 and Extended Data Fig. 5). Further, thanks to the modular nature of 
the data representation, analysis packages in the scverse13 ecosystem 
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Fig. 1 | Design overview and core functionality of SpatialData. a, The 
SpatialData storage format represents raw and derived data from a wide range of 
spatial omics technologies in a unified manner. The format builds on five primitive 
elements (SpatialElements), which are serialized to a Zarr store in an OME–NGFF-
compliant manner. b, The SpatialData Python library implements operations for 
data access, alignment, queries and aggregation of spatial datasets. Coordinate 
transformations can be specified to align multiple modalities to a CCS, allowing 
for deployment of spatial queries and aggregation operators across modalities.  
c, SpatialData is compatible with common data formats, including vendor-specific 
file formats. Collections of datasets can be stored in a single Zarr store and are 
represented as a SpatialData object. d, Datasets stored in SpatialData format 
can be annotated interactively using the integrated napari-spatialdata plugin; 
SpatialData provides functionality for the generation of both interactive and static 
plots. e, SpatialData implements a PyTorch Dataset class, thereby facilitating the 
training of deep learning models directly from SpatialData objects. f, SpatialData 
builds on established standards and software, thereby providing interoperability 
with existing multimodal analysis approaches including Squidpy15, Scanpy14, 
MONAI23 and scvi-tools24, among others.
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single-cell RNA sequencing (scRNA-seq) atlas19 (ingest, implemented 
in scanpy14; Fig. 2b).

To exemplify how SpatialData can be used to transfer spatial anno-
tations between datasets, we considered the masks from Visium capture 
locations and aggregated cell-type information from the overlapping 

Xenium cells to estimate cell-type fractions at each location. For com-
parison we also considered a deconvolution-based analysis of Visium 
counts (using cell2location20) with the same scRNA-seq-derived cell 
types19 as reference. We observed high concordance of cell-type abun-
dance estimates between Xenium replicates (median Pearson’s R = 0.88 
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across Visium locations) and overall good agreement between Xenium- 
and deconvolution-based estimates (median Pearson’s R = 0.69).

Analogous to the aggregation at Visium locations, we considered 
ROIs defined from H&E and areas defined by the union of subclone loca-
tions from Visium (Fig. 2d and Supplementary Fig. 3a). Again we quan-
tified cell-type fractions within each region, either directly using cell 
count fractions from Xenium or via deconvolution of the correspond-
ing Visium data. The two Xenium replicates showed high concordance 
of cell-type fractions, and Xenium and Visium were consistent.

As a second aggregation use case we compared expression esti-
mates for individual genes at Visium capture locations using either 
Xenium or Visium data. We again transferred Visium capture locations 
to aggregate individual molecule counts from Xenium into the Visium 
masks (Fig. 2e and Supplementary Fig. 3b). As expected, the aggregated 
counts were highly concordant between Xenium replicates (median 
Pearson’s R = 0.62; Fig. 2e and Supplementary Fig. 3c–e) and, to a lesser 
extent, between Xenium and Visium counts (median Pearson’s R = 0.48; 
Supplementary Fig. 3c–e). We also noted a direct relationship between 
overall transcript abundance and the agreement between different 
tissue sections and technologies (Fig. 2e).

In sum, these examples illustrate the flexibility of the aggregation 
functionality that can be applied between SpatialElements of different 
kinds (points, circular capture locations, cells and larger anatomical 
ROIs) to transfer diverse types of spatial annotation (cell expression, 
cell-type fractions). Further examples and advanced-use cases of Spa-
tialData aggregation operations are discussed in Extended Data Fig. 2.

SpatialData facilitates the processing of a wide range of uni- and 
multimodal datasets. The online documentation of SpatialData comes 
with vignettes that illustrate additional use cases. For example, we illus-
trate how SpatialData can serve as a backend to facilitate the training of 
deep learning models (Extended Data Fig. 5 and Supplementary Note 
4), and to conduct downstream analysis using spatial interpretation 
tools such as Squidpy (Supplementary Fig. 2). As a starting point for 
using SpatialData in conjunction with different technologies, we also 
currently provide preformatted SpatialData objects from >40 datasets 
acquired by eight technologies (Supplementary Table 2). Interactive 
annotation can be performed on both single- and multimodality data-
sets. Finally we explored how SpatialData can align multiple fields of 
view into a global reference coordinate system by mapping 12 Visium 
slides to a large prostate section (Extended Data Fig. 7). Further infor-
mation, including comprehensive documentation of the SpatialData 
Python library, tutorials, example datasets and a contributor guide, is 
available online (https://spatialdata.scverse.org).

Here we present SpatialData, a flexible, community standards- 
based framework for storage, processing and annotation of data from 
virtually any spatial omics technology available to date. The ability to 
flexibly create common coordinate systems by aligning datasets is a 
critical cornerstone to establishing comprehensive CCFs, which will 
unlock new analysis approaches that facilitate robust comparison 
and reuse of samples across studies. In conclusion, the flexibility and 
readily accessible solutions provided by the SpatialData framework 

enable new possibilities in analysis and enhance the reproducibility 
of integrated spatial analysis.

As the uptake of SpatialData continues to grow its utility will 
increase further. Ongoing developments (discussed in Supplementary 
Notes 5 and 6) extend the interoperability of SpatialData with R/Bio-
conductor21, provide support for multiscale point and polygon repre-
sentations—such as polygonal meshes and five-dimensional volumetric 
images (that is, czyx images with an additional time component)—and 
support cloud-based data access both programmatically and via the 
visualization tool Vitessce22. In summary, SpatialData provides an open 
and universal data framework for spatial omics.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
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Methods
SpatialData framework
The SpatialData framework comprises a core package, spatial data and 
associated satellite packages napari-spatialdata, spatialdata-io and 
spatialdata-plot, compatible with Python 3.9 and above. All code is 
available on GitHub as part of the scverse organization and is licensed 
under the permissive ‘BSD 3-Clause License’. The project structures 
inherit from the scverse cookiecutter and the napari plugin cookiecut-
ter, thus implementing unit tests and precommit checks in a continuous 
integration setting. The documentation is built using Sphinx and hosted 
on Read the Docs. It includes application programming interface (API) 
descriptions, example notebooks and a table with links to downloadable 
spatial omics datasets. Each dataset can be downloaded in full (.zip) or 
even directly accessed from the cloud (public S3 storage). Documenta-
tion, tutorials and sample data can be found in the links below.

•	 Documentation: https://spatialdata.scverse.org
•	 Installation instructions: https://spatialdata.scverse.org/en/lat-

est/installation.html
•	 Tutorials: https://spatialdata.scverse.org/en/latest/tutorials/

notebooks/notebooks.html
•	 Sample data: https://spatialdata.scverse.org/en/latest/tutorials/

notebooks/datasets/README.html

We also provide a contribution guide and technical design docu-
ment to encourage adoption. Users can reach out to the core develop-
ment team via the GitHub Issues bug-tracking system. To encourage 
collaboration between the imaging and scverse communities we have 
created a public chat stream on the imagesc Zulip messaging platform: 
https://imagesc.zulipchat.com/#narrow/stream/329057-scverse.

SpatialData framework dependencies
The framework depends on routinely used Python libraries. In detail, 
the spatialdata package depends on networkx, numpy (scientific stack), 
anndata (single-cell data), dask-image, multiscale-spatial-image, 
ome-zarr-py, spatial-image, xarray, xarray-schema, xarray-spatial, 
zarr (raster spatial data), geopandas, pyarrow, pygeos, shapely (vector 
spatial data), fsspec, rich, tqdm, typing_extensions (utilities) and torch 
(deep learning, optional dependency).

The satellite packages spatialdata-io, spatialdata-plot and 
napari-spatialdata require additional dependencies; we refer the reader 
to the Reporting Summary for a complete list, and to the pyproject.toml 
and setup.cfg files of the corresponding GitHub repositories for the most 
up-to-date list, as the packages and their dependency continuously evolve.

All packages in the SpatialData framework are routinely published 
to PyPI via GitHub Actions and, as such, pip can be used readily to 
install the software and all its dependent libraries. Conda support is 
in preparation.

Raw human breast cancer Xenium and Visium data
We downloaded the raw data from https://www.10xgenomics.com/
products/xenium-in-situ/preview-dataset-human-breast.

Loading Xenium and Visium datasets into SpatialData
The 10x Xenium and Visium readers from spatialdata-io were used to read 
the data into SpatialData objects. For the Xenium datasets, the DAPI chan-
nel was stored as a multiscale Image, cell and nuclei segmentation masks 
and boundaries were stored as Shapes elements whereas the transcripts 
were stored as Points. The metadata and count matrices were stored as a 
Table in the SpatialData object. For the Visium dataset, the H&E image was 
stored as a multiscale Image, the array capture areas (circles) were stored 
as Shapes and the count matrix and annotations were stored in the Table.

Cell-type annotation of Xenium replicates
We annotated cells from Xenium replicates using a publicly available 
scRNA-seq breast cancer atlas19 comprising nine malignant and normal 

cell types and 29 subtypes. After subsetting the atlas to the subset of 
313 genes present in the Xenium panel, we applied the ingest method for 
label transfer as implemented in the Scanpy package (v.1.9)14 to anno-
tate cells from the Xenium replicates. We transferred major cell-type 
labels first (coarse grained) and then within each class we mapped 
minor cell types (fine grained). In the current analysis only major cell 
types are shown. The nine major cell types are B cells, cancer-associated 
fibroblasts (CAFs), cancer epithelial, endothelial, normal epithelial, 
plasmablasts and perivascular-like cells (PVL) and T cells.

Alignment to create common coordinate systems
We selected three landmark points from the images from the two 
Xenium replicates and the Visium dataset. Landmark points are to be 
selected on each of the images in the same order and there should be 
a 1-to-1 spatial correspondence between sets of points. Xenium repli-
cate 1 was used as the reference to which Xenium replicate 2 and Visium 
were aligned using the SpatialData function align_elements_using_land-
marks. We used napari-spatialdata to annotate the landmark points 
and to view the result of alignments. Internally, Dask’s lazy-loading 
and Zarr’s multiscale representation made it possible to performantly 
explore and zoom the datasets, even in a low-memory device like a 
standard laptop.

Computation of cell-type fractions for Visium
Following alignment, the shared area between each cell and from 
the Xenium replicates and Visium locations was computed. Cell-type 
fractions were then computed for each Visium location based on the 
surface fractions of the locations covered by each cell type. This was 
done using the SpatialData aggregate function with fractions=True, 
and was performed separately for Xenium replicates 1 and 2.

Cell-type deconvolution using cell2location
We used cell2location (v.0.1.3)20 to estimate cell-type fractions at Visium 
locations, with the aforementioned breast cancer atlas as the refer-
ence. For this task we operated on the subset of 313 genes present in 
the Xenium replicates and subset the Visium dataset and breast cancer 
atlas to those genes. We set the default parameters as suggested in the 
cell2location tutorial (https://cell2location.readthedocs.io/en/latest/
notebooks/cell2location_tutorial.html). The analysis can be found at 
https://github.com/scverse/spatialdata-notebooks/tree/main/note-
books/paper_reproducibility. For visualization, only cell types contrib-
uting at least 5% per Visium capture location were taken into account 
then the quantity at each location was normalized to have a total of 1.

ROI selection with napari-spatialdata
Following alignment, four ROIs were selected based on the H&E image 
from the Visium dataset using the napari-spatial data plugin, and these 
ROIs were then added to the aligned Xenium replicates. Each ROI was 
selected based on its distinct microanatomical characteristics and then 
labeled manually based on the underlying cell-type composition from 
the Xenium replicates.

Clone detection on Visium using CopyKat
We used CopyKat (v.1.1.0)18 with default parameters to estimate copy 
number states from the Visium count matrix followed by hierarchi-
cal clustering, which identified three major clusters on the locations 
labeled as ʻaneuploidʼ; these three clusters were used as genetic sub-
clones. We also transferred clone labels to overlapping cells from 
Xenium replicates; these labels were stored as a SpatialData table 
element. This analysis was conducted in R separately (the notebooks 
repository: https://github.com/scverse/spatialdata-notebooks/tree/
main/notebooks/paper_reproducibility).

Visium’s anndata table was saved in .h5ad AnnData format14,25 for 
loading and analysis in R, and clone labels were then transferred back 
to SpatialData via .h5ad. There are ongoing efforts in the Bioconductor 

http://www.nature.com/naturemethods
https://spatialdata.scverse.org
https://spatialdata.scverse.org/en/latest/installation.html
https://spatialdata.scverse.org/en/latest/installation.html
https://spatialdata.scverse.org/en/latest/tutorials/notebooks/notebooks.html
https://spatialdata.scverse.org/en/latest/tutorials/notebooks/notebooks.html
https://spatialdata.scverse.org/en/latest/tutorials/notebooks/datasets/README.html
https://spatialdata.scverse.org/en/latest/tutorials/notebooks/datasets/README.html
https://imagesc.zulipchat.com/#narrow/stream/329057-scverse
https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast
https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast
https://cell2location.readthedocs.io/en/latest/notebooks/cell2location_tutorial.html
https://cell2location.readthedocs.io/en/latest/notebooks/cell2location_tutorial.html
https://github.com/scverse/spatialdata-notebooks/tree/main/notebooks/paper_reproducibility
https://github.com/scverse/spatialdata-notebooks/tree/main/notebooks/paper_reproducibility
https://github.com/scverse/spatialdata-notebooks/tree/main/notebooks/paper_reproducibility
https://github.com/scverse/spatialdata-notebooks/tree/main/notebooks/paper_reproducibility


Nature Methods

Brief Communication https://doi.org/10.1038/s41592-024-02212-x

community to enable direct loading of anndata tables into R from Zarr, 
such as anndataR26, which would obviate the need for exporting as.h5ad 
(HDF5 format) when completed.

ROI cell-type fractions
We next computed, for each ROI and clone, the fractions of cell types 
for the cells contained within them. The SpatialData aggregation APIs 
offer a convenient interface to compute these metrics, independently if 
what is being aggregated is a set of circles or polygons, and if the target 
region is a polygonal ROI or a set of circles defining a particular clone.

Transcript aggregations
For each Visium capture location we aggregated transcripts from the 
Xenium replicates falling into each Visium location; we performed 
this analysis for Xenium replicates 1 and 2 separately. This yielded 
two aggregated count matrices that were saved as separate layers in 
Visium’s SpatialData objects table.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
We converted several example datasets to Zarr using the SpatialData 
package. At the time of writing we included data from the following 
technologies: NanoString CosMx, 10x Genomics Xenium, 10x Genomics 
Visium, CyCIF, MERFISH, MIBI-TOF and Imaging Mass Cytometry. The 
scripts used to convert data, as well as the converted data, are acces-
sible from https://spatialdata.scverse.org/en/latest/tutorials/note-
books/datasets/README.html. For an overview of the datasets and their 
respective source publication please refer to Supplementary Table 2.

Code availability
SpatialData is available as a Python package via pip, and comes with 
an extensive set of examples and tutorials that can be accessed from 
the documentation at https://spatialdata.scverse.org. Furthermore, 
the documentation also includes a contribution guide for research-
ers interested in participating in the design and implementation of 
the framework. All scripts used to reproduce the analyses included in 
this manuscript can be downloaded from the spatialdata-notebook 
repository: https://github.com/scverse/spatialdata-notebooks/tree/
main/notebooks/paper_reproducibility.
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Extended Data Fig. 1 | Illustration of the SpatialData query function.  
To facilitate analyses on large datasets, SpatialData enables the selection of 
distinct regions within a dataset. The spatial query interface allows users to 
request the data contained in a query region, which can be specified both as a 
bounding box or a polygonal region. The query region can be specified using  
any of the coordinate systems present in the SpatialData object. The query 
operator returns a derived SpatialData object that contains the data within the 
query region for all layers, including the corresponding table annotations.  
The bounding box spatial query can be performed in 2D for all elements  

or in 3D for raster elements (that is, Image and Labels) and points; extended 
discussion on 3D queries is presented in Supplementary Note 6. Shown are code 
excerpts from the spatial query tutorial. This specific tutorial explains how 
a region of interest can be specified, such as rectangular bounding boxes or 
defined via polygonal shapes, and how the data underlying the specified query 
region can be retrieved. The full example can be found in the ‘spatial query’ 
notebook in the online documentation (https://spatialdata.scverse.org/en/
latest/tutorials/notebooks/notebooks/examples/spatial_query.html).
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Extended Data Fig. 2 | Schematic representation of the SpatialData 
aggregation operations. Aggregation operations are the foundation to flexibly 
transfer quantifications and annotations across modalities when conducting 
multimodal analyses. SpatialData enables the aggregation (also referred to as 
accumulation in image processing) of data stored in any SpatialElement into 
any set of target geometries or masks. Example applications include count 
aggregation of the number of single molecules for a specific gene within  
polygon geometries representing cells. Similarly, molecule counts within  
image masks representing the cytoplasm of the cells. Another example is 
averaging cell gene expression within a given anatomical region (see also main 

text Fig. 2). Predefined aggregation operators (count, sum, mean, standard 
deviation) can be applied to any SpatialElement. Additionally, SpatialData 
supports the definition of user-specified aggregation operators. Leveraging 
common coordinate systems, aggregation operations can be applied to 
collections of datasets, including across datasets with different spatial scales 
and/or partially overlapping datasets. Tutorials on how to use the aggregation 
system are available as part of the SpatialData online documentation (https://
spatialdata.scverse.org/en/latest/tutorials/notebooks/notebooks/examples/
aggregation.html).
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Extended Data Fig. 3 | Example of using napari-spatialdata to visualize 
and annotate spatial datasets. Napari-spatialdata enables the interactive 
visualization of SpatialElements (Images, Labels, Points, Shapes) together 
with associated annotations (such as gene expression, cluster annotations 
etc.). Embeddings of molecular profiles (for example, t-SNE, UMAP) can be 
interactively queried via the scatter plot widget. Spatial annotations can 
be interactively created via drawing of regions in the napari viewer. The 
corresponding annotations are then exported into the underlying SpatialData, 

facilitating their use in downstream analyses. a. NanoString CosMx dataset 
and interactive selection with a lasso from the UMAP plot computed from 
the cell gene expression and colored by Leiden clusters. The lasso tool in the 
scatterplot windows is used to annotate a set of cells. The annotation can be 
visualized in space and can be exported for downstream usage. b. MERFISH 
mouse brain dataset (Allen Institute prototype MERFISH pipeline35) featuring 
gene expression, polygonal ROIs annotating anatomical regions and cell types 
assigned to single molecule points.

http://www.nature.com/naturemethods


Nature Methods

Brief Communication https://doi.org/10.1038/s41592-024-02212-x

Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Illustration of the static plotting library spatialdata-
plot. The spatialdata-plot library enables the streamlined visualization of 
complex multi-modality data. The set of elements to be rendered (Images, 
Labels, Points, Shapes), as well as specific parameters for plotted elements can be 
specified by the user. For example, Shapes representing cells can be annotated by 

the expression level of a target gene. The plotting library automatically accounts 
for transformations and alignments of the underlying common coordinate 
system. Tutorials how to use spatialdata-plot are available as part of the online 
documentation (Section ‘Visualizations’, https://spatialdata.scverse.org/en/
latest/tutorials/notebooks/notebooks.html).
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | SpatialData facilitates the preparation of datasets 
for deep learning applications and it integrates with existing deep learning 
ecosystems. (a) Building on the query interface, SpatialData allows to generate 
PyTorch datasets that represent tiles of the original SpatialData. Shown is an 
example use case, using tiles centered on cells to train a DenseNet encoder 
model for supervised cell-type prediction. The specific model architecture, 
without weights, is provided by the MONAI framework, and this example shows 
how we can readily interface with existing deep learning ecosystems. (b) The 
effective definition of deep learning datasets can harness common coordinate 
systems to allow for the combination of different spatially aligned elements. 
Shown are H&E image and Xenium replicate 1 aligned datasets precedently 
introduced in main text Fig. 2a. (c) Enlarged view of a subset of the two datasets, 
overlaying the cells from Xenium, colored by cell type, to the H&E image from 
Xenium. SpatialData allows to extract image tiles of the desired resolution (here 

32x32 pixels) around the Xenium cells. (d) The tiling extraction process takes 
advantage of the multiscale representation and the chunked Zarr storage for 
efficient memory usage. The first allows the extraction of the tiles from the 
appropriate (downscaled) resolution, the second ensures that only the data 
chunk(s) containing the information about the tiles are loaded from disk. Note: 
the 500x and 1000x downscaling factors and the size of the chunks have been 
chosen for illustrative purposes. (e) Visualization of cell-type labels predicted 
by the model. Note: due to the illustrative purpose of this example, focusing on 
the demonstration of the infrastructure, network training has been limited to a 
small number of epochs, and systematic hyperparameter optimization has been 
omitted. This is reflected in the suboptimal accuracy of the predictions. The full 
example can be found in the online documentation (https://spatialdata.scverse.
org/en/latest/tutorials/notebooks/notebooks/examples/densenet.html).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Napari-based visualization of the Visium and the two 
Xenium datasets from the breast cancer study presented in main text. (a) 
H&E image from the Visium dataset annotated with the ROIs for anatomically 
relevant tissue compartments. (b) Multimodal visualization of the H&E image 
from the Visium data, the two immunofluorescence images associated with the 
Xenium data, the Visium array capture locations colored by gene expression 
(showed with transparency), the Xenium cells showing cell types and the four 

manually annotated ROIs. (c) Visualization of the clone annotations estimated 
from Visium count data. Dedicated tutorials on how to use napari-spatialdata to 
align different modalities via landmark-based annotation and how to manually 
draw regions of interest, can be found in the online documentation (https://
spatialdata.scverse.org/en/latest/tutorials/notebooks/notebooks/examples/
alignment_using_landmarks.html, https://spatialdata.scverse.org/en/latest/
tutorials/notebooks/notebooks/examples/napari_rois.html).
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Extended Data Fig. 7 | Example of using SpatialData to combine multiple 
datasets from a prostate cancer study into a common coordinate system. 
Shown is a common coordinate system constructed using data from  
Erikson et al.36. The study comprises multiple Visium H&E and Spatial 
Transcriptomics36 datasets from multiple tissue samples, with partially 
overlapping fields-of-view distributed across the tissues. (a) Spatial layout of the 
15 fields-of-view for the Visium experiments for one of the tissues. Coordinate 
transformations used to align the fields-of-view were derived using SpatialData 
(landmark-based alignment), by aligning each image to the global layout image 
available from the original publication. (b) Screenshot of the visualization of all 
Visium datasets for one of the tissue samples in the context of the whole tissue 
coordinate system using napari-spatialdata. (c) The SpatialData multiscale image 

representation, napari-spatialdata allows to view and interactively explore all of 
the large images (15 images, ≈ 580 megapixels each) aligned together with the 
spatial gene expression. We can also visualize multiple modalities together,  
such as adding to the view also the Spatial Transcriptomics data. The full example 
can be found in (https://github.com/scverse/spatialdata-notebooks/blob/main/
notebooks/paper_reproducibility/lundeberg.ipynb), and a dedicated tutorial  
on coordinate transformation can be found in the online documentation  
(https://spatialdata.scverse.org/en/latest/tutorials/notebooks/notebooks/
examples/transformations.html). The layout image used in the background 
in panels A and B is in the original publication36 under the Creative Commons 
Attribution 4.0 International License. To view a copy of this license, visit  
http://creativecommons.org/licenses/by/4.0/.
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Extended Data Table 1 | Comparison of alternative spatial omics analysis frameworks

Shown are existing frameworks (rows), classified by their primary target goal (analysis framework versus database), access mode as well as supported data types, operations and interactive 
visualization capabilities. The following frameworks are considered: Voyager28 (SpatialFeatureExperiments), SpatialExperiment29, Giotto30, MoleculeExperiment31, SODB32, STOmicsDB33, 
emObject34, Squidpy15. The Giotto ‘Points aggregation’ is classified as partial because the current implementation is limited to a regular grid as target geometry for aggregation. The SODB 
‘geometry interaction’ is classified as partial as it is accessible via the web interface only, but not in programmatic fashion.
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