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Development and validation of a new 
algorithm for improved cardiovascular risk 
prediction

Julia Hippisley-Cox    1 , Carol A. C. Coupland1,2, Mona Bafadhel3, 
Richard E. K. Russell3, Aziz Sheikh    1,4, Peter Brindle    5 & Keith M. Channon    6,7

QRISK algorithms use data from millions of people to help clinicians identify 
individuals at high risk of cardiovascular disease (CVD). Here, we derive 
and externally validate a new algorithm, which we have named QR4, that 
incorporates novel risk factors to estimate 10-year CVD risk separately 
for men and women. Health data from 9.98 million and 6.79 million adults 
from the United Kingdom were used for derivation and validation of the 
algorithm, respectively. Cause-specific Cox models were used to develop 
models to predict CVD risk, and the performance of QR4 was compared with 
version 3 of QRISK, Systematic Coronary Risk Evaluation 2 (SCORE2) and 
atherosclerotic cardiovascular disease (ASCVD) risk scores. We identified 
seven novel risk factors in models for both men and women (brain cancer, 
lung cancer, Down syndrome, blood cancer, chronic obstructive pulmonary 
disease, oral cancer and learning disability) and two additional novel risk 
factors in women (pre-eclampsia and postnatal depression). On external 
validation, QR4 had a higher C statistic than QRISK3 in both women (0.835 
(95% confidence interval (CI), 0.833–0.837) and 0.831 (95% CI, 0.829–0.832) 
for QR4 and QRISK3, respectively) and men (0.814 (95% CI, 0.812–0.816) 
and 0.812 (95% CI, 0.810–0.814) for QR4 and QRISK3, respectively). QR4 was 
also more accurate than the ASCVD and SCORE2 risk scores in both men 
and women. The QR4 risk score identifies new risk groups and provides 
superior CVD risk prediction in the United Kingdom compared with other 
international scoring systems for CVD risk.

CVD is the leading cause of death globally and was responsible for an 
estimated 17.9 million deaths in 2019 (ref. 1). International guidelines 
from the World Health Organization2, United States3, Europe4 and the 
United Kingdom5 all recommend the use of CVD risk prediction tools to 
target those at high risk for interventions to reduce risk. Consequently, 

the effectiveness of public health policies relies on risk prediction tools 
that identify all the important risk groups in the population, with vali-
dated risk estimates across the full range of population characteristics. 
The United States recommends the ASCVD score, which is based on the 
Pooled Cohort Equations and was developed using 20,338 non-Hispanic 
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variables with age interactions) are shown in Fig. 1. Extended Data Fig. 2 
shows the adjusted hazard ratios for the fractional polynomial terms 
for CVD risk for continuous variables and the predictor variables with 

and 1,647 African American individuals3,6. European guidelines recom-
mend SCORE2, which was developed using data from 677,684 (refs. 4,7) 
and SCORE-OP4 developed using data from 28,503 participants from 
Norway7, and the United Kingdom recommends QRISK3, which was devel-
oped using a large, diverse community population of 7.9 million people5,8.

Recent research has highlighted conditions associated with 
increased CVD risk that are not captured by any of the three most 
widely used CVD equations globally: ASCVD (ref. 3), QRISK3 (ref. 8) 
and SCORE2 (ref. 4,7). These include chronic obstructive pulmonary 
disease (COPD)9, learning disability10, Down syndrome11,12, cancer13 and 
reproductive health conditions14. If these conditions are independently 
associated with increased CVD risk, then current CVD risk scores will 
underestimate risk in these groups, and people with these diagnoses 
may not be offered the opportunity for beneficial interventions to 
improve survival. Equally, if risks are overestimated, then individuals 
may receive unnecessary interventions15. Furthermore, more accurate 
CVD risk tools are useful for identifying those at higher CVD risk for 
recruitment into clinical trials, especially for primary prevention.

We sought to derive a new population-based CVD risk score, 
QR4, to include novel risk factors and account for competing risks, 
and to externally evaluate its performance against three widely used 
CVD risk scores (that is, ASCVD, QRISK3 and SCORE2), in large and 
diverse populations of over 16 million people drawn from across the 
United Kingdom. We used two established electronic records research 
databases (QResearch and Clinical Practice Research Datalink (CPRD) 
GOLD), both of which contain anonymized data collected during rou-
tine National Health Service (NHS) clinical care.

Results
Study population
There were 9,976,306 people aged 18–84 years in the QResearch English 
derivation cohort, 3,246,602 in the QResearch English validation cohort 
and 3,542,007 in the CPRD validation cohort from the other three UK 
nations (that is, Scotland, Wales and Northern Ireland). Extended Data 
Table 1 shows the flow of patients and the relevant exclusions. Extended 
Data Table 2 shows the new predictors under consideration.

The baseline characteristics of each cohort and the completeness 
of the recording of data for predictors with missing data are shown in 
Table 1. The cohorts were broadly similar, except that both English 
cohorts contained more complete data for ethnicity, smoking, cho-
lesterol and body mass index (BMI) than the CPRD validation cohort 
from the other three UK nations. Supplementary Table 4 shows the 
characteristics of participants with complete versus missing data in 
the QResearch derivation cohort: those with complete data tended to 
be older, and more likely to be female and to have clinical conditions.

There were 202,424 incident CVD cases (based on primary out-
come definition) from 49.1 million person-years in the derivation 
cohort. Extended Data Table 1 shows the types of CVD events in each 
cohort for each of the three outcome definitions.

The crude CVD incidence rates for the primary CVD outcome by 
age, sex, ethnicity and calendar year in the English derivation cohort 
and CPRD validation cohort are shown in Extended Data Table 3. CVD 
rates using linked data were higher in the English cohort, which was 
largely explained by the additional data linkage to hospital and mortality 
data. Extended Data Fig. 1 shows both CVD incidence rates and non-CVD 
mortality rates by calendar year and month for the whole study period. 
CVD rates per 1,000 person-years were lower in 2020, the first year of the 
COVID-19 pandemic, when the overall rate was 4.03 (95% CI, 3.97–4.08) 
but returned to pre-pandemic levels in 2021 (4.31; 95% CI, 4.25–4.37). 
Non-CVD mortality rates increased from 3.45 (95% CI, 3.40–3.50) in 
2019 to 3.84 (95% CI, 3.79–3.89) in 2020 and remained elevated in 2021.

Factors associated with increased risk of CVD
The adjusted hazard ratios for CVD incidence in the final cause-specific 
models in men and women (evaluated at the mean age of 39 years for 

Table 1 | Baseline characteristics of participants

QResearch 
derivation 
cohort

QResearch 
validation 
cohort

CPRD validation 
cohort

Total 9,976,306 3,246,602 3,542,007

Men 4,820,711 (48.3) 1,564,545 (48.2) 1,698,728 (48.0)

Mean age (s.d.) 39.0 (15.0) 38.9 (14.9) 42.6 (16.4)

Mean Townsend 
(s.d.)a

0.7 (3.2) 0.9 (3.2) 0.0 (0.0)

Mean BMI (s.d.) 25.6 (5.2) 25.6 (5.2) 26.4 (5.0)

Mean cholesterol/
HDL ratio

3.8 (1.2) 3.8 (1.2) 4.0 (1.3)

Mean SBP (s.d.) 123.6 (15.3) 123.4 (15.3) 125.4 (15.7)

Mean SBP variability 
(s.d.)b

9.3 (5.6) 9.3 (5.6) 9.6 (5.9)

Ethnicity recorded 6,186,167 (62.0) 1,972,052 (60.7) 1,257,906 (35.5)

 White 4,391,142 (44.0) 1,392,310 (42.9) 1,155,924 (32.6)

 Indian 301,414 (3.0) 95,018 (2.9) 19,217 (0.5)

 Pakistani 186,029 (1.9) 50,470 (1.6) 11,116 (0.3)

 Bangladeshi 115,682 (1.2) 42,898 (1.3) 3,884 (0.1)

 Other Asian 218,555 (2.2) 67,456 (2.1) 10,776 (0.3)

Caribbean 103,578 (1.0) 34,397 (1.1) 1,272 (0.0)

Black African 285,326 (2.9) 94,302 (2.9) 14,653 (0.4)

Chinese 148,779 (1.5) 47,754 (1.5) 12,859 (0.4)

Other ethnicity 435,662 (4.4) 147,447 (4.5) 28,205 (0.8)

Smoking recorded 9,426,326 (94.5) 3,056,793 (94.2) 2,825,315 (79.8)

 Nonsmoker 5,764,142 (57.8) 1,872,638 (57.7) 1,598,409 (45.1)

 Ex-smoker 1,600,361 (16.0) 511,647 (15.8) 560,550 (15.8)

  Light smoker (1–9 
per day)

1,589,116 (15.9) 521,304 (16.1) 156,038 (4.4)

  Moderate smoker 
(10–19 per day)

327,218 (3.3) 103,748 (3.2) 370,026 (10.4)

  Heavy smoker 
(≥20 per day)

145,489 (1.5) 47,456 (1.5) 140,292 (4.0)

No learning disability 9,936,826 (99.6) 3,234,133 (99.6) 3,539,790 (99.9)

Other learning 
disability

34,663 (0.3) 10,962 (0.3) 335 (0.0)

Down syndrome 4,817 (0.1) 1,507 (0.1) 1,882 (0.1)

COPD 79,991 (0.8) 26,156 (0.8) 34,909 (1.0)

Lung cancer 4,422 (0.0) 1,353 (0.0) 1,786 (0.1)

Blood cancer 31,009 (0.3) 10,039 (0.3) 10,819 (0.3)

Brain cancer 1,245 (0.0) 370 (0.0) 381 (0.0)

Oral, lip, or throat 
cancer

3,864 (0.0) 1,220 (0.0) 1,427 (0.0)

Postnatal depression 96,463 (1.0) 29,763 (0.9) 32,468 (0.9)

Pre-eclampsia or 
eclampsia

20,233 (0.2) 6,735 (0.2) 8,637 (0.2)

Baseline characteristics are shown for individuals aged 18–84 years in the English QResearch 
derivation and validation cohorts and in the external CPRD validation cohort from Scotland, 
Wales and Northern Ireland. Participants were those without CVD and not on statins at study 
entry. Values are numbers (%) of participants, unless indicated otherwise. ‘White’ ethnicity 
includes British, English, Northern Irish, Scottish and Welsh. aNo practices in the CPRD 
validation cohort had Townsend deprivation scores because these data were unavailable, so 
we assumed a value of zero. bBased on an s.d. of two or more values.
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significant age interactions for both men and women. Supplementary 
Figs. 1 and 2 show the corresponding results for non-CVD death.

There were seven new CVD predictors in men and women (brain 
cancer, lung cancer, Down syndrome, blood cancer, COPD, oral can-
cer and learning disability) and two additional predictors in women 
(pre-eclampsia and postnatal depression).

We found no association between the following variables and CVD 
risk in men or women: asthma, hyperthyroidism, hypothyroidism, 
antiphospholipid antibody syndrome, benign intracranial hyperten-
sion, HIV or AIDS, and the remaining cancers. In women, there were 
no associations with in vitro fertilization, endometriosis, polycystic 
ovarian syndrome, gestational diabetes, miscarriage, termination 
or placental abruption. No violations of the proportional hazard 
assumptions were detected graphically. The values for the heuristic 
shrinkage16 were all very close to one (0.99), indicating no evidence 
of overfitting.

New CVD predictors in women. The adjusted hazard ratios (95% CI) 
for the nine new independent predictors of CVD risk in women (evalu-
ated at the mean age of 39 years for variables with age interactions) are 
as follows: brain cancer, 4.52 (2.49–8.21); lung cancer, 3.50 (1.31–9.38); 
Down syndrome, 3.18 (2.40–4.22); blood cancer, 2.13 (1.71–2.67); COPD, 
1.85 (1.50–2.29); oral cancer, 1.55 (1.27–1.89); learning disability, 1.45 

(1.29–1.64); pre-eclampsia, 1.56 (1.36–1.78); and postnatal depression, 
1.18 (1.11–1.26).

The adjusted hazard ratios for several of these predictors were 
higher at younger ages (for example, under 35 years), except for lung 
cancer in women, for which adjusted hazard ratios were highest for 
those around age 40 years and then declined gradually with increas-
ing age (Extended Data Fig. 2). The adjusted hazard ratios (95% CI) at 
age 69 were as follows: brain cancer, 2.18 (1.29–3.71); lung cancer, 1.97 
(1.64–2.37); blood cancer, 1.39 (1.28–1.50); COPD, 1.38 (1.32–1.44); and 
pre-eclampsia, 1.12 (1.01–1.24).

The magnitude and direction for many of the adjusted hazard 
ratios for the competing outcome of non-CVD death in women were 
similar to those for CVD except for large adjusted hazard ratios (evalu-
ated at age 39 years) for Down syndrome (18.32; 95% CI, 16.24–20.66), 
lung cancer (49.94; 95% CI, 40.61–61.43) and brain cancer (33.35; 95% 
CI, 26.17–42.49). The adjusted hazard ratios for non-CVD death for 
family history of coronary heart disease, pre-eclampsia and migraine 
were significantly less than one (Supplementary Fig. 1).

New CVD predictors in men. The adjusted hazard ratios for the seven 
new independent predictors of CVD risk in men (evaluated at age 39 
years are shown in Fig. 1), and the adjusted hazard ratios (95% CI) for 
these predictors are as follows: brain cancer, 5.45 (3.49–8.50); Down 

Pre-eclampsia
Postnatal depression

Brain cancer
Blood cancer

Oral cancer
Lung cancer

COPD
Severe mental illness

Atypical antipsychotic
Systemic lupus
Corticosteroids

Migraine
Renal failure

Atrial fibrillation
Rheumatoid arthritis

Treated hypertension
Type 2 diabetes
Type 1 diabetes

FH of CHD
Down syndrome

Learning disability
No learning disability

Other ethnic group
Chinese

Black African
Caribbean

Other Asian
Bangladeshi

Pakistani
Indian
White

Heavy smoker
Moderate smoker

Light smoker
Ex-smoker

Deprivation (5-unit increase)
Cholesterol/HDL ratio

SD SBP
SBP

1.56 (1.36 to 1.78)
1.18 (1.11 to 1.26)
4.52 (2.49 to 8.21)
2.13 (1.71 to 2.67)
1.55 (1.27 to 1.89)
3.50 (1.31 to 9.38)
1.85 (1.50 to 2.29)
1.22 (1.17 to 1.27)
1.24 (1.17 to 1.32)
2.22 (1.79 to 2.75)
1.70 (1.61 to 1.80)
1.46 (1.40 to 1.52)
1.81 (1.57 to 2.09)
4.50 (3.42 to 5.92)
1.28 (1.23 to 1.34)
2.20 (2.05 to 2.35)
2.49 (2.20 to 2.83)
4.52 (3.92 to 5.21)
1.46 (1.41 to 1.52)
3.18 (2.40 to 4.22)
1.45 (1.29 to 1.64)
1.00 (1.00 to 1.00)

0.94 (0.89 to 1.00)
0.68 (0.59 to 0.79)
0.76 (0.71 to 0.82)
0.94 (0.89 to 1.00)
0.98 (0.92 to 1.05)
1.28 (1.16 to 1.42)
1.56 (1.48 to 1.64)
1.13 (1.06 to 1.21)
1.00 (1.00 to 1.00)

2.90 (2.65 to 3.17)
2.30 (2.16 to 2.45)
2.12 (2.05 to 2.20)
1.19 (1.14 to 1.25)

1.26 (1.22 to 1.29)
1.14 (1.13 to 1.15)
1.16 (1.15 to 1.18)
1.27 (1.24 to 1.30)

Adj HR (95% CI)

0.25 0.50 1.00 2.00 4.00 8.00 16.00

Adjusted hazard ratio

CVD events in women

Erectile dysfunction
Brain cancer

Blood cancer
Oral cancer

Lung cancer
COPD

Severe mental illness
Systemic lupus
Corticosteroids

Migraine
Renal failure

Atrial fibrillation
Rheumatoid arthritis

Treated hypertension
Type 2 diabetes
Type 1 diabetes

FH of CHD
Down syndrome

Learning disability
No learning disability

Other ethnic group
Chinese

Black African
Caribbean

Other Asian
Bangladeshi

Pakistani
Indian
White

Heavy smoker
Moderate smoker

Light smoker
Ex-smoker

Deprivation (5-unit increase)
Cholesterol/HDL ratio

SD SBP
SBP

1.40 (1.32 to 1.48)
5.45 (3.49 to 8.50)
2.06 (1.78 to 2.39)
1.49 (1.30 to 1.70)
1.66 (1.45 to 1.92)
1.37 (1.32 to 1.41)
1.18 (1.14 to 1.23)
1.68 (1.31 to 2.15)
1.64 (1.55 to 1.74)
1.41 (1.34 to 1.48)
1.70 (1.49 to 1.94)
2.59 (2.21 to 3.02)
1.19 (1.13 to 1.26)
2.20 (2.08 to 2.32)
2.03 (1.83 to 2.25)
3.28 (2.89 to 3.73)
1.62 (1.57 to 1.67)
2.35 (1.84 to 2.99)
1.17 (1.07 to 1.29)
1.00 (1.00 to 1.00)

0.81 (0.78 to 0.85)
0.72 (0.62 to 0.83)
0.66 (0.62 to 0.70)
0.67 (0.63 to 0.70)
1.04 (0.99 to 1.09)
1.41 (1.31 to 1.52)
1.47 (1.41 to 1.53)
1.19 (1.14 to 1.24)
1.00 (1.00 to 1.00)

2.60 (2.46 to 2.75)
2.08 (1.99 to 2.18)
2.00 (1.95 to 2.06)
1.19 (1.15 to 1.24)

1.11 (1.09 to 1.13)
1.15 (1.14 to 1.15)
1.14 (1.13 to 1.16)
1.30 (1.28 to 1.32)

Adj HR (95% CI)

0.25 0.50 1.00 2.00 4.00 8.00 16.00

Adjusted hazard ratio

CVD events in men

Fig. 1 | Final model-adjusted hazard ratios for CVD. Adjusted hazard ratios in 
5,155,595 women and 4,820,711 men, presented at the mean age of 39 years for 
variables with age interactions. The hazard ratios were adjusted for fractional 

polynomial terms for age and BMI (see Supplementary Fig. 1, which shows 
the relevant fractional polynomial terms). SBP is per 20-unit increase. Adj HR, 
adjusted hazard ratio; FH of CHD, family history of coronary heart disease.
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syndrome, 2.35 (1.84–2.99); blood cancer, 2.06 (1.78–2.39); lung cancer, 
1.66 (1.45–1.92); oral cancer, 1.49 (1.30–1.70); COPD, 1.37 (1.32–1.41); and 
learning disability, 1.17 (1.07–1.29). The adjusted hazard ratios in men 
for brain cancer and blood cancer declined with age; for example, at 
age 69 years, the adjusted hazard ratio (95% CI) was 2.12 (1.25–3.61) for 
brain cancer and 1.23 (1.15–1.31) for blood cancer.

The adjusted hazard ratios for the additional models were similar 
to our final main models in men and women (Supplementary Figs. 3–7). 
Model A includes the original QRISK3 predictor variables but without 
competing risks. Model B is similar to our final model, but the follow-up 
time ended on 29 February 2020, before the COVID-19 pandemic. Model 
C shows that the adjusted hazard ratios for CVD risk were similar across 
periods of time after diagnosis with one of the four cancers (except for 
oral cancer in women), although the adjusted hazard ratios for non-CVD 
deaths varied with the highest values for more recently diagnosed cancers.

Predicted risks
The way in which each of the new risk factors affects the predicted 
10-year CVD risk for specific individuals is shown in Fig. 2. In this illus-
tration, which is presented for both men and women across ages 18 to  
84 years, CVD risk was compared between individuals with a new risk 
factor and reference individuals with no adverse clinical indicators 
(a cholesterol/HDL ratio of 4.0, an SBP of 125 mm Hg and a BMI of 
25 kg m−2). These risk calculations show the impact of the new risk pre-
dictors, which mainly resulted in increased predicted risks compared 
with the reference individuals at younger ages and decreased predicted 
risks at older ages as competing risks become more pronounced. Using 
a reference group of individuals with various conventional risk factors 

(light smokers with a cholesterol/HDL ratio of 6.0, an SBP of 170 mm Hg 
and a BMI of 35 kg m−2), a similar pattern was observed, albeit with 
higher overall predicted risks (Supplementary Fig. 8).

Discrimination
The performance statistics (C statistic, calibration slope and calibra-
tion intercept) for QR4 and QRISK3 for the validation cohorts in Eng-
land, Scotland, Wales and Northern Ireland are shown in Table 2. The 
C statistic for QR4 was marginally higher than that for QRISK3 in both 
validation cohorts. For example, the C statistics were 0.835 (95% CI, 
0.833–0.837) and 0.831 (95% CI, 0.829–0.832) for QR4 and QRISK3, 
respectively, in women in the devolved administrations (Scotland, 
Wales and Northern Ireland). The corresponding values in women 
in England were 0.864 (95% CI, 0.862–0.866) for QR4 and 0.862 (95% 
CI, 0.860–0.864) for QRISK3. The C statistic values were generally 
higher in England than in the other three nations, although all values 
remained within an excellent range (>0.8). The results for men were 
similar, though the values were slightly lower.

The overall discrimination results and discrimination results 
delineated by ethnic group for QR4, SCORE and ASCVD are shown in 
Extended Data Table 4; these results were restricted to those aged 40 
years and older in the validation cohort in England. For women, overall 
discrimination was highest with QR4 (0.781; 95% CI, 0.778–0.784), fol-
lowed by ASCVD (0.767; 95% CI, 0.764–0.770) and SCORE2 (0.767; 95% 
CI, 0.764–0.770). There was a similar pattern for men.

The C statistics, calibration slopes and calibration intercepts 
(overall and by ethnic group) for QRISK3 and QR4 in men and women 
aged 18–84 years in the English validation cohort are shown in Extended 

0

5

10

15

20

25

30

35

40

C
VD

 ri
sk

20 25 30 35 40 45 50 55 60 65 70 75 80 85

Age (years)

Reference Blood cancer Brain cancer
Lung cancer Oral cancer

Cancer predictors in men

0

5

10

15

20

25

30

35

40

C
VD

 ri
sk

20 25 30 35 40 45 50 55 60 65 70 75 80 85

Age (years)

Reference COPD Learning disability Down

Noncancer predictors in men

0

5

10

15

20

25

30

35

40

C
VD

 ri
sk

20 25 30 35 40 45 50 55 60 65 70 75 80 85

Age (years)

Cancer predictors in women

0

5

10

15

20

25

30

35

40

C
VD

 ri
sk

20 25 30 35 40 45 50 55 60 65 70 75 80 85

Age (years)

Reference COPD Learning disability
Down Postnatal depression Pre-eclampsia

Noncancer predictors in women
Reference Blood cancer Brain cancer
Lung cancer Oral cancer

Fig. 2 | Effect of the new risk factors on prediction of 10-year CVD absolute 
risk. Ten-year CVD risk predictions for men and women over different ages. 
Predictions for an individual with each of the new risk factors are compared to 
those of a similar individual of the same age but without the new risk factors 

(reference individual). In this analysis, the reference individual is a White 
nonsmoker and has no adverse health conditions, an SBP of 125 mm Hg, a 
cholesterol/HDL ratio of 4.0 and a BMI of 25 kg m−2.
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Data Table 5. These results show that discrimination varied by ethnic 
group in England: the C statistic for QR4 was highest for Chinese men 
(0.923; 95% CI, 0.906–0.939) and lowest for Caribbean men (0.825; 
95% CI, 0.801–0.841).

The definitions of the CVD outcomes used for sensitivity analyses 
are shown in Supplementary Table 1. Supplementary Table 2 shows 
the performance statistics for QR4, SCORE2 and ASCVD for each 
outcome measure for each of the four UK nations among those aged 
40 years and older. The C statistic values for all scores (QR4, SCORE2 
and ASCVD) were highest for the tertiary outcome measure, and for 
all outcome measures discrimination values were higher for QR4 
than those for SCORE2 and ASCVD, which yielded values similar to 
one another.

Decision curve analysis
The decision curves in Fig. 3 indicate a slightly larger net benefit with 
QR4 compared with QRISK3 and Model A, but differences in net benefit 
are more marked in the devolved administrations than in England.

The decision analysis curves for QR4, SCORE2 and ASCVD for the 
primary outcome in England are shown in Extended Data Fig. 3. Supple-
mentary Figs. 9 and 10 show corresponding results for the secondary 
and tertiary CVD outcomes.

Calibration
QR4 was well-calibrated in England, showing a close correspondence 
between predicted and observed risks, whereas QRISK3 overpredicted 
risk in the higher centiles of predicted risk (Fig. 4). Table 2 shows the 
calibration slope and intercept values for QRISK3 and QR4 by country. 
There was a degree of miscalibration for QRISK3 and QR4 in each of 
the devolved administrations (Supplementary Fig. 11) on the basis of 
general practitioner (GP) data only.

The calibration results for ASCVD and SCORE2 in the English vali-
dation cohort, which are based on our primary outcome definition, are 
shown in Extended Data Fig. 4. Supplementary Table 2 and Supplemen-
tary Figs. 12 and 13 show the corresponding results for the secondary 
and tertiary outcomes. Overall, there was a degree of overprediction 
for ASCVD and a degree of underprediction for SCORE2, which were 
improved when comparisons were made with the more specific second-
ary and tertiary outcomes.

Reclassification
The characteristics of the 84,700 (2.6%) participants in the English 
validation cohort reclassified using QR4 instead of QRISK3 at the 10% 
risk threshold are shown in Extended Data Table 6. Of the 3,554 peo-
ple reclassified from low risk to high risk using QR4, 1,168 (32.9%) had 
COPD, 57 (1.6%) had a learning disability, 72 (2.0%) had Down syndrome, 
72 (2.0%) had a history of pre-eclampsia, 125 (3.5%) had a history of 
postnatal depression, 90 (2.5%) had oral cancer, 54 (1.5%) had brain 
cancer, 92 (2.6%) had lung cancer and 322 (9.1%) had blood cancer. Those 
reclassified as high risk using QR4 tended to be younger (mean age of 
52.4 years) than the 81,146 people reclassified as low risk (mean age of 
60.5 years). Supplementary Table 3 shows the corresponding analyses 
for the 4,068 participants reclassified as high risk using QR4 compared 
with Model A as well as the 12,791 participants reclassified as low risk; 
the pattern was similar, although the total number of participants that 
were reclassified was much smaller (16,859, 0.52%).

Discussion
We have developed and externally validated a new CVD risk score, QR4, 
that incorporates nine novel predictors with good face validity and clini-
cal utility to predict 10-year risk of CVD in a diverse population of men 
and women. These new predictors (in both men and women) are learning 

Table 2 | Evaluation of discrimination and calibration of QR4 compared with QRISK3

Women Men

QRISK3, mean (95% CI) QR4, mean (95% CI) QRISK3, mean (95% CI) QR4, mean (95% CI)

England

 C statistic 0.862 (0.860 to 0.864) 0.864 (0.862 to 0.866) 0.848 (0.846 to 0.850) 0.849 (0.847 to 0.851)

 Calibration slope 1.00 (0.994 to 1.01) 0.870 (0.863 to 0.878) 1.01 (1.01 to 1.02) 0.900 (0.894 to 0.907)

 Intercept 0.003 (−0.006 to 0.013) −0.130 (−0.137 to −0.122) 0.0136 (0.006 to 0.022) −0.100 (−0.106 to −0.093)

Devolved administrations

 C statistic 0.831 (0.829 to 0.832) 0.835 (0.833 to 0.837) 0.812 (0.81 to 0.814) 0.814 (0.812 to 0.816)

 Calibration slope 1.68 (1.66 to 1.69) 1.21 (1.2 to 1.22) 1.61 (1.6 to 1.62) 1.24 (1.23 to 1.25)

 Intercept 0.676 (0.662 to 0.69) 0.211 (0.204 to 0.219) 0.608 (0.597 to 0.62) 0.238 (0.231 to 0.245)

Wales

 C statistic 0.823 (0.82 to 0.827) 0.829 (0.825 to 0.832) 0.809 (0.806 to 0.812) 0.812 (0.809 to 0.815)

 Calibration slope 2.07 (2.04 to 2.11) 1.35 (1.34 to 1.37) 2.06 (2.03 to 2.09) 1.40 (1.39 to 1.42)

 Intercept 1.07 (1.04 to 1.11) 0.353 (0.338 to 0.368) 1.06 (1.03 to 1.09) 0.405 (0.391 to 0.418)

Scotland

 C Statistic 0.833 (0.83 to 0.835) 0.837 (0.834 to 0.839) 0.813 (0.811 to 0.815) 0.815 (0.812 to 0.817)

 Calibration slope 1.5 (1.48 to 1.51) 1.14 (1.13 to 1.15) 1.44 (1.43 to 1.46) 1.16 (1.15 to 1.17)

 Intercept 0.496 (0.48 to 0.512) 0.136 (0.126 to 0.145) 0.444 (0.431 to 0.457) 0.162 (0.154 to 0.171)

Northern Ireland

 C statistic 0.844 (0.838 to 0.85) 0.847 (0.841 to 0.853) 0.821 (0.817 to 0.826) 0.823 (0.818 to 0.828)

 Calibration slope 1.53 (1.49 to 1.58) 1.15 (1.13 to 1.18) 1.29 (1.26 to 1.32) 1.09 (1.06 to 1.11)

 Intercept 0.535 (0.49 to 0.58) 0.153 (0.127 to 0.179) 0.292 (0.262 to 0.321) 0.0855 (0.0644 to 0.107)

The discrimination and calibration of QR4 were compared with those of QRISK3 in people aged 18–84 years in the internal QResearch (England) and external CPRD (devolved administrations) 
validation cohorts on the basis of the primary outcome measure.
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disability, Down syndrome, COPD, lung cancer, oral cancer, blood cancer 
and brain cancer, and pre-eclampsia and postnatal depression in women 
only. The performance of QR4 was more accurate than other widely used 
CVD risk scores, namely, ASCVD, QRISK3 and SCORE2. QR4 is likely to 
result in clinically important changes in risk, leading to different CVD 
risk reduction advice or interventions, particularly for those with the 
new predictors, which might lead to interventions at an earlier age, as in 
the examples given. Furthermore, QR4 accounts for the competing risk 
of non-CVD death, thereby reducing overprediction of risk, especially 
among the more elderly populations17. Last, we have used and published 
the SNOMED-CT clinical code groups used to derive our model, facilitat-
ing reuse for further research and international comparisons.

Widely available CVD risk equations have been used for many 
millions of CVD health checks worldwide and are supported by interna-
tional guidelines2–5. However, it is important that guidance is based on 
the best algorithms available because this will materially affect which 
patients are offered risk-reducing interventions. Failure to adequately 
assess CVD risk and offer appropriate risk-reducing interventions across 
all patient groups could further disadvantage vulnerable patients, par-
ticularly cancer survivors and those with significant comorbidities such 
as COPD, Down syndrome, a learning disability or a history of postnatal 
depression or pre-eclampsia. Although the underlying conditions 
themselves may not be modifiable, the identification of high-risk people 
in these groups can lead to targeted interventions to reduce CVD risk.

Our findings regarding QR4 for cancer are particularly striking 
and confirm associations with CVD risk for four cancers (that is, blood, 
brain, lung and oral)13 despite accounting for reduced life expectancy 
using a competing risk analysis. The increased risk of CVD for cancer 
survivors particularly at younger ages needs to be considered in the 
context of the prognosis of the cancer itself because it would be inap-
propriate to prescribe therapies that lower CVD risk for those with a 
very poor prognosis. Although only 15% of people with lung cancer 
survive more than 5 years, 90% of people with blood cancers18 and 55% 
of people with oral cancers now survive more than 5 years19, and hence, 
targeted prevention has a potential clinical net benefit. The use of QR4 
in clinical practice will need careful consideration and discussion in 
patients with cancer and will need to account for patient preferences. 
There are also opportunities for further research to more finely char-
acterize the association between cancer treatment(s) and subsequent 
CVD. However, longitudinal data on cancer treatments (such as radio-
therapy and chemotherapy) are only just becoming available for this 
type of research data in the United Kingdom. These data are not yet 
routinely linked to primary care data for clinical use, so at present, they 
could not be used to implement more personalized risk prediction.

The lack of an association between asthma and CVD risk is inter-
esting, especially given the preconception that inhaled corticoster-
oids may increase the risk of CVD. By contrast, the 1.4-fold to 1.9-fold 
increased risk of CVD associated with COPD is consistent with the 
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Fig. 3 | Decision curves for QR4, QRISK3 and Model A. Decision curves showing net benefit in men and women aged 18–84 years in England and the devolved 
administrations. Decision curves for QR4, QRISK3 and Model A are compared to those for ‘Treat All’ (intervention in all individuals irrespective of risk threshold) and 
‘Treat None’ (intervention in no individuals).
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2-fold increased risk of CVD reported among US patients hospital-
ized with COPD9 and is clinically very important. COPD is now one 
of the top three most deadly diseases worldwide, resulting in an esti-
mated 3 million deaths annually, 90% of which occur in low-income 
and middle-income countries20. It is striking that this association 
was strongest in women with COPD, and there are two important 
implications of this finding. First, clinicians need to actively consider 
COPD as a diagnosis and to confirm it with spirometry, especially in 
women who are often neglected in this regard21,22. Second, therapies 
that reduce CVD risk should be prescribed; these therapies include 
optimizing inhaled therapies, as this has now been demonstrated to 
reduce mortality23,24.

The increased risk of CVD associated with pre-eclampsia declined 
with age, but the 54% increase that we observed at a mean age of 
39 years is consistent with other research25,26 and may reflect damage 
to the maternal cardiovascular system26. This highlights an important 
opportunity to systematically target CVD prevention14. The twofold to 
threefold increased risk of CVD among those with Down syndrome is 
consistent with the results of the limited analyses available11 and may 
reflect premature aging and adverse cardiometabolic profiles. This 
underscores US recommendations for continued CVD research and 
surveillance in people with Down syndrome, especially given improved 
life expectancy12. Incorporation of postnatal depression and learning 
disabilities into QR4 will help to operationalize policy initiatives to 
ensure parity of esteem with physical health for these patients.

Our study reports robust discrimination for ASCVD and SCORE2. 
Although there was a degree of miscalibration with ASCVD and SCORE2 
with the main outcome, which used a broader definition of CVD, this 
improved with endpoint definitions aligned with those for which 
ASCVD and SCORE2 were developed. Any residual miscalibration 
compared with the original studies may relate to a combination of dif-
ferent study populations (which might have different underlying CVD 
rates), different cohort selection criteria (for example, the inclusion 
of statin users in the SCORE2 studies), use of a different study period, 
and use of recalibration measures in SCORE2 (including the differential 
application of multipliers by age and sex, which are yet to be validated). 

This suggests that CVD risk equations may be transportable to other 
geographical settings if recalibrated.

The strengths and limitations of this study are similar to those 
for other well-established risk prediction tools. The strengths include 
size, duration of follow up, representativeness, lack of selection, recall 
and respondent bias, and no evidence of overfitting8. The inclusion 
of more granular information on predictors is a strength in that the 
predictions for individual patients are likely to better reflect their indi-
vidual risk, although this needs to be balanced against the increased 
complexity of the algorithm with regard to its implementation. How-
ever, this is mitigated in settings for which electronic health records 
are available because most relevant information is already available at 
the point of care and can be automatically populated27. Although we 
report improved discrimination for QR4 compared with QRISK3, the 
absolute values of the improvement in the C statistics were small. The 
C statistic is a familiar but limited measure that does not effectively 
balance misclassification errors28. It needs to be interpreted in the 
context of other relevant measures, including decision analysis, reclas-
sification, calibration and clinical utility28. Our study has strong face 
validity because it was conducted in a setting where most patients are 
managed, and hence, QR4 could be implemented in similar clinical 
settings, subject to local validation or recalibration. Last, our results 
are unlikely to have been affected by the COVID-19 pandemic in 2020 
and 2021, as the risk factors were predominantly recorded prior to the 
pandemic. The CVD incidence rates were temporarily affected in 2020 
but have since returned to pre-pandemic levels, and Model C showed 
very similar results to our main model.

One limitation is the lack of formal adjudication of CVD diagno-
ses. However, the use of linked hospital and mortality data ensures 
a clear ascertainment of CVD outcomes in the English cohorts. The 
miscalibration for QR4 in the other three UK nations (Scotland, Wales 
and Northern Ireland) reflects the lack of linked hospital data and Office 
for National Statistics mortality outcome data for these nations in the 
CPRD validation cohort, as this would have resulted in an underestima-
tion of CVD outcomes. Although there is potential for bias because of 
missing data, our data are substantially more complete than previous 
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Fig. 4 | Calibration of QRISK3 and QR4. Centile calibration plots of the observed 
and predicted risks for QR4 and QRISK3 in men and women aged 18–84 years 
in the English validation cohort. The red crosses show the observed risk versus 

the 10-year risk of CVD at each level of mean predicted risk. The blue line shows 
a perfect calibration scenario in which the mean predicted risk is equal to the 
observed risk.
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studies8, with the mitigation of residual biases through multiple impu-
tations using recommended approaches29. We expect that in clinical 
practice, any missing data will be collected from the patient or their 
caregiver during a consultation with the clinician, so missing data 
for the implementation of QR4 are unlikely to be a substantial issue. 
Although our validation covers a fully external population, further 
research should validate QR4 in different countries with different CVD 
rates. This could be addressed by further validation using different 
datasets with appropriate data linkages.

In conclusion, these results demonstrate the strength of QR4 in the 
general UK population and its superior performance compared with 
three other widely used international CVD risk scores. QR4 enables 
more accurate CVD risk estimation, which should lead to significant 
improvements in health outcomes, especially for those with COPD, 
Down syndrome and a learning disability, cancer survivors and women 
with pre-eclampsia or postnatal depression.

Online content
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maries, source data, extended data, supplementary information, 
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Methods
Study design and data sources
We undertook community-based cohort studies using two large elec-
tronic medical records databases, QResearch and CPRD GOLD. We 
randomly allocated three-quarters of QResearch practices in Eng-
land to the derivation cohort and the remainder to an internal Eng-
lish validation dataset. Both QResearch and CPRD GOLD are based 
on anonymized medical records data collected during the course of 
clinical care. QResearch is based on a commercial computer system 
known as Egton Medical Information Systems (EMIS), whereas CPRD 
GOLD is based on a different commercial system known as Vision. We 
used CPRD GOLD practices from three UK nations (Scotland, Wales 
and Northern Ireland) to create a second fully external geographically 
distinct validation cohort.

We included adults aged 18–84 years between 1 January 2010 and 
31 December 2021. The cohort entry date was the latest of the follow-
ing: 18th birthday, date of registration with the practice plus 1 year 
or 1 January 2010. We excluded participants with pre-existing CVD, 
those prescribed statins and (for QResearch) those with a missing 
Townsend deprivation score because they often represent temporary 
or incompletely registered patients with substantial missing data30. We 
followed participants up until the earliest date of CVD diagnosis, death, 
deregistration with the practice or the study end date.

Outcome definitions
Our primary outcome for model derivation and validation in QResearch 
was an incident diagnosis of CVD (fatal or nonfatal myocardial infarc-
tion, ischemic heart disease, ischemic, hemorrhagic or unspecified 
stroke or transient ischemic attack) identified from the GP record or 
linked mortality and hospital records using published clinical codes31. 
Our primary outcome for model validation in CPRD GOLD was based 
on the same diagnoses but recorded solely from the GP data because 
linked data for deaths and hospital admissions were not available for 
Scotland, Wales and Northern Ireland.

We had two additional outcomes for the validation comparisons 
between QR4, SCORE2 and ASCVD. Our secondary outcome, aligned 
with ASCVD, included nonfatal myocardial infarction or coronary heart 
disease-related death and fatal or nonfatal stroke. Our tertiary outcome 
was similar to our secondary outcome but also included fatal conges-
tive cardiac failure, hypertension and cardiac arrhythmias in order to 
align with the SCORE2 outcome definition4,7. For more details of the 
definitions of the primary and two additional outcomes, including the 
SNOMED-CT and ICD-10 codes used, see Supplementary Table 1. We 
compared the performance of all three algorithms (QR4, SCORE2 and 
ASCVD) using all three outcome definitions only in England because of 
the availability of linked cause of death data, which were not available 
for the devolved administrations.

Predictor variables
We included established risk factors from ASCVD3, QRISK3 (ref. 8) or 
SCORE2 (ref. 4) and new candidate variables highlighted in the litera-
ture (see Extended Data Table 2, which includes more details of the defi-
nitions of each predictor considered)9,10,11,12,13,32. Cholesterol ratio was 
defined as total serum cholesterol/HDL. Ethnicity was self-reported.

Model development
We used cause-specific Cox models to estimate the 10-year risk of CVD, 
accounting for non-CVD death as a competing risk for men and women 
separately using the biological sex recorded on the electronic health 
record33. This involved fitting two separate Cox models: one for CVD 
diagnoses and CVD deaths and one for non-CVD deaths with time from 
cohort entry as the underlying function34. We used fractional polynomi-
als35 to model nonlinear risk relationships with continuous variables. 
We used multiple imputation with chained equations to replace miss-
ing values for ethnicity, BMI, SBP, total cholesterol, HDL and smoking 

status36. For binary variables, we coded them as present if there was a 
recorded diagnosis in the GP medical record and otherwise coded them 
as absent. We carried out five separate imputations for men and women 
in the derivation dataset. We included all predictor variables in the 
imputation model, along with age interaction terms, the Nelson–Aalen 
estimator of the CVD baseline cumulative hazard, the CVD outcome 
indicator, the baseline cumulative hazard and the outcome indicator 
for non-CVD death29. We combined results from Cox models using 
Rubin’s rules37. We included variables from existing QRISK3 models8 
and retained additional variables with an adjusted hazard ratio of <0.90 
or >1.10 (for binary variables) and statistical significance at the 0.01 
level. We included significant interactions with age in the final model. 
We assessed model optimism by calculating heuristic shrinkage16. We 
combined estimates from the two cause-specific models to derive risk 
equations for the predicted risk of CVD at 10 years, accounting for 
competing events in men and women34.

We developed three additional models following peer review: 
Model A included the original QRISK3 parameters but did not account 
for competing risks; Model B was similar to our final model, but the 
follow-up time ended on 29 February 2020, before the COVID-19 pan-
demic; and Model C included time since cancer diagnosis as a predictor 
variable.

Model evaluation
We also carried out multiple imputations, with five separate imputa-
tions for men and women in each validation cohort. We applied the 
risk equations to the internal and external validation cohorts and 
evaluated performance by country (England, Wales, Scotland and 
Northern Ireland).

We calculated concordance indices, equivalent to the C statistics, 
and accounted for competing risks33. We assessed model calibration, 
comparing the mean predicted risks at 10 years with the observed risks 
accounting for competing risks (cumulative incidence) by hundredths 
of predicted risk. We generated pseudo-values that accounted for 
competing risks in order to calculate the calibration slope and inter-
cept at 10 years38.

We compared performance statistics for QR4 with those for 
ASCVD3,39, QRISK3 (ref. 8) and SCORE2 in England. We used the SCORE2 
algorithm for those aged 40–69 years without diabetes4, SCORE2-OP 
for those 70 years and older without diabetes7 and SCORE2-Diabetes40 
for those with diabetes using the authors’ published Stata code from 
July 2023 (ref. 41). We restricted comparisons between QR4, ASCVD 
and SCORE2 to people aged 40 years and older3,4,6. We also evaluated 
performance of QR4, ASCVD and SCORE2 using our secondary and 
tertiary outcomes.

Decision curve analysis
We used decision curve analysis accounting for competing risks in 
both validation cohorts, in order to evaluate the net benefit of QR4 
compared with that of QRISK3 and Model A and compared these with 
alternative strategies, such as assuming that all people were treated or 
nobody was treated42. The strategy with the highest net benefit at any 
given risk threshold was considered to have the most clinical value43. We 
also used decision curve analyses in people aged 40 years and older to 
compare QR4 with ASCVD and SCORE2 in the English validation cohort 
using all three outcomes.

Reclassification statistics
We classified individuals as ‘high risk’ for CVD if their predicted 10-year 
risk was ≥10%, which is in line with current UK guidelines5. We com-
pared the predicted risks of QR4 with those of QRISK3 and Model A to 
determine the percentage and characteristics of people reclassified 
at this high-risk threshold.

We also applied the predicted risk equations to men and women 
in the validation group to illustrate how each of the new risk factors 
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affected 10-year CVD risk. In these calculations, men and women aged 
18 to 84 were included, and CVD risk was compared between an indi-
vidual with each of the new risk factors and a comparable reference 
individual but with no adverse clinical indicators (a cholesterol/HDL 
ratio of 4.0, an SBP of 125 mm Hg and a BMI of 25 kg m−2). For the exam-
ple presented, we selected ‘White’ as the reference group, as this group 
had the largest number of participants.

We used all eligible individuals to develop and validate the models 
in order to maximize the power and generalizability of the results. We 
used Stata (version 17) for analyses.

Inclusion and ethics
This study used anonymized data from two electronic health care 
records databases, and hence, participant consent was not required. 
The databases cover a diverse population that is representative of 
the UK population. The QResearch ethics approval was completed by 
the East Midlands-Derby Research Ethics Committee (reference 18/
EM/0400). The CPRD ERAP approval reference is 20_000162.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
To guarantee the confidentiality of personal and health information, 
only the authors had access to the data during the study in accordance 
with the relevant license agreements. The QResearch data are on the 
QResearch website (https://www.qresearch.org), and the CPRD data 
are on the CPRD website (https://www.cprd.com).

Code availability
Clinical codes are published under a creative commons license at 
https://www.qresearch.org/data/qcode-group-library, with accom-
panying details in Supplementary Table 1. Software implementing  
the QR4 algorithm will be made available for research under an 
academic license by Oxford University Innovations (enquiries@
innovation.ox.ac.uk). The QRISK3 algorithm is available at https:// 
qrisk.org/src.php, and the ASCVD code is available at https://econ-
papers.repec.org/software/bocbocode/s459162.htm. SCORE2 algo-
rithms are available at https://www.phpc.cam.ac.uk (ps.reception@
medschl.cam.ac.uk).
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Extended Data Fig. 1 | CVD (primary outcome) and non-CVD death rates per 
1000 by calendar year and month over the full study period in the English 
derivation cohort in those aged 18–84 years. The two red spikes on the 

monthly graph show the non-CVD deaths occurring during the first and second 
COVID-19 pandemic waves in April 2020 and Jan 2021. Data presented in left panel 
are mean rates with 95% confidence intervals.
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Extended Data Fig. 2 | Adjusted hazard ratios for CVD risk for fractional polynomial terms for age and BMI and age interactions in the derivation cohort. 
Fractional polynomial terms for adjusted hazard ratios for CVD risk for age, BMI and age interactions in the derivation cohort.
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Extended Data Fig. 3 | Decision curves for QR4, ASCVD and SCORE2 in people aged 40+ in the England validation cohort using the primary CVD outcome 
definition. The greatest net benefit is observed for QR4 followed by ASCVD followed by SCORE2.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-024-02905-y

Extended Data Fig. 4 | Predicted and observed 10-year CVD risks for ASCVD and SCORE2 in the English validation cohort in people aged 40+ using the primary 
CVD outcome. Predicted and observed 10-year CVD risks for ASCVD and SCORE2 in the cohorts from England in people aged 40+ using the primary CVD outcome 
definition.
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Extended Data Table 1 | Flow of patients into the study for the QResearch Derivation Cohort and the validation cohorts from 
England and the remaining three nations (Wales, Scotland and Northern Ireland)
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Extended Data Table 2 | Existing predictors in QRISK3 and candidate predictors considered for inclusion in QR4
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Extended Data Table 3 | Number of CVD events and crude incidence rates per 1000 person years (95% CI) by age, sex and 
ethnicity in the QResearch derivation cohort in England compared with CPRD Gold validation cohort in other three UK 
nations (Scotland, Wales and Northern Ireland)
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Extended Data Table 4 | Discrimination using the C statistic (95% CI) for QR4, ASCVD and SCORE2 in people aged 40 and 
older in the England validation cohort overall and by ethnic group
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Extended Data Table 5 | Discrimination using the C statistic (95% CI), calibration slope and intercept for QRISK3 and QR4 in 
the validation cohort in England by ethnic group in those aged 18–84 years
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Extended Data Table 6 | Characteristics of patients in the English validation cohort with a high-risk score (defined as 10-year 
risk of CVD of 10% or greater) including characteristics of those reclassified using QR4 compared with QRISK3
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