Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Methods to study RNA–protein interactions

An Author Correction to this article was published on 08 March 2019

This article has been updated

Abstract

Noncoding RNA sequences, including long noncoding RNAs, small nucleolar RNAs, and untranslated mRNA regions, accomplish many of their diverse functions through direct interactions with RNA-binding proteins (RBPs). Recent efforts have identified hundreds of new RBPs that lack known RNA-binding domains, thus underscoring the complexity and diversity of RNA–protein complexes. Recent progress has expanded the number of methods for studying RNA–protein interactions in two general categories: approaches that characterize proteins bound to an RNA of interest (RNA-centric), and those that examine RNAs bound to a protein of interest (protein-centric). Each method has unique strengths and limitations, which makes it important to select optimal approaches for the biological question being addressed. Here we review methods for the study of RNA–protein interactions, with a focus on their suitability for specific applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of RNA-centric methods.
Fig. 2: Subway map of CLIP protocols, from immunoprecipitation to PCR.

Similar content being viewed by others

Change history

  • 08 March 2019

    In the version of this paper originally published, three references were accidentally omitted: Schwartz, J. C. et al. Cell Rep. 5, 918–925 (2013); Tundup, S. et al. FEBS Lett. 580, 1285–1293 (2006); and Itri, F. et al. Biochem. Biophys. Res. Commun. 492, 67–73 (2017). The PDF and HTML versions of the paper now include these as references 58, 59, and 60, respectively, and subsequent references have been renumbered accordingly.

References

  1. Zhu, X. Seeing the yin and yang in cell biology. Mol. Biol. Cell 21, 3827–3828 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mayr, C. Regulation by 3′-untranslated regions. Annu. Rev. Genet. 51, 171–194 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Moore, M. J. From birth to death: the complex lives of eukaryotic mRNAs. Science 309, 1514–1518 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Allerson, C. R., Cazzola, M. & Rouault, T. A. Clinical severity and thermodynamic effects of iron-responsive element mutations in hereditary hyperferritinemia-cataract syndrome. J. Biol. Chem. 274, 26439–26447 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Batista, P. J. & Chang, H. Y. Long noncoding RNAs: cellular address codes in development and disease. Cell 152, 1298–1307 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Urdaneta, E. C. et al. Purification of cross-linked RNA-protein complexes by phenol-toluol extraction. bioRxiv Preprint at https://www.biorxiv.org/content/10.1101/333385v1 (2018).

  7. Trendel, J. et al. The human RNA-binding proteome and its dynamics during translational arrest. Cell 176, 391–403 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Re, A., Joshi, T., Kulberkyte, E., Morris, Q. & Workman, C. T. RNA–protein interactions: an overview. In RNA Sequence, Structure and Function: Computational and Bioinformatic Methods (eds. Gorodkin, J. & Ruzzo, W. L.) 491–521 (Humana Press, Totowa, NJ, 2014).

  9. Hentze, M. W., Castello, A., Schwarzl, T. & Preiss, T. A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol. 19, 327–341 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Castello, A. et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149, 1393–1406 (2012). Comprehensive poly(A) RNA–protein interactome capture performed in HeLa cells.

    Article  CAS  PubMed  Google Scholar 

  11. Huang, R., Han, M., Meng, L. & Chen, X. Transcriptome-wide discovery of coding and noncoding RNA-binding proteins. Proc. Natl Acad. Sci. USA 115, E3879–E3887 (2018). Utilization of RNA metabolic labeling to comprehensively capture the RNA–protein interactome independent of RNA polyadenylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Matia-González, A. M., Laing, E. E. & Gerber, A. P. Conserved mRNA-binding proteomes in eukaryotic organisms. Nat. Struct. Mol. Biol. 22, 1027–1033 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Castello, A. et al. Comprehensive identification of RNA-binding domains in human cells. Mol. Cell 63, 696–710 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Castello, A., Hentze, M. W. & Preiss, T. Metabolic enzymes enjoying new partnerships as RNA-binding proteins. Trends Endocrinol. Metab. 26, 746–757 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Faoro, C. & Ataide, S. F. Ribonomic approaches to study the RNA-binding proteome. FEBS Lett. 588, 3649–3664 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Zheng, X. et al. Detecting RNA–protein interaction using end-labeled biotinylated RNA oligonucleotides and immunoblotting. In RNA–Protein Complexes and Interactions (ed. Lin, R.-J.) 35–44 (Humana Press, New York, 2016).

  17. Hartmuth, K., Vornlocher, H.-P. & Lührmann, R. Tobramycin affinity tag purification of spliceosomes. In mRNA Processing and Metabolism (ed. Schoenberg, D. R.) 47–64 (Humana Press, Totowa, NJ, 2004).

  18. Hogg, J. R. & Collins, K. RNA-based affinity purification reveals 7SK RNPs with distinct composition and regulation. RNA 13, 868–880 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Leppek, K. & Stoecklin, G. An optimized streptavidin-binding RNA aptamer for purification of ribonucleoprotein complexes identifies novel ARE-binding proteins. Nucleic Acids Res. 42, e13 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Lee, H. Y. et al. RNA-protein analysis using a conditional CRISPR nuclease. Proc. Natl Acad. Sci. USA 110, 5416–5421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kretz, M. et al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493, 231–235 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Siprashvili, Z. et al. The noncoding RNAs SNORD50A and SNORD50B bind K-Ras and are recurrently deleted in human cancer. Nat. Genet. 48, 53–58 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Sutherland, B. W., Toews, J. & Kast, J. Utility of formaldehyde cross-linking and mass spectrometry in the study of protein-protein interactions. J. Mass Spectrom. 43, 699–715 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Li, X., Song, J. & Yi, C. Genome-wide mapping of cellular protein-RNA interactions enabled by chemical crosslinking. Genomics Proteomics Bioinformatics 12, 72–78 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Beckmann, B. M. RNA interactome capture in yeast. Methods 118-119, 82–92 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sugimoto, Y. et al. Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein-RNA interactions. Genome Biol. 13, R67 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kim, B. & Kim, V. N. fCLIP-seq for transcriptomic footprinting of dsRNA-binding proteins: lessons from DROSHA. Methods 152, 3–11 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Meisenheimer, K. M. & Koch, T. H. Photocross-linking of nucleic acids to associated proteins. Crit. Rev. Biochem. Mol. Biol. 32, 101–140 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Hoffman, E. A., Frey, B. L., Smith, L. M. & Auble, D. T. Formaldehyde crosslinking: a tool for the study of chromatin complexes. J. Biol. Chem. 290, 26404–26411 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chu, C., Qu, K., Zhong, F. L., Artandi, S. E. & Chang, H. Y. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol. Cell 44, 667–678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Simon, M. D. et al. The genomic binding sites of a noncoding RNA. Proc. Natl Acad. Sci. USA 108, 20497–20502 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McHugh, C. A. et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521, 232–236 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McHugh, C. A. & Guttman, M. RAP-MS: a method to identify proteins that interact directly with a specific RNA molecule in cells. Methods Mol. Biol. 1649, 473–488 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Hacisuleyman, E. et al. Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat. Struct. Mol. Biol. 21, 198–206 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zeng, F. et al. A protocol for PAIR: PNA-assisted identification of RNA binding proteins in living cells. Nat. Protoc. 1, 920–927 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Tsai, B. P., Wang, X., Huang, L. & Waterman, M. L. Quantitative profiling of in vivo–assembled RNA-protein complexes using a novel integrated proteomic approach. Mol. Cell. Proteomics 10, M110.007385 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Matia-González, A. M., Iadevaia, V. & Gerber, A. P. A versatile tandem RNA isolation procedure to capture in vivo formed mRNA-protein complexes. Methods 118–119, 93–100 (2017).

    Article  PubMed  CAS  Google Scholar 

  38. Parrott, A. M. et al. RNA aptamers for the MS2 bacteriophage coat protein and the wild-type RNA operator have similar solution behaviour. Nucleic Acids Res. 28, 489–497 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chu, C. et al. Systematic discovery of Xist RNA binding proteins. Cell 161, 404–416 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Simon, M. D. Capture hybridization analysis of RNA targets (CHART). Curr. Protoc. Mol. Biol. 101, 21.25.1–21.25.16 (2013).

    Google Scholar 

  41. Kim, D. I. et al. Probing nuclear pore complex architecture with proximity-dependent biotinylation. Proc. Natl Acad. Sci. USA 111, E2453–E2461 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim, D. I. et al. An improved smaller biotin ligase for BioID proximity labeling. Mol. Biol. Cell 27, 1188–1196 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Roux, K. J., Kim, D. I., Raida, M. & Burke, B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196, 801–810 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ramanathan, M. et al. RNA–protein interaction detection in living cells. Nat. Methods 15, 207–212 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ramanathan, M. & Khavari, P. RNA-protein interaction detection (RaPID). Protocol Exchange https://doi.org/10.1038/protex.2018.003 (2018).

  46. Bantscheff, M., Schirle, M., Sweetman, G., Rick, J. & Kuster, B. Quantitative mass spectrometry in proteomics: a critical review. Anal. Bioanal. Chem. 389, 1017–1031 (2007). Comprehensive analysis of mass spectrometry methods used in proteomics.

    Article  CAS  PubMed  Google Scholar 

  47. Butter, F., Scheibe, M., Mörl, M. & Mann, M. Unbiased RNA-protein interaction screen by quantitative proteomics. Proc. Natl Acad. Sci. USA 106, 10626–10631 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mellacheruvu, D. et al. The CRAPome: a contaminant repository for affinity purification–mass spectrometry data. Nat. Methods 10, 730–736 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tsai, T.-H., Wang, M. & Ressom, H. W. Preprocessing and analysis of LC-MS-based proteomic data. Methods Mol. Biol. 1362, 63–76 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Röst, H. L. et al. OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat. Methods 13, 741–748 (2016). This paper presents a common platform with ready-made workflows allowing users to perform reproducible mass spectrometry analysis with ease.

    Article  PubMed  CAS  Google Scholar 

  51. Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. West, J. A. et al. The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol. Cell 55, 791–802 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang, X., Li, H., Huang, Y. & Liu, S. The dataset for protein-RNA binding affinity. Protein Sci. 22, 1808–1811 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Smith, K. C. & Aplin, R. T. A mixed photoproduct of uracil and cysteine (5-S-cysteine-6-hydrouracil). A possible model for the in vivo cross-linking of deoxyribonucleic acid and protein by ultraviolet light. Biochemistry 5, 2125–2130 (1966).

    Article  CAS  PubMed  Google Scholar 

  55. Goddard, J., Streeter, D., Weber, C. & Gordon, M. P. Studies on the inactivation of tobacco mosaic virus by ultraviolet light. Photochem. Photobiol. 5, 213–222 (1966).

    Article  CAS  PubMed  Google Scholar 

  56. Choi, Y. D. & Dreyfuss, G. Isolation of the heterogeneous nuclear RNA-ribonucleoprotein complex (hnRNP): a unique supramolecular assembly. Proc. Natl Acad. Sci. USA 81, 7471–7475 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kramer, K. et al. Photo-cross-linking and high-resolution mass spectrometry for assignment of RNA-binding sites in RNA-binding proteins. Nat. Methods 11, 1064–1070 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schwartz, J. C., Wang, X., Podell, E. R. & Cech, T. R. RNA seeds higher-order assembly of FUS protein. Cell Rep. 5, 918–925 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tundup, S., Akhter, Y., Thiagarajan, D. & Hasnain, S. E. Clusters of PE and PPE genes of Mycobacterium tuberculosis are organized in operons: evidence that PE Rv2431c is co-transcribed with PPE Rv2430c and their gene products interact with each other. FEBS Lett. 580, 1285–1293 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Itri, F. et al. Identification of novel direct protein-protein interactions by irradiating living cells with femtosecond UV laser pulses. Biochem. Biophys. Res. Commun. 492, 67–73 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Ule, J. et al. CLIP identifies Nova-regulated RNA networks in the brain. Science 302, 1212–1215 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Licatalosi, D. D. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469 (2008). First paper to apply high-throughput sequencing to a CLIP method.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nicholson, C. O., Friedersdorf, M. & Keene, J. D. Quantifying RNA binding sites transcriptome-wide using DO-RIP-seq. RNA 23, 32–46 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tenenbaum, S. A., Carson, C. C., Lager, P. J. & Keene, J. D. Identifying mRNA subsets in messenger ribonucleoprotein complexes by using cDNA arrays. Proc. Natl Acad. Sci. USA 97, 14085–14090 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kishore, S. et al. A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nat. Methods 8, 559–564 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Porter, D. F., Koh, Y. Y., VanVeller, B., Raines, R. T. & Wickens, M. Target selection by natural and redesigned PUF proteins. Proc. Natl Acad. Sci. USA 112, 15868–15873 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu, Z. R., Wilkie, A. M., Clemens, M. J. & Smith, C. W. Detection of double-stranded RNA-protein interactions by methylene blue-mediated photo-crosslinking. RNA 2, 611–621 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Bäumert, H. G., Sköld, S. E. & Kurland, C. G. RNA-protein neighbourhoods of the ribosome obtained by crosslinking. Eur. J. Biochem. 89, 353–359 (1978).

    Article  PubMed  Google Scholar 

  70. Wower, I., Wower, J., Meinke, M. & Brimacombe, R. The use of 2-iminothiolane as an RNA-protein cross-linking agent in Escherichia coli ribosomes, and the localisation on 23S RNA of sites cross-linked to proteins L4, L6, L21, L23, L27 and L29. Nucleic Acids Res. 9, 4285–4302 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zaman, U. et al. Dithiothreitol (DTT) acts as a specific, UV-inducible cross-linker in elucidation of protein-RNA interactions. Mol. Cell. Proteomics 14, 3196–3210 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hocq, R., Paternina, J., Alasseur, Q., Genovesio, A. & Le Hir, H. Monitored eCLIP: high accuracy mapping of RNA-protein interactions. Nucleic Acids Res. 46, 11553–11565 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Van Nostrand, E. L., Shishkin, A. A., Pratt, G. A., Nguyen, T. B. & Yeo, G. W. Variation in single-nucleotide sensitivity of eCLIP derived from reverse transcription conditions. Methods 126, 29–37 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Creamer, T. J. et al. Transcriptome-wide binding sites for components of the Saccharomyces cerevisiae non-poly(A) termination pathway: Nrd1, Nab3, and Sen1. PLoS Genet. 7, e1002329 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Benhalevy, D., McFarland, H. L., Sarshad, A. A. & Hafner, M. PAR-CLIP and streamlined small RNA cDNA library preparation protocol for the identification of RNA binding protein target sites. Methods 118–119, 41–49 (2017).

    Article  PubMed  CAS  Google Scholar 

  76. Granneman, S., Kudla, G., Petfalski, E. & Tollervey, D. Identification of protein binding sites on U3 snoRNA and pre-rRNA by UV cross-linking and high-throughput analysis of cDNAs. Proc. Natl Acad. Sci. USA 106, 9613–9618 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Konig, J. et al. iCLIP—transcriptome-wide mapping of protein-RNA interactions with individual nucleotide resolution. J. Vis. Exp. 2011, 2638 (2011).

    Google Scholar 

  78. Van Nostrand, E. L. et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods 13, 508–514 (2016). This paper introduced the eCLIP method, which has produced the largest number of CLIP datasets so far.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Zarnegar, B. J. et al. irCLIP platform for efficient characterization of protein-RNA interactions. Nat. Methods 13, 489–492 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Weyn-Vanhentenryck, S. M. et al. HITS-CLIP and integrative modeling define the Rbfox splicing-regulatory network linked to brain development and autism. Cell Rep. 6, 1139–1152 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gu, J. et al. GoldCLIP: gel-omitted ligation-dependent CLIP. Genomics Proteomics Bioinformatics 16, 136–143 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Garalde, D. R. et al. Highly parallel direct RNA sequencing on an array of nanopores. Nat. Methods 15, 201–206 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Yip, S. H., Wang, P., Kocher, J. A., Sham, P. C. & Wang, J. Linnorm: improved statistical analysis for single cell RNA-seq expression data. Nucleic Acids Res. 45, e179 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. van der Walt, S., Colbert, S. C. & Varoquaux, G. The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13, 22–30 (2011).

    Article  Google Scholar 

  86. Oliphant, T. E. Python for scientific computing. Comput. Sci. Eng. 9, 10–20 (2007).

    Article  CAS  Google Scholar 

  87. Seabold, S. & Perktold, J. Statsmodels: econometric and statistical modeling with Python. In Proc. 9th Python in Science Conference (SciPy 2010) (eds. van der Walt, S. & Millman, J.) 57–61 (LuLu Press, Morrisville, NC, 2010).

  88. McKinney, W. Data structures for statistical computing in Python. In Proc. 9th Python in Science Conference (SciPy 2010) (eds. van der Walt, S. & Millman, J.) 57–61 (LuLu Press, Morrisville, NC, 2010).

  89. Perez, F. & Granger, B. E. IPython: a system for interactive scientific computing. Comput. Sci. Eng. 9, 21–29 (2007).

    Article  CAS  Google Scholar 

  90. McMahon, A. C. et al. TRIBE: hijacking an RNA-editing enzyme to identify cell-specific targets of RNA-binding proteins. Cell 165, 742–753 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lapointe, C. P., Wilinski, D., Saunders, H. A. J. & Wickens, M. Protein-RNA networks revealed through covalent RNA marks. Nat. Methods 12, 1163–1170 (2015). First paper to identify RNAs bound to a protein of interest by selective enzymatic modification of bound RNAs followed by high-throughput sequencing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kaewsapsak, P., Shechner, D. M., Mallard, W., Rinn, J. L. & Ting, A. Y. Live-cell mapping of organelle-associated RNAs via proximity biotinylation combined with protein-RNA crosslinking. eLife 6, e29224 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Cox, D. B. T. et al. RNA editing with CRISPR-Cas13. Science 358, 1019–1027 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chi, S. W., Zang, J. B., Mele, A. & Darnell, R. B. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460, 479–486 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yeo, G. W. et al. An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nat. Struct. Mol. Biol. 16, 130–137 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang, C. & Darnell, R. B. Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data. Nat. Biotechnol. 29, 607–614 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Prasad, A. et al. The PUF binding landscape in metazoan germ cells. RNA 22, 1026–1043 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. König, J. et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 17, 909–915 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Wang, Z. et al. iCLIP predicts the dual splicing effects of TIA-RNA interactions. PLoS Biol. 8, e1000530 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. De, S. & Gorospe, M. Bioinformatic tools for analysis of CLIP ribonucleoprotein data. Wiley Interdiscip. Rev. RNA 8, e1404 (2017).

    Article  CAS  Google Scholar 

  101. Corcoran, D. L. et al. PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data. Genome Biol. 12, R79 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sievers, C., Schlumpf, T., Sawarkar, R., Comoglio, F. & Paro, R. Mixture models and wavelet transforms reveal high confidence RNA-protein interaction sites in MOV10 PAR-CLIP data. Nucleic Acids Res. 40, e160 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Khavari lab for helpful discussions and apologize to colleagues whose work was not cited because of the space limitations of this review. This work was supported by grant 1F32AR072504 to D.F.P., by a USVA Merit Review grant, and by NIAMS/NIH grants AR45192 and AR49737 to P.A.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Khavari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Table 1

RNA library preparation steps.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramanathan, M., Porter, D.F. & Khavari, P.A. Methods to study RNA–protein interactions. Nat Methods 16, 225–234 (2019). https://doi.org/10.1038/s41592-019-0330-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-019-0330-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing