Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sex differences in cardiometabolic disorders

Abstract

The prevalence of cardiometabolic disorders in both women and men has increased worldwide and is linked to a rise in obesity and obesity-associated associated clustering of other cardiometabolic risk factors such as hypertension, impaired glucose regulation and dyslipidemia. However, the predominance of common types of cardiometabolic disorders such as heart failure, atrial fibrillation and ischemic heart disease is sex specific, and our identification of these and the underlying mechanisms is only just emerging. New evidence suggests that sex hormones, sex-specific molecular mechanisms and gender influence glucose and lipid metabolisms, as well as cardiac energy metabolism, and function. Here we review sex differences in cardiometabolic risk factors, associated preclinical and clinical cardiac disorders and potential therapeutic avenues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characteristics of preclinical and clinical cardiometabolic disorders in women and men.
Fig. 2: Sex-specific features in cardiometabolic disorders.

Similar content being viewed by others

References

  1. Ng, M. et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384, 766–781 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Razavi, A. C., Potts, K. S., Kelly, T. N. & Bazzano, L. A. Sex, gut microbiome, and cardiovascular disease risk. Biol. Sex. Differ. 10, 29 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alpert, M. A., Lavie, C. J., Agrawal, H., Aggarwal, K. B. & Kumar, S. A. Obesity and heart failure: epidemiology, pathophysiology, clinical manifestations, and management. Transl. Res. 164, 345–356 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Peters, S. A., Huxley, R. R. & Woodward, M. Sex differences in body anthropometry and composition in individuals with and without diabetes in the UK Biobank. BMJ Open 6, e010007 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mongraw-Chaffin, M. L., Peters, S. A. E., Huxley, R. R. & Woodward, M. The sex-specific association between BMI and coronary heart disease: a systematic review and meta-analysis of 95 cohorts with 1.2 million participants. Lancet Diabetes Endocrinol. 3, 437–449 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Peters, S. A., Singhateh, Y., Mackay, D., Huxley, R. R. & Woodward, M. Total cholesterol as a risk factor for coronary heart disease and stroke in women compared with men: a systematic review and meta-analysis. Atherosclerosis 248, 123–131 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Peters, S. A., Huxley, R. R. & Woodward, M. Diabetes as risk factor for incident coronary heart disease in women compared with men: a systematic review and meta-analysis of 64 cohorts including 858,507 individuals and 28,203 coronary events. Diabetologia 57, 1542–1551 (2014).

    Article  PubMed  Google Scholar 

  8. EUGenMed Cardiovascular Clinical Study Group et al. Gender in cardiovascular diseases: impact on clinical manifestations, management, and outcomes. Eur. Heart J. 37, 24–34 (2016).

  9. Sharashova, E. et al. Long-term blood pressure trajectories and incident atrial fibrillation in women and men: the Tromso Study. Eur. Heart J. (2019).

  10. Flegal, K. M., Kruszon-Moran, D., Carroll, M. D., Fryar, C. D. & Ogden, C. L. Trends in obesity among adults in the United States, 2005 to 2014. JAMA 315, 2284–2291 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Marques, A., Peralta, M., Naia, A., Loureiro, N. & de Matos, M. G. Prevalence of adult overweight and obesity in 20 European countries, 2014. Eur. J. Public Health 28, 295–300 (2018).

    Article  PubMed  Google Scholar 

  12. Mauvais-Jarvis, F. Sex differences in metabolic homeostasis, diabetes, and obesity. Biol. Sex. Differ. 6, 14 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Fox, C. S. et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 116, 39–48 (2007).

    Article  PubMed  Google Scholar 

  14. Despres, J. P. et al. Race, visceral adipose tissue, plasma lipids, and lipoprotein lipase activity in men and women: the Health, Risk Factors, Exercise Training, and Genetics (HERITAGE) family study. Arterioscler. Thromb. Vasc. Biol. 20, 1932–1938 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Liu, J. et al. Impact of abdominal visceral and subcutaneous adipose tissue on cardiometabolic risk factors: the Jackson Heart Study. J. Clin. Endocrinol. Metab. 95, 5419–5426 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fryar, C.D., Ostchega, Y., Hales, C.M., Zhang, G. & Kruszon-Moran, D. Hypertension prevalence and control among adults: United States, 2015–2016. NCHS Data Brief, 1–8 (2017).

  17. Scuteri, A. et al. Longitudinal perspective on the conundrum of central arterial stiffness, blood pressure, and aging. Hypertension 64, 1219–1227 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Jackson, C. A., Dobson, A., Tooth, L. & Mishra, G. D. Body mass index and socioeconomic position are associated with 9-year trajectories of multimorbidity: a population-based study. Prev. Med. 81, 92–98 (2015).

    Article  PubMed  Google Scholar 

  19. Oertelt-Prigione, S. et al. Cardiovascular risk factor distribution and subjective risk estimation in urban women—the BEFRI study: a randomized cross-sectional study. BMC Med. 13, 52 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pelletier, R. et al. Sex versus gender-related characteristics: which predicts outcome after acute coronary syndrome in the young? J. Am. Coll. Cardiol. 67, 127–135 (2016).

    Article  PubMed  Google Scholar 

  21. Pelletier, R., Ditto, B. & Pilote, L. A composite measure of gender and its association with risk factors in patients with premature acute coronary syndrome. Psychosom. Med. 77, 517–526 (2015).

    Article  PubMed  Google Scholar 

  22. Cho, N. H. et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 138, 271–281 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Al-Salameh, A., Chanson, P., Bucher, S., Ringa, V. & Becquemont, L. Cardiovascular disease in type 2 diabetes: a review of sex-related differences in predisposition and prevention. Mayo Clin. Proc. 94, 287–308 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Lyon, A., Jackson, E. A., Kalyani, R. R., Vaidya, D. & Kim, C. Sex-specific differential in risk of diabetes-related macrovascular outcomes. Curr. Diab. Rep. 15, 85 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Juutilainen, A. et al. Gender difference in the impact of type 2 diabetes on coronary heart disease risk. Diabetes Care 27, 2898–2904 (2004).

    Article  PubMed  Google Scholar 

  26. O’Neill, S. & O’Driscoll, L. Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obes. Rev. 16, 1–12 (2015).

    Article  PubMed  Google Scholar 

  27. Regitz-Zagrosek, V., Lehmkuhl, E. & Mahmoodzadeh, S. Gender aspects of the role of the metabolic syndrome as a risk factor for cardiovascular disease. Gend. Med. 4(Suppl. B), S162–S177 (2007).

    Article  PubMed  Google Scholar 

  28. Moore, J. X., Chaudhary, N. & Akinyemiju, T. Metabolic syndrome prevalence by race/ethnicity and sex in the United States, National Health and Nutrition Examination Survey, 1988–2012. Prev. Chronic Dis. 14, E24 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Resnick, H. E. et al. Metabolic syndrome in American Indians. Diabetes Care 25, 1246–1247 (2002).

    Article  PubMed  Google Scholar 

  30. Huxley, R., Barzi, F. & Woodward, M. Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ 332, 73–78 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Devereux, R. B. & Alderman, M. H. Role of preclinical cardiovascular disease in the evolution from risk factor exposure to development of morbid events. Circulation 88, 1444–1455 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Gerdts, E. et al. Left atrial size and risk of major cardiovascular events during antihypertensive treatment: losartan intervention for endpoint reduction in hypertension trial. Hypertension 49, 311–316 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Gerdts, E. et al. Left ventricular hypertrophy offsets the sex difference in cardiovascular risk (the Campania Salute Network). Int. J. Cardiol. 258, 257–261 (2018).

    Article  PubMed  Google Scholar 

  34. Lang, R. M. et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 28, 1–39.e14 (2015).

    Article  PubMed  Google Scholar 

  35. de Simone, G. et al. Does information on systolic and diastolic function improve prediction of a cardiovascular event by left ventricular hypertrophy in arterial hypertension? Hypertension 56, 99–104 (2010).

    Article  PubMed  CAS  Google Scholar 

  36. Halland, H. et al. Sex differences in subclinical cardiac disease in overweight and obesity (the FATCOR study). Nutr. Metab. Cardiovasc. Dis. 28, 1054–1060 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Halland, H. et al. Effect of fitness on cardiac structure and function in overweight and obesity (the FATCOR study). Nutr. Metab. Cardiovasc. Dis. 29, 710–717 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. de Simone, G. et al. Target organ damage and incident type 2 diabetes mellitus: the Strong Heart Study. Cardiovasc. Diabetol. 16, 64 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Bella, J. N. et al. Separate and joint effects of systemic hypertension and diabetes mellitus on left ventricular structure and function in American Indians (the Strong Heart Study). Am. J. Cardiol. 87, 1260–1265 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. de Simone, G., Mancusi, C., Izzo, R., Losi, M. A. & Aldo Ferrara, L. Obesity and hypertensive heart disease: focus on body composition and sex differences. Diabetol. Metab. Syndr. 8, 79 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Gerdts, E. et al. Correlates of left atrial size in hypertensive patients with left ventricular hypertrophy: the Losartan Intervention For Endpoint Reduction in Hypertension (LIFE) Study. Hypertension 39, 739–743 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Gerdts, E. et al. Gender differences in left ventricular structure and function during antihypertensive treatment: the Losartan Intervention for Endpoint Reduction in Hypertension Study. Hypertension 51, 1109–1114 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. de Simone, G. et al. Lack of reduction of left ventricular mass in treated hypertension: the Strong Heart Study. J. Am. Heart Assoc. 2, e000144 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  44. De Simone, G. et al. Sex differences in obesity-related changes in left ventricular morphology: the Strong Heart Study. J. Hypertens. 29, 1431–1438 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Izzo, R. et al. Development of left ventricular hypertrophy in treated hypertensive outpatients: the Campania Salute Network. Hypertension 69, 136–142 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Tadic, M. et al. The influence of sex on left ventricular strain in hypertensive population. J. Hypertens. 37, 50–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Bella, J. N. et al. Gender differences in left ventricular systolic function in American Indians (from the Strong Heart Study). Am. J. Cardiol. 98, 834–837 (2006).

    Article  PubMed  Google Scholar 

  48. Williams, B. et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 39, 3021–3104 (2018).

    Article  PubMed  Google Scholar 

  49. Lew, J. et al. Sex-based differences in cardiometabolic biomarkers. Circulation 135, 544–555 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ponikowski, P. et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)—developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 37, 2129–2200 (2016).

    Article  PubMed  Google Scholar 

  51. Yancy, C. W. et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation 136, e137–e161 (2017).

    Article  PubMed  Google Scholar 

  52. Regitz-Zagrosek, V., Lehmkuhl, E., Lehmkuhl, H. B. & Hetzer, R. Gender aspects in heart failure. Pathophysiol. Med. Ther. Arch. Mal. Coeur Vaiss. 97, 899–908 (2004).

    CAS  Google Scholar 

  53. Lee, D. S. et al. Relation of disease pathogenesis and risk factors to heart failure with preserved or reduced ejection fraction: insights from the Framingham heart study of the national heart, lung, and blood institute. Circulation 119, 3070–3077 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ho, J. E. et al. Predictors of new-onset heart failure: differences in preserved versus reduced ejection fraction. Circ. Heart Fail. 6, 279–286 (2013).

    Article  PubMed  Google Scholar 

  55. Savji, N. et al. The association of obesity and cardiometabolic traits with incident HFpEF and HFrEF. JACC Heart Fail. 6, 701–709 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Costantino, S. et al. Obesity-induced activation of JunD promotes myocardial lipid accumulation and metabolic cardiomyopathy. Eur. Heart J. 40, 997–1008 (2019).

    Article  PubMed  CAS  Google Scholar 

  57. Murphy, E., Amanakis, G., Fillmore, N., Parks, R. J. & Sun, J. Sex differences in metabolic cardiomyopathy. Cardiovasc. Res. 113, 370–377 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Schulze, P. C., Drosatos, K. & Goldberg, I. J. Lipid use and misuse by the heart. Circ. Res. 118, 1736–1751 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ng, A. C. T. et al. Impact of epicardial adipose tissue, left ventricular myocardial fat content, and interstitial fibrosis on myocardial contractile function. Circ. Cardiovasc. Imaging 11, e007372 (2018).

    Article  PubMed  Google Scholar 

  60. Kellman, P. et al. Multiecho Dixon fat and water separation method for detecting fibrofatty infiltration in the myocardium. Magn. Reson. Med. 61, 215–221 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wei, J. et al. Myocardial steatosis as a possible mechanistic link between diastolic dysfunction and coronary microvascular dysfunction in women. Am. J. Physiol. Heart Circ. Physiol. 310, H14–H19 (2016).

    Article  PubMed  Google Scholar 

  62. Eugene, A. R. Metoprolol dose equivalence in adult men and women based on gender differences: pharmacokinetic modeling and simulations. Med. Sci. (Basel) 4, (18 (2016).

    Google Scholar 

  63. Santema, B. T. et al. Identifying optimal doses of heart failure medications in men compared with women: a prospective, observational, cohort study. Lancet 394, 1254–1263 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Bots, S. H. et al. Adverse drug reactions to guideline-recommended heart failure drugs in women: a systematic review of the literature. JACC Heart Fail. 7, 258–266 (2019).

    Article  PubMed  Google Scholar 

  65. Moss, A. J. et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N. Engl. J. Med. 361, 1329–1338 (2009).

    Article  PubMed  Google Scholar 

  66. Tang, A. S. et al. Cardiac-resynchronization therapy for mild-to-moderate heart failure. N. Engl. J. Med. 363, 2385–2395 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Gillis, A. M. Atrial fibrillation and ventricular arrhythmias: sex differences in electrophysiology, epidemiology, clinical presentation, and clinical outcomes. Circulation 135, 593–608 (2017).

    Article  PubMed  Google Scholar 

  68. Kirchhof, P. et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur. Heart J. 37, 2893–2962 (2016).

    Article  PubMed  Google Scholar 

  69. Ball, J. et al. Sex differences in the impact of body mass index on the risk of future atrial fibrillation: insights from the longitudinal population-based Tromso Study. J. Am. Heart Assoc. 7, e008414 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Huxley, R. R. et al. Absolute and attributable risks of atrial fibrillation in relation to optimal and borderline risk factors: the Atherosclerosis Risk in Communities (ARIC) study. Circulation 123, 1501–1508 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Tsang, T. S. et al. Obesity as a risk factor for the progression of paroxysmal to permanent atrial fibrillation: a longitudinal cohort study of 21 years. Eur. Heart J. 29, 2227–2233 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lavie, C. J., Pandey, A., Lau, D. H., Alpert, M. A. & Sanders, P. Obesity and atrial fibrillation prevalence, pathogenesis, and prognosis: effects of weight loss and exercise. J. Am. Coll. Cardiol. 70, 2022–2035 (2017).

    Article  PubMed  Google Scholar 

  73. Conen, D., Glynn, R. J., Sandhu, R. K., Tedrow, U. B. & Albert, C. M. Risk factors for incident atrial fibrillation with and without left atrial enlargement in women. Int. J. Cardiol. 168, 1894–1899 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kim, J. S. et al. Influence of sex on the association between epicardial adipose tissue and left atrial transport function in patients with atrial fibrillation: a multislice computed tomography study. J. Am. Heart Assoc. 6, e006077 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Blum, S. et al. Prospective assessment of sex-related differences in symptom status and health perception among patients with atrial fibrillation. J. Am. Heart Assoc. 6, e005401 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  76. January, C. T. et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 64, e1–e76 (2014).

    Article  PubMed  Google Scholar 

  77. Zylla, M. M. et al. Sex-related outcome of atrial fibrillation ablation: Insights from the German Ablation Registry. Heart Rhythm 13, 1837–1844 (2016).

    Article  PubMed  Google Scholar 

  78. Shaw, L. J., Bugiardini, R. & Merz, C. N. Women and ischemic heart disease: evolving knowledge. J. Am. Coll. Cardiol. 54, 1561–1575 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Garcia, M., Mulvagh, S. L., Merz, C. N., Buring, J. E. & Manson, J. E. Cardiovascular disease in women: clinical perspectives. Circ. Res. 118, 1273–1293 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Berger, J. S. et al. Sex differences in mortality following acute coronary syndromes. JAMA 302, 874–882 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lonnebakken, M. T. et al. Impact of aortic stiffness on myocardial ischaemia in non-obstructive coronary artery disease. Open Heart 6, e000981 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Eskerud, I., Gerdts, E., Larsen, T. H. & Lonnebakken, M. T. Left ventricular hypertrophy contributes to Myocardial Ischemia in Non-obstructive Coronary Artery Disease (the MicroCAD study). Int. J. Cardiol. 286, 1–6 (2019).

    Article  PubMed  Google Scholar 

  83. Albrektsen, G. et al. Risk of incident myocardial infarction by gender: interactions with serum lipids, blood pressure and smoking. The Tromso Study 1979–2012. Atherosclerosis 261, 52–59 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Mieres, J. H. et al. Signs and symptoms of suspected myocardial ischemia in women: results from the What is the Optimal Method for Ischemia Evaluation in WomeN? Trial. J. Women’s. Health (Larchmt.) 20, 1261–1268 (2011).

    Article  Google Scholar 

  85. Sulo, G. et al. Trends in incident acute myocardial infarction in Norway: an updated analysis to 2014 using national data from the CVDNOR project. Eur. J. Prev. Cardiol. 25, 1031–1039 (2018).

    Article  PubMed  Google Scholar 

  86. Shah, A. S. et al. High sensitivity cardiac troponin and the under-diagnosis of myocardial infarction in women: prospective cohort study. BMJ 350, g7873 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Labounty, T. M. et al. Body mass index and the prevalence, severity, and risk of coronary artery disease: an international multicentre study of 13,874 patients. Eur. Heart J. Cardiovasc. Imaging 14, 456–463 (2013).

    Article  PubMed  Google Scholar 

  88. Schulman-Marcus, J. et al. Sex-specific associations between coronary artery plaque extent and risk of major adverse cardiovascular events: the CONFIRM long-term registry. JACC Cardiovasc. Imaging 9, 364–372 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Taqueti, V. R. et al. Excess cardiovascular risk in women relative to men referred for coronary angiography is associated with severely impaired coronary flow reserve, not obstructive disease. Circulation 135, 566–577 (2017).

    Article  PubMed  Google Scholar 

  90. Ventura-Clapier, R. et al. Sex in basic research: concepts in the cardiovascular field. Cardiovasc. Res. 113, 711–724 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187–196 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Stocco, C. Tissue physiology and pathology of aromatase. Steroids 77, 27–35 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Jankowska, E. A. et al. Circulating estradiol and mortality in men with systolic chronic heart failure. JAMA 301, 1892–1901 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Kararigas, G. et al. Transcriptome characterization of estrogen-treated human myocardium identifies myosin regulatory light chain interacting protein as a sex-specific element influencing contractile function. J. Am. Coll. Cardiol. 59, 410–417 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Nelson, J. K. et al. The deubiquitylase USP2 regulates the LDLR pathway by counteracting the E3-ubiquitin ligase IDOL. Circ. Res. 118, 410–419 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Fliegner, D. et al. Female sex and estrogen receptor-beta attenuate cardiac remodeling and apoptosis in pressure overload. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R1597–R1606 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Witt, H. et al. Sex-specific pathways in early cardiac response to pressure overload in mice. J. Mol. Med. (Berl.) 86, 1013–1024 (2008).

    Article  Google Scholar 

  98. Kararigas, G. et al. Sex-dependent regulation of fibrosis and inflammation in human left ventricular remodelling under pressure overload. Eur. J. Heart Fail. 16, 1160–1167 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Rattanasopa, C., Phungphong, S., Wattanapermpool, J. & Bupha-Intr, T. Significant role of estrogen in maintaining cardiac mitochondrial functions. J. Steroid Biochem. Mol. Biol. 147, 1–9 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Sun, L. Y. et al. MicroRNA-23a mediates mitochondrial compromise in estrogen deficiency-induced concentric remodeling via targeting PGC-1alpha. J. Mol. Cell Cardiol. 75, 1–11 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Rettberg, J. R., Yao, J. & Brinton, R. D. Estrogen: a master regulator of bioenergetic systems in the brain and body. Front. Neuroendocrinol. 35, 8–30 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Irwin, R. W. et al. Selective oestrogen receptor modulators differentially potentiate brain mitochondrial function. J. Neuroendocrinol. 24, 236–248 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chen, J. Q., Eshete, M., Alworth, W. L. & Yager, J. D. Binding of MCF-7 cell mitochondrial proteins and recombinant human estrogen receptors alpha and beta to human mitochondrial DNA estrogen response elements. J. Cell Biochem. 93, 358–373 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Zhai, P., Eurell, T. E., Cooke, P. S., Lubahn, D. B. & Gross, D. R. Myocardial ischemia-reperfusion injury in estrogen receptor-alpha knockout and wild-type mice. Am. J. Physiol. Heart Circ. Physiol. 278, H1640–H1647 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Zhai, P. et al. Effect of estrogen on global myocardial ischemia-reperfusion injury in female rats. Am. J. Physiol. Heart Circ. Physiol. 279, H2766–H2775 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Miller, V. M. & Duckles, S. P. Vascular actions of estrogens: functional implications. Pharmacol. Rev. 60, 210–241 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Stirone, C., Duckles, S. P., Krause, D. N. & Procaccio, V. Estrogen increases mitochondrial efficiency and reduces oxidative stress in cerebral blood vessels. Mol. Pharmacol. 68, 959–965 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Essop, M. F., Chan, W. Y. & Taegtmeyer, H. Metabolic gene switching in the murine female heart parallels enhanced mitochondrial respiratory function in response to oxidative stress. FEBS J. 274, 5278–5284 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Diedrich, M. et al. Heart protein expression related to age and sex in mice and humans. Int. J. Mol. Med. 20, 865–874 (2007).

    CAS  PubMed  Google Scholar 

  110. Liu, H., Yanamandala, M., Lee, T. C. & Kim, J. K. Mitochondrial p38beta and manganese superoxide dismutase interaction mediated by estrogen in cardiomyocytes. PLoS One 9, e85272 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Zhang, L., Fujii, S. & Kosaka, H. Effect of oestrogen on reactive oxygen species production in the aortas of ovariectomized Dahl salt-sensitive rats. J. Hypertens. 25, 407–414 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Lagranha, C. J., Deschamps, A., Aponte, A., Steenbergen, C. & Murphy, E. Sex differences in the phosphorylation of mitochondrial proteins result in reduced production of reactive oxygen species and cardioprotection in females. Circ. Res. 106, 1681–1691 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Westphal, C. et al. CYP2J2 overexpression protects against arrhythmia susceptibility in cardiac hypertrophy. PLoS One 8, e73490 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Muller, D. N. et al. Mouse Cyp4a isoforms: enzymatic properties, gender- and strain-specific expression, and role in renal 20-hydroxyeicosatetraenoic acid formation. Biochem. J. 403, 109–118 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lehti, M. et al. High-density lipoprotein maintains skeletal muscle function by modulating cellular respiration in mice. Circulation 128, 2364–2371 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ferrara, L. A. et al. Cardiometabolic risk in overweight subjects with or without relative fat-free mass deficiency: the Strong Heart Study. Nutr. Metab. Cardiovasc. Dis. 24, 271–276 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Bohm, C. et al. Sexual dimorphism in obesity-mediated left ventricular hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 305, H211–H218 (2013).

    Article  PubMed  CAS  Google Scholar 

  118. Petrov, G. et al. Maladaptive remodeling is associated with impaired survival in women but not in men after aortic valve replacement. JACC Cardiovasc. Imaging 7, 1073–1080 (2014).

    Article  PubMed  Google Scholar 

  119. Petrov, G. et al. Regression of myocardial hypertrophy after aortic valve replacement: faster in women? Circulation 122, S23–S28 (2010).

    Article  PubMed  Google Scholar 

  120. Tiyerili, V. et al. Estrogen improves vascular function via peroxisome-proliferator-activated-receptor-gamma. J. Mol. Cell Cardiol. 53, 268–276 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Dworatzek, E. et al. Sex-specific regulation of collagen I and III expression by 17beta-estradiol in cardiac fibroblasts: role of estrogen receptors. Cardiovasc. Res. 115, 315–327 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Sanchez-Ruderisch, H. et al. Sex-specific regulation of cardiac microRNAs targeting mitochondrial proteins in pressure overload. Biol. Sex. Differ. 10, 8 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Srivastava, S. et al. Estrogen decreases TNF gene expression by blocking JNK activity and the resulting production of c-Jun and JunD. J. Clin. Invest. 104, 503–513 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Czubryt, M. P., McAnally, J., Fishman, G. I. & Olson, E. N. Regulation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 alpha) and mitochondrial function by MEF2 and HDAC5. Proc. Natl Acad. Sci. USA 100, 1711–1716 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

E.G. and V.R-Z. both drafted and contributed to the manuscript and approved the final version.

Corresponding author

Correspondence to Eva Gerdts.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Hannah Stower was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerdts, E., Regitz-Zagrosek, V. Sex differences in cardiometabolic disorders. Nat Med 25, 1657–1666 (2019). https://doi.org/10.1038/s41591-019-0643-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-019-0643-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research