Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Template-free detection and classification of membrane-bound complexes in cryo-electron tomograms

An Author Correction to this article was published on 27 January 2020

An Author Correction to this article was published on 22 January 2020

This article has been updated

Abstract

With faithful sample preservation and direct imaging of fully hydrated biological material, cryo-electron tomography provides an accurate representation of molecular architecture of cells. However, detection and precise localization of macromolecular complexes within cellular environments is aggravated by the presence of many molecular species and molecular crowding. We developed a template-free image processing procedure for accurate tracing of complex networks of densities in cryo-electron tomograms, a comprehensive and automated detection of heterogeneous membrane-bound complexes and an unsupervised classification (PySeg). Applications to intact cells and isolated endoplasmic reticulum (ER) allowed us to detect and classify small protein complexes. This classification provided sufficiently homogeneous particle sets and initial references to allow subsequent de novo subtomogram averaging. Spatial distribution analysis showed that ER complexes have different localization patterns forming nanodomains. Therefore, this procedure allows a comprehensive detection and structural analysis of complexes in situ.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tracing density at a synapse from rodent cerebrocortical synaptosomal preparation.
Fig. 2: Method validations.
Fig. 3: Processing of ER membrane-associated complexes from the microsomal dataset.
Fig. 4: Complexes resolved in situ from the intact P19 cells dataset.
Fig. 5: Spatial distribution of microsomal particles.

Similar content being viewed by others

Data availability

The following electron tomography densities have been deposited in the EMDataBank. Subtomogram averages obtained from the microsomal dataset, cytosolic particles: ribosome bound to the fully assembled (EMD-0074) and partial translocon complex (EMD-0084), the large ribosomal subunit (EMD-0075), and obtained from microsomal dataset lumenal particles: the ribosome-translocon complex (EMD-0085), the ribosome-free fully assembled translocon (EMD-0086) and the nontranslocon-associated OST complex (EMD-0087). Microsomal tomograms EMD-10449, EMD-10450 and EMD-10451. Subtomogram averages obtained from the in situ P19 cells dataset: membrane-associated ribosome (EMD-10432), ribosome-associated translocon (EMD-10433), ribosome-free translocon (EMD-10434), two putative PLC complexes (EMD-10435, EMD-10436), putative IP3 receptor (EMD-10437). In situ P19 cells tomogram shown in Fig. 4EMD-10439).

Source data for Fig. 2 is available with the paper. Data for Supplementary Fig. 4 are available from the corresponding authors upon request.

Code availability

The complete software, together with all dependencies, is installed as PySeg capsule on Code Ocean67 (https://doi.org/10.24433/CO.0526052.v2). The latest version of the software is available upon demand and on GitHub (https://github.com/anmartinezs/pyseg_system.git).

Change history

References

  1. Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017).

    CAS  PubMed  Google Scholar 

  2. Taylor, K. A. & Glaeser, R. M. Electron diffraction of frozen, hydrated protein crystals. Science 186, 1036–1037 (1974).

    CAS  PubMed  Google Scholar 

  3. Dubochet, J. et al. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21, 129–228 (1988).

    CAS  PubMed  Google Scholar 

  4. Lucic, V., Rigort, A. & Baumeister, W. Cryo-electron tomography: the challenge of doing structural biology in situ. J. Cell Biol. 202, 407–419 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Oikonomou, C. M. & Jensen, G. J. Cellular electron cryotomography: toward structural biology in situ. Ann. Rev. Biochem. 86, 873–896 (2017).

    CAS  PubMed  Google Scholar 

  6. Medalia, O. et al. Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298, 1209–1213 (2002).

    CAS  PubMed  Google Scholar 

  7. Ortiz, J. O., Forster, F., Kurner, J., Linaroudis, A. A. & Baumeister, W. Mapping 70s ribosomes in intact cells by cryoelectron tomography and pattern recognition. J. Struct. Biol. 156, 334–341 (2006).

    CAS  PubMed  Google Scholar 

  8. Beck, M. et al. Visual proteomics of the human pathogen leptospira interrogans. Nat. Methods 6, 817–823 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Asano, S. et al. Proteasomes. a molecular census of 26s proteasomes in intact neurons. Science 347, 439–442 (2015).

    CAS  PubMed  Google Scholar 

  10. Rickgauer, J. P., Grigorieff, N. & Denk, W. Single-protein detection in crowded molecular environments in cryo-em images. eLife 6, e25648 (2017).

    PubMed  PubMed Central  Google Scholar 

  11. Volkmann, N. Methods for segmentation and interpretation of electron tomographic reconstructions. Methods Enzymol. 483, 31–46 (2010).

    PubMed  Google Scholar 

  12. Rigort, A. et al. Automated segmentation of electron tomograms for a quantitative description of actin filament networks. J. Struct. Biol. 177, 135–144 (2012).

    CAS  PubMed  Google Scholar 

  13. Fernandez, J.-J. Computational methods for electron tomography. Micron 43, 1010–1030 (2012).

    CAS  PubMed  Google Scholar 

  14. Chen, M. et al. Convolutional neural networks for automated annotation of cellular cryo-electron tomograms. Nat. Methods 14, 983–985 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Fernández-Busnadiego, R. et al. Quantitative analysis of the native presynaptic cytomatrix by cryoelectron tomography. J. Cell Biol. 188, 145–156 (2010).

    PubMed  PubMed Central  Google Scholar 

  16. Fernández-Busnadiego, R. et al. Cryo-electron tomography reveals a critical role of rim1 α in synaptic vesicle tethering. J. Cell Biol. 201, 725–740 (2013).

    PubMed  PubMed Central  Google Scholar 

  17. Lucic, V., Fernández-Busnadiego, R., Laugks, U. & Baumeister, W. Hierarchical detection and analysis of macromolecular complexes in cryo-electron tomograms using pyto software. J. Struct. Biol. 196, 503–514 (2016).

    CAS  PubMed  Google Scholar 

  18. Förster, F., Medalia, O., Zauberman, N., Baumeister, W. & Fass, D. Retrovirus envelope protein complex structure in situ studied by cryo-electron tomography. Proc. Natl Acad. Sci. USA 102, 4729–4734 (2005).

    PubMed  PubMed Central  Google Scholar 

  19. Schur, F. K. et al. An atomic model of hiv-1 capsid-sp1 reveals structures regulating assembly and maturation. Science 353, 506–508 (2016).

    CAS  PubMed  Google Scholar 

  20. Wan, W. & Briggs, J. in Methods in Enzymology Vol. 579, 329–367 (Elsevier, 2016).

  21. Bharat, T. A. & Scheres, S. H. Resolving macromolecular structures from electron cryo-tomography data using subtomogram averaging in relion. Nat. Protoc. 11, 2054 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Milnor, J. Morse Theory Vol. 51, Annals of Mathematics Studies (Princeton Univ. Press, 1963).

  23. Forman, R. A user’s guide to discrete morse theory. Seminaire Lothar. Comb. 48, 35pp (2002).

    Google Scholar 

  24. Sousbie, T. The persistent cosmic web and its filamentary structure–i. theory and implementation. Monthly Not. Royal Astronom. Soc. 414, 350–383 (2011).

    Google Scholar 

  25. Frey, B. J. & Dueck, D. Clustering by passing messages between data points. Science 315, 972–976 (2007).

    CAS  PubMed  Google Scholar 

  26. Fowlkes, E. B. & Mallows, C. L. A method for comparing two hierarchical clusterings. J. Am. Stat. Assoc. 78, 553–569 (1983).

    Google Scholar 

  27. Meila, M. Comparing clusterings—an information based distance. J. Multi. Anal. 98, 873–895 (2007).

    Google Scholar 

  28. Pfeffer, S. et al. Structure of the native sec61 protein-conducting channel. Nat. Commun. 6, 8403 (2015).

    CAS  PubMed  Google Scholar 

  29. Pfeffer, S., Dudek, J., Zimmermann, R. & Förster, F. Organization of the native ribosome–translocon complex at the mammalian endoplasmic reticulum membrane. Biochim. Biophysica Acta 1860, 2122–2129 (2016).

    CAS  Google Scholar 

  30. Pfeffer, S. et al. Structure of the mammalian oligosaccharyl-transferase complex in the native er protein translocon. Nat. Commun. 5, 3072 (2014).

    PubMed  Google Scholar 

  31. Fan, G. et al. Gating machinery of insp3r channels revealed by electron cryomicroscopy. Nature 527, 336–341 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Blees, A. et al. Structure of the human mhc-i peptide-loading complex. Nature 551, 525–528 (2017).

    CAS  PubMed  Google Scholar 

  33. Stoyan, D. in Case Studies in Spatial Point Process Modeling (eds Baddeley, A. et al.) 3–5 (Springer, 2006).

  34. Ripley, B. D. Spatial Statistics (Wiley, 1981).

  35. Wiegand, T. & Moloney, K. A. Rings, circles, and null-models for point pattern analysis in ecology. Oikos 104, 209–229 (2004).

    Google Scholar 

  36. Andronov, L. et al. 3dclustervisu: 3D clustering analysis of super-resolution microscopy data by 3D Voronoi tessellations. Bioinformatics 34, 3004–3012 (2018).

    CAS  PubMed  Google Scholar 

  37. Han, D. K., Eng, J., Zhou, H. & Aebersold, R. Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat. Biotechnol. 19, 946–951 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shrimal, S., Cherepanova, N. A. & Gilmore, R. DC2 and KCP2 mediate the interaction between the oligosaccharyltransferase and the ER translocon. J. Cell Biol. 216, 3625–3638 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu, M., Beck, M. & Alber, F. Template-free detection of macromolecular complexes in cryo electron tomograms. Bioinformatics 27, i69–i76 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Pei, L., Xu, M., Frazier, Z. & Alber, F. Simulating cryo electron tomograms of crowded cell cytoplasm for assessment of automated particle picking. BMC Bioinformatics 17, 405 (2016).

    PubMed  PubMed Central  Google Scholar 

  41. Xu, M. et al. De novo structural pattern mining in cellular electron cryotomograms. Structure 27, 679–691 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Dunkley, P. R. et al. A rapid percoll gradient procedure for isolation of synaptosomes directly from an s1 fraction: homogeneity and morphology of subcellular fractions. Brain Res. 441, 59–71 (1988).

    CAS  PubMed  Google Scholar 

  43. Godino, Md. C., Torres, M. & Sánchez-Prieto, J. Cb1 receptors diminish both Ca(2+) influx and glutamate release through two different mechanisms active in distinct populations of cerebrocortical nerve terminals. J. Neurochem. 101, 1471–1482 (2007).

    CAS  Google Scholar 

  44. Koster, A. J. et al. Perspectives of molecular and cellular electron tomography. J. Struct. Biol. 120, 276–308 (1997).

    CAS  PubMed  Google Scholar 

  45. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    PubMed  Google Scholar 

  46. Danev, R., Buijsse, B., Khoshouei, M., Plitzko, J. M. & Baumeister, W. Volta potential phase plate for in-focus phase contrast transmission electron microscopy. Proc. Natl Acad. Sci. USA 111, 15635–15640 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zheng, S. Q. et al. Motioncor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Grant, T. & Grigorieff, N. Measuring the optimal exposure for single particle cryo-em using a 2.6 Å reconstruction of rotavirus vp6. eLife 4, e06980 (2015).

    PubMed  PubMed Central  Google Scholar 

  49. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using imod. J. Struct. Biol. 116, 71–76 (1996).

    CAS  PubMed  Google Scholar 

  50. Nash, C. & Sen, S. Topology and Geometry for Physicists (Academic Press, Harcourt Brace Jovanovic, 1990).

  51. Peixoto, T. P. The Graph-tool Python Library (figshare, 2014).

  52. Pedregosa, F. et al. Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  53. Meyerson, J. R. et al. Structural mechanism of glutamate receptor activation and desensitization. Nature 514, 328–334 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Karakas, E. & Furukawa, H. Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344, 992–997 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Herguedas, B. et al. Structure and organization of heteromeric ampa-type glutamate receptors. Science 352, aad3873 (2016).

    PubMed  PubMed Central  Google Scholar 

  56. Wu, J. et al. Structure of the voltage-gated calcium channel Ca(V)1.1 at 3.6 Å resolution. Nature 537, 191–196 (2016).

    CAS  PubMed  Google Scholar 

  57. Morales-Perez, C. L., Noviello, C. M. & Hibbs, R. E. X-ray structure of the human ɑ4β2 nicotinic receptor. Nature 538, 411–415 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Tao, X., Hite, R. K. & MacKinnon, R. Cryo-EM structure of the open high-conductance Ca2+-activated K+ channel. Nature 541, 46–51 (2017).

    CAS  PubMed  Google Scholar 

  59. Park, E., Campbell, E. B. & MacKinnon, R. Structure of a clc chloride ion channel by cryo-electron microscopy. Nature 541, 500–505 (2017).

    CAS  PubMed  Google Scholar 

  60. Zhang, Y. et al. Cryo-EM structure of the activated glp-1 receptor in complex with a G protein. Nature 546, 248–253 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Martinez-Sanchez, A., Garcia, I., Asano, S., Lucic, V. & Fernandez, J.-J. Robust membrane detection based on tensor voting for electron tomography. J. Struct. Biol. 186, 49–61 (2014).

    PubMed  Google Scholar 

  62. Hrabe, T. et al. Pytom: a python-based toolbox for localization of macromolecules in cryo-electron tomograms and subtomogram analysis. J. Struct. Biol. 178, 177–188 (2012).

    CAS  PubMed  Google Scholar 

  63. Schroeder, W. J., Lorensen, B. & Martin, K. The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics (Kitware, 2004).

  64. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Google Scholar 

  65. Ayachit, U. The Paraview Guide: A Parallel Visualization Application (Kitware, 2015).

  66. Pettersen, E. F. et al. UCSF chimera, a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  PubMed  Google Scholar 

  67. Martinez-Sanchez, A. & Vladan, L. Pyseg: template-free detection and classification for cryo-ET (Code Ocean, 2019); https://doi.org/10.24433/CO.0526052.v2

Download references

Acknowledgements

We thank F. Beck for useful discussions and G. J. Greif for critical reading of the manuscript. A.M.-S. was the recipient of a postdoctoral fellowship from the Séneca Foundation. This work was supported by the European Commission (grant no. FP7 GA ERC-2012-SyG_318987–ToPAG) and by Max Planck Society.

Author information

Authors and Affiliations

Authors

Contributions

A.M.-S. and V.L. conceived and designed the research. A.M.-S. designed and implemented the software. Z.K., U.L. and S.C. acquired original tomograms. S.P. provided expertise related to the previously recorded tomograms. A.M.-S., J.M.z.A.B. and V.L. analyzed the data. W.B. provided resources and acquired funding. V.L. supervised research. A.M.-S. and V.L. wrote the manuscript. All authors edited the manuscript.

Corresponding authors

Correspondence to Antonio Martinez-Sanchez or Vladan Lučić.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Allison Doerr was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11

Reporting Summary

Supplementary Video 1

Detection of microsome-attached complexes and localization of lumenal particles Density minima are shown as small spheres (red, cytosolic; blue, membrane; green, lumenal), arcs as gray lines and green arrows denote membrane normal vectors. N = 55 tomograms.

Supplementary Video 2

Localization of microsome-attached complexes Ribosomes derived from the cytosolic particles are shown in red, ribosome-free fully assembled translocon complexes in blue and the nontranslocon-associated OST complexes in yellow. N = 55 tomograms.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez-Sanchez, A., Kochovski, Z., Laugks, U. et al. Template-free detection and classification of membrane-bound complexes in cryo-electron tomograms. Nat Methods 17, 209–216 (2020). https://doi.org/10.1038/s41592-019-0675-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-019-0675-5

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics