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PoinTs oF signiFicAnce

uncertainty and the management of epidemics
“I have no idea what’s awaiting me, or what will happen when this all ends. For the moment I know this: there are 
sick people and they need curing.” ―Albert Camus, The Plague

Katriona shea, ottar n. Bjørnstad, Martin Krzywinski and naomi Altman

Health policy is hampered by 
uncertainty. During a novel outbreak, 
much is uncertain: the mode of 

transmission; the duration of latency, 
infection and immunity; and whether the 
outbreak will fade or turn into an epidemic. 
The uncertainty may be structural (which 
model is most appropriate?), parametric 
(what is the basic reproduction number, R0?) 
and/or operational (what is the potential 
efficacy of a vaccine?). This month, we 
discuss how uncertainty affects forecasts 
of disease dynamics1,2 and optimization of 
intervention strategies.

Some model uncertainties will matter 
more than others, depending on our 
purpose. If early results suggest an R0 
between 1.5 and 4.0, we already have 
sufficient information to justify mobilizing 
an epidemic taskforce since R0 > 1. However, 
we need more biological information to 
forecast the outbreak magnitude.

This information will accrue over time, 
and estimates of fast rates will be the first to 
be assessed. The latent (1/σ) and infectious 
(1/γ) periods can be determined quickly 
from patients. In contrast, to estimate 
immunity duration might take years. A 
priority in studying the outbreak is to 
identify and reduce the uncertainties that 
have the largest impact on forecasts or 
decisions. We here explore how uncertainty 
affects the timing and magnitude of the 
first and second infection waves and the 
cumulative burden of disease, B (number 
of infection events from the start of the 
epidemic).

Sensitivity analysis highlights which 
uncertainties most strongly impact our 
projections of disease dynamics. Consider a 
novel outbreak that starts in early January. 
Let’s assume a precise estimate of 1/σ = 
1/γ = 7 days and explore the sensitivity to 
uncertainty in R0 = 1.5–4.0 and an average 
immunity duration that can be either short 
(1/ω = 1 year) or long (1/ω = 2 years). 
Figure 1 shows the infection waves projected 
by an SEIRS2 model for these scenarios.

R0 has a strong effect on the position 
and height of the first peak: lowering R0 
through mitigation decreases and delays the 
peak1,2. The first peak is largely unaffected 

by immunity duration because loss of 
immunity is a slower process than infection 
and recovery. Thus, parametric uncertainty 
about immunity does not hamper the 
forecast of the initial peak. The first peak is 
also unaffected by structural uncertainty: 
trajectories of the permanent immunity 
(SEIR) and waning immunity (SEIRS) 
models are initially very similar.

The timing of the second wave, however, 
is affected by both R0 and waning of 
immunity. Thus, uncertainty may be very 
consequential for long-term forecasts and 
public health outcomes, especially if, for 
example, coinfections and hospital capacity 
are major determinants of mortality and 
morbidity. For a severe outbreak (R0 = 4) 
with short immunity, the second wave is 
projected to occur in the middle of the  
next flu season (t = 0.95 years; Fig. 1a), 
whereas if immunity is long, it is projected 
to occur during the following summer  
(t = 1.51 years; Fig. 1b), when respiratory 

coinfections are of lesser concern. If the 
outbreak is less severe or R0 is reduced by 
social distancing (R0 = 1.5), the second wave 
occurs substantially later, and in summer, 
for both immunity durations (t = 2.34 and 
t = 3.47 years, respectively), by which time 
effective vaccines or treatments may have 
been developed.

Estimates of cumulative disease burden, 
B, are greatly influenced by uncertainty in 
both R0 and immunity duration. We will 
express all subsequent burdens normalized 
to the 4-year cumulative burden of the short 
immunity scenario at R0 = 4 (B = 3.59 = 
100%, Fig. 1). For short immunity, reducing 
R0 from 4 to 1.5 lowers B to 42.8% (Fig. 1a). 
Similarly, increasing immunity duration 
from 1 to 2 years at R0 = 4 lowers B to 61.8%, 
and lowering R0 to 1.5 further lowers B to 
28.8% (Fig. 1b).

The impact of uncertainty about 
immunity duration can be influenced 
by vaccination. Suppose we vaccinate a 
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Fig. 1 | the effect of R0, and immunity duration on disease burden and trajectory. a, SeIrS simulation 
of the infected fraction (filled curve) and normalized cumulative disease burden (B, line) for an outbreak 
with 1/σ = 1/γ = 7 days, short (1-year) immunity duration, and R0 = 1.5 (blue) or R0 = 4 (orange). peak 
times are shown by colored circles on the time axis and the positions of the first and second peaks 
across the range R0 = 1.5–4 are traced with black lines. Gray bars indicate November–February peak  
flu season assuming t = 0 is 1 January. Cumulative burden is normalized by burden at t = 4 years for  
R0 = 4 (B = 3.59). b, Same as in a but for long (2-year) immunity duration. SeIrS simulations with  
1/µ = 76-year life expectancy, over 4 years and initial values of susceptible S(0) = 0.999, exposed  
E(0) = 0, infected I(0) = 0.001 and recovered R(0) = 0 fractions.
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percentage p of the population each year. 
The effect of even a low p = 30% on the 
burden is stark: we can achieve the same 
42.8% burden projected for short immunity 
and R0 = 1.5 at a higher R0 = 1.86 (Fig. 2a). 
In the case of long immunity, we can achieve 
42.8% at R0 = 2.96. In fact, a combination 
of partially effective vaccination and low R0 
may shut down transmission altogether. For 
long immunity and R0 = 1.5 this happens at 
p = 26%; there is only one peak and 99.9% 
of all cases occur in the first 2 years.

Just as we study the sensitivity of our 
forecasts to uncertainty, we can ask how 
uncertainty affects our management 
decisions. Suppose we can implement one 
of three mitigation actions: strong social 
distancing with no vaccination (action A1,  
R0 = 1.5, p = 0%), intermediate distancing 
with low vaccination (action A2, R0 = 2,  
p = 30%) and slight distancing with stronger 
vaccination (action A3, R0 = 2.5, p = 45%), 
but are faced with uncertainty about 
immunity duration, which can be either 
short (model M1, 1 year) or long (model 
M2, 2 years) (Fig. 2b). How should we go 
about choosing an action, without knowing 
which model is better? Under M1, choosing 
A1 yields the lowest B, 42.8%, but if M2 is 
correct, then A2 gives the best outcome,  
B = 21.9% (Fig. 2c).

The impact of uncertainty about 
immunity duration on our choice of strategy 
can be expressed using the expected value 
of perfect information (EVPI)3, which is 
the potential improvement in outcomes 
that could be obtained if the uncertainty is 

resolved before making a decision. In other 
words, by how much could we potentially 
lower B if we knew which model best  
reflects reality?

To calculate EVPI, we first consider the 
best outcome in the presence of uncertainty. 
Though we do not know whether model 
M1 or M2 is better, we can dismiss action A3 
because its outcome is worst for both models. 
Focusing on A1 and A2, we first find the 
optimum average B over each action: for A1 
we have avgi(B) = 35.8% and for A2 we have 
avgi(B) = 35.7%, and the optimum is the 
latter (Fig. 2c). Thus, if uncertainty cannot 
be resolved before making a decision, and 
assuming long and short duration immunity 
are equally likely, the best action is A2.

However, if we have perfect knowledge 
about immunity duration, we can choose a 
strategy that optimizes B for each model. For 
M1 we have optj(B) = 42.8% (A1 is better) 
and for M2 we have optj(B) = 21.9% (A2 is 
better), and the average of these is 32.4% 
(Fig. 2c). We have used an equal-weight 
average, but if information about the 
likelihood of different models is available, 
the average can be weighted accordingly. 
The EVPI is the difference between the best 
of the averages and the average of the best: 
35.7 – 32.4 = 3.3%. This may seem small, 
but in the context of the US population it 
corresponds to about 10 million fewer cases 
over 4 years.

In prioritizing interventions, an EVPI 
of zero means there is no need to resolve 
uncertainty because one strategy is  
clearly better. Such is the case for A3,  

with EVPI(A1, A3) and EVPI(A2, A3) both 
being zero. A3 is not only never the best 
but it is always the worst — a ‘dominated 
alternative’. It is also possible that one  
action is never the best but nevertheless 
performs relatively well in most cases — a 
bet-hedging strategy.

The results of EVPI analyses may depend 
on the objective. Here, our objective is to 
minimize the cumulative burden at the 
4-year horizon, so we favor actions that 
lower R0 and increase vaccine-induced 
immunity. If instead our aim is to shorten 
the outbreak duration, perhaps for economic 
reasons (as may arise for outbreaks in 
livestock), then strategies with less stringent 
mitigation could be favored. Unclear or 
conflicting objectives can lead to confusion 
about optimal interventions.

In some cases, once an intervention is 
selected, it cannot be changed or reversed. 
Either single models with well-defined 
variants3 or multiple models4 can be used 
to make robust one-off decisions in the 
face of uncertainty. However, in an ongoing 
outbreak, we usually have an opportunity 
to change our interventions as we gain 
information about disease dynamics and 
intervention efficacy. Adaptive management3 
can use EVPI to actively prioritize 
learning about uncertainties that have the 
largest impact on decisions while disease 
management is ongoing. This is vital given 
the time-sensitive nature of epidemics.

An interactive tool for EVPI analysis is at 
https://martinkrz.github.io/posepi3. ❐
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Fig. 2 | Quantifying parametric uncertainty and decisions. a, effect of R0, immunity duration and an 
annual vaccination percentage p = 0%, 30% or 45% on normalized cumulative 4-year disease burden, 
B, for an outbreak with 1/γ = 1/σ = 7 days. B wavers when recurrent epidemic waves cross the 4-year 
time horizon at which the burden is calculated. b, Impact on B of three mitigation actions A1, A2 and A3 
under two models M1 and M2. c, The expected value of perfect information (eVpI) assesses the benefit 
of resolving uncertainty in immunity duration before deciding on an action.
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