Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Laser phase plate for transmission electron microscopy

Abstract

Transmission electron microscopy (TEM) of rapidly frozen biological specimens, or cryo-EM, would benefit from the development of a phase plate for in-focus phase contrast imaging. Several types of phase plates have been investigated, but rapid electrostatic charging of all such devices has hindered these efforts. Here, we demonstrate electron phase manipulation with a high-intensity continuous-wave laser beam, and use it as a phase plate for TEM. We demonstrate the laser phase plate by imaging an amorphous carbon film. The laser phase plate provides a stable and tunable phase shift without electrostatic charging or unwanted electron scattering. These results suggest the possibility for dose-efficient imaging of unstained biological macromolecules and cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Laser-based control of the electron phase in a TEM.
Fig. 2: Electron micrographs of a standing laser wave.
Fig. 3: Phase-contrast imaging with a laser-based phase plate.
Fig. 4: Continuous variation of the unscattered beam retardation.

Similar content being viewed by others

Data and materials availability

The raw TEM images collected over the course of this study are available from the corresponding author upon request.

Code availability

The code for fitting the light wave micrographs is available from the corresponding author upon request.

References

  1. Cheng, Y., Glaeser, R. M. & Nogales, E. How Cryo-EM became so hot. Cell 171, 1229–1231 (2017).

    Article  CAS  Google Scholar 

  2. Mahamid, J. et al. Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science 351, 969–972 (2016).

    Article  CAS  Google Scholar 

  3. Glaeser, R. M. Invited Review article: methods for imaging weak-phase objects in electron microscopy. Rev. Sci. Instrum. 84, 111101 (2013).

    Article  Google Scholar 

  4. Zernike, F. Phase contrast, a new method for the microscopic observation of transparent objects. Physica 9, 686–698 (1942).

    Article  Google Scholar 

  5. Henderson, R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28, 171–193 (1995).

    Article  CAS  Google Scholar 

  6. Boersch, H. Über die Kontraste von Atomen im Elektronenmikroskop. Z. für. Naturforsch. A 2, 615–633 (1947).

    Google Scholar 

  7. Danev, R., Buijsse, B., Khoshouei, M., Plitzko, J. M. & Baumeister, W. Volta potential phase plate for in-focus phase contrast transmission electron microscopy. Proc. Natl Acad. Sci. USA 111, 15635–15640 (2014).

    Article  CAS  Google Scholar 

  8. Danev, R., Tegunov, D. & Baumeister, W. Using the Volta phase plate with defocus for cryo-EM single particle analysis. eLife 6, e23006 (2017).

    Article  Google Scholar 

  9. Jones, E., Becker, M., Luiten, J. & Batelaan, H. Laser control of electron matter waves. Laser Photonics Rev. 10, 214–229 (2016).

    Article  CAS  Google Scholar 

  10. Müller, H. et al. Design of an electron microscope phase plate using a focused continuous-wave laser. New J. Phys. 12, 073011 (2010).

    Article  Google Scholar 

  11. Schwartz, O. et al. Near-concentric Fabry-Pérot cavity for continuous-wave laser control of electron waves. Opt. Express 25, 14453–14462 (2017).

    Article  CAS  Google Scholar 

  12. McMorran, B. J. et al. Electron vortex beams with high quanta of orbital angular momentum. Science 331, 192–195 (2011).

    Article  CAS  Google Scholar 

  13. Freimund, D. L., Aflatooni, K. & Batelaan, H. Observation of the Kapitza–Dirac effect. Nature 413, 142–143 (2001).

    Article  CAS  Google Scholar 

  14. Kozák, M., Schönenberger, N. & Hommelhoff, P. Ponderomotive generation and detection of attosecond free-electron pulse trains. Phys. Rev. Lett. 120, 103203 (2018).

    Article  Google Scholar 

  15. Kapitza, P. L. & Dirac, P. A. M. The reflection of electrons from standing light waves. Math. Proc. Camb. Phil. Soc. 29, 297–300 (1933).

    Article  Google Scholar 

  16. Spence, J. C. H. High-Resolution Electron Microscopy 4th edn (Oxford Univ. Press, 2013).

  17. Ryabov, A. & Baum, P. Electron microscopy of electromagnetic waveforms. Science 353, 374–377 (2016).

    Article  CAS  Google Scholar 

  18. Barwick, B., Flannigan, D. J. & Zewail, A. H. Photon-induced near-field electron microscopy. Nature 462, 902–906 (2009).

    Article  CAS  Google Scholar 

  19. Morimoto, Y. & Baum, P. Diffraction and microscopy with attosecond electron pulse trains. Nat. Phys. 14, 252–256 (2018).

    Article  CAS  Google Scholar 

  20. Vanacore, G. M. et al. Attosecond coherent control of free-electron wave functions using semi-infinite light fields. Nat. Commun. 9, 2694 (2018).

    Article  CAS  Google Scholar 

  21. Feist, A. et al. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature 521, 200–203 (2015).

    Article  CAS  Google Scholar 

  22. Frank, J. Advances in the field of single-particle cryo-electron microscopy over the last decade. Nat. Protoc. 12, 209–212 (2017).

    Article  CAS  Google Scholar 

  23. Danev, R. & Baumeister, W. Expanding the boundaries of cryo-EM with phase plates. Curr. Opin. Struct. Biol. 46, 87–94 (2017).

    Article  CAS  Google Scholar 

  24. Merk, A. et al. Breaking Cryo-EM resolution barriers to facilitate drug fiscovery. Cell 165, 1698–1707 (2016).

    Article  CAS  Google Scholar 

  25. Li, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science 358, 506–510 (2017).

    Article  CAS  Google Scholar 

  26. Pinard, L. et al. Mirrors used in the LIGO interferometers for first detection of gravitational waves. Appl. Opt. 56, C11–C15 (2017).

    Article  CAS  Google Scholar 

  27. Freimund, D. L. & Batelaan, H. Bragg scattering of free electrons using the Kapitza-Dirac effect. Phys. Rev. Lett. 89, 283602 (2002).

    Article  Google Scholar 

  28. Yasin, F. S. et al. Probing light atoms at subnanometer resolution: realization of scanning transmission electron microscope holography. Nano Lett. 18, 7118–7123 (2018).

    Article  CAS  Google Scholar 

  29. Kruit, P. et al. Designs for a quantum electron microscope. Ultramicroscopy 164, 31–45 (2016).

    Article  CAS  Google Scholar 

  30. Juffmann, T. et al. Multi-pass transmission electron microscopy. Sci. Rep. 7, 1699 (2017).

    Article  Google Scholar 

  31. Black, E. D. An introduction to Pound–Drever–Hall laser frequency stabilization. Am. J. Phys. 69, 79–87 (2000).

    Article  Google Scholar 

  32. Martin, M. J. Quantum Metrology and Many-Body Physics: Pushing the Frontier of the Optical Lattice Clock PhD thesis, Univ. Colorado Boulder (2013).

Download references

Acknowledgements

We thank R. Adhikari, B. Buijsse, W. T. Carlisle, A. Chintangal, E. Copenhaver, P. Dona, S. Goobie, P. Grob, B. G. Han, P. Haslinger, M. Jaffe, F. Littlefield, G. W. Long, E. Nogales, Z. Pagel, R. H. Parker, X. Wu, V. Xu and J. Ye for helpful discussions and assistance in various aspects of the experiment. This work was supported by the US National Institutes of Health grant 5 R01 GM126011-02, the US National Science Foundation Grant no. 1040543, the David and Lucile Packard Foundation grant 2009-34712, and Bakar Fellows Program. O.S. is supported by the Human Frontier Science Program postdoctoral fellowship LT000844/2016-C. J.J.A. is supported by the US National Science Foundation Graduate Research Fellowship Program Grant no. D.G.E. 1752814. S.L.C. is supported by the Howard Hughes Medical Institute Hanna H. Gray Fellows Program Grant no. GT11085.

Author information

Authors and Affiliations

Authors

Contributions

R.M.G. and H.M. conceived and supervised the project. O.S., J.J.A., S.L.C. and C.T. performed the experiments and processed the data. All authors contributed to the preparation of the manuscript.

Corresponding author

Correspondence to Holger Müller.

Ethics declarations

Competing interests

O.S., J.J.A., R.M.G. and H.M. are inventors on US patent application no. 15/939,028. All other authors have no competing interests.

Additional information

Peer review information Allison Doerr was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwartz, O., Axelrod, J.J., Campbell, S.L. et al. Laser phase plate for transmission electron microscopy. Nat Methods 16, 1016–1020 (2019). https://doi.org/10.1038/s41592-019-0552-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-019-0552-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing