Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia

An Author Correction to this article was published on 05 February 2021

This article has been updated

Abstract

Tolerance to self-antigens prevents the elimination of cancer by the immune system1,2. We used synthetic chimeric antigen receptors (CARs) to overcome immunological tolerance and mediate tumor rejection in patients with chronic lymphocytic leukemia (CLL). Remission was induced in a subset of subjects, but most did not respond. Comprehensive assessment of patient-derived CAR T cells to identify mechanisms of therapeutic success and failure has not been explored. We performed genomic, phenotypic and functional evaluations to identify determinants of response. Transcriptomic profiling revealed that CAR T cells from complete-responding patients with CLL were enriched in memory-related genes, including IL-6/STAT3 signatures, whereas T cells from nonresponders upregulated programs involved in effector differentiation, glycolysis, exhaustion and apoptosis. Sustained remission was associated with an elevated frequency of CD27+CD45ROCD8+ T cells before CAR T cell generation, and these lymphocytes possessed memory-like characteristics. Highly functional CAR T cells from patients produced STAT3-related cytokines, and serum IL-6 correlated with CAR T cell expansion. IL-6/STAT3 blockade diminished CAR T cell proliferation. Furthermore, a mechanistically relevant population of CD27+PD-1CD8+ CAR T cells expressing high levels of the IL-6 receptor predicts therapeutic response and is responsible for tumor control. These findings uncover new features of CAR T cell biology and underscore the potential of using pretreatment biomarkers of response to advance immunotherapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The intrinsic potency of CAR T cells from patients with CLL drives response to therapy.
Fig. 2: Transcriptional profiles of CAR T cellular products reveal T cell–intrinsic quality attributes associated with clinical response.
Fig. 3: CAR T cell replicative capacity, activation potential and IL-6/STAT3-pathway enrichment define therapeutic response and failure.
Fig. 4: The presence of mechanistically relevant T cell populations in patients can predict response to CTL019 therapy.

Similar content being viewed by others

Change history

References

  1. Makkouk, A. & Weiner, G. J. Cancer immunotherapy and breaking immune tolerance: new approaches to an old challenge. Cancer Res. 75, 5–10 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Vesely, M. D., Kershaw, M. H., Schreiber, R. D. & Smyth, M. J. Natural innate and adaptive immunity to cancer. Annu. Rev. Immunol. 29, 235–271 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Brown, J. R. et al. Idelalisib, an inhibitor of phosphatidylinositol 3-kinase p110delta, for relapsed/refractory chronic lymphocytic leukemia. Blood 123, 3390–3397 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jain, P. et al. Outcomes of patients with chronic lymphocytic leukemia after discontinuing ibrutinib. Blood 125, 2062–2067 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kalos, M. et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 3, 95ra73 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Porter, D. L. et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci. Transl. Med. 7, 303ra139 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Turtle, C. J. et al. Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci. Transl. Med. 8, 355ra116 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Lee, D. W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Turtle, C. J. et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Invest. 126, 2123–2138 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kochenderfer, J. N. et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J. Clin. Oncol. 33, 540–549 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Kawalekar, O. U. et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44, 712 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Gattinoni, L. et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J. Clin. Invest. 115, 1616–1626 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hinrichs, C. S. et al. Adoptively transferred effector cells derived from naive rather than central memory CD8+ T cells mediate superior antitumor immunity. Proc. Natl. Acad. Sci. USA 106, 17469–17474 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gattinoni, L. et al. A human memory T cell subset with stem cell-like properties. Nat. Med. 17, 1290–1297 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Radvanyi, L. G. et al. Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients. Clin. Cancer Res. 18, 6758–6770 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rosenberg, S. A. et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res. 17, 4550–4557 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wirth, T. C. et al. Repetitive antigen stimulation induces stepwise transcriptome diversification but preserves a core signature of memory CD8+ T cell differentiation. Immunity 33, 128–140 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Betz, U. A. & Müller, W. Regulated expression of gp130 and IL-6 receptor alpha chain in T cell maturation and activation. Int. Immunol. 10, 1175–1184 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Siegel, A. M. et al. A critical role for STAT3 transcription factor signaling in the development and maintenance of human T cell memory. Immunity 35, 806–818 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lugli, E. et al. Identification, isolation and in vitro expansion of human and nonhuman primate T stem cell memory cells. Nat. Protoc. 8, 33–42 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Bruggner, R. V., Bodenmiller, B., Dill, D. L., Tibshirani, R. J. & Nolan, G. P. Automated identification of stratifying signatures in cellular subpopulations. Proc. Natl. Acad. Sci. USA 111, E2770–E2777 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Aghaeepour, N. et al. Early immunologic correlates of HIV protection can be identified from computational analysis of complex multivariate T-cell flow cytometry assays. Bioinformatics 28, 1009–1016 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lécuroux, C. et al. Identification of a particular HIV-specific CD8+ T-cell subset with a CD27+ CD45RO/RA+ phenotype and memory characteristics after initiation of HAART during acute primary HIV infection. Blood 113, 3209–3217 (2009).

    Article  PubMed  CAS  Google Scholar 

  25. Dunne, P. J. et al. Epstein-Barr virus-specific CD8+ T cells that re-express CD45RA are apoptosis-resistant memory cells that retain replicative potential. Blood 100, 933–940 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Rufer, N. et al. Ex vivo characterization of human CD8+ T subsets with distinct replicative history and partial effector functions. Blood 102, 1779–1787 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Precopio, M. L. et al. Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8+ T cell responses. J. Exp. Med. 204, 1405–1416 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kueberuwa, G. et al. CCR7+ selected gene-modified T cells maintain a central memory phenotype and display enhanced persistence in peripheral blood in vivo. J. Immunother. Cancer 5, 14 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jones, R. B. et al. Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection. J. Exp. Med. 205, 2763–2779 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Barber, D. L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Blackburn, S. D. et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol. 10, 29–37 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Ahmadzadeh, M. et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114, 1537–1544 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fourcade, J. et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J. Exp. Med. 207, 2175–2186 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Grosso, J. F. et al. LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems. J. Clin. Invest. 117, 3383–3392 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grosso, J. F. et al. Functionally distinct LAG-3 and PD-1 subsets on activated and chronically stimulated CD8 T cells. J. Immunol. 182, 6659–6669 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Milone, M. C. et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol. Ther. 17, 1453–1464 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Laport, G. G. et al. Adoptive transfer of costimulated T cells induces lymphocytosis in patients with relapsed/refractory non-Hodgkin lymphoma following CD34+-selected hematopoietic cell transplantation. Blood 102, 2004–2013 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Ruella, M. et al. The addition of the BTK inhibitor Ibrutinib to anti-CD19 chimeric antigen receptor T cells (CART19) improves responses against mantle cell lymphoma. Clin. Cancer Res. 22, 2684–2696 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Fraietta, J. A. et al. Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood 127, 1117–1127 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Anders, S., Pyl, P. T. & Huber, W. HTSeq: a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Luckey, C. J. et al. Memory T and memory B cells share a transcriptional program of self-renewal with long-term hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 103, 3304–3309 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McKinney, E. F., Lee, J. C., Jayne, D. R., Lyons, P. A. & Smith, K. G. T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature 523, 612–616 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wherry, E. J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27, 670–684 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Abbas, A. R. et al. Immune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression data. Genes Immun. 6, 319–331 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Bangs, S. C. et al. Human CD4+ memory T cells are preferential targets for bystander activation and apoptosis. J. Immunol. 182, 1962–1971 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Ramirez, K. et al. Gene deregulation and chronic activation in natural killer cells deficient in the transcription factor ETS1. Immunity 36, 921–932 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Winter, S. C. et al. Relation of a hypoxia metagene derived from head and neck cancer to prognosis of multiple cancers. Cancer Res. 67, 3441–3449 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Campia, I. et al. An autocrine cytokine/JAK/STAT-signaling induces kynurenine synthesis in multidrug resistant human cancer cells. PLoS One 10, e0126159 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Jena, B. et al. Chimeric antigen receptor (CAR)-specific monoclonal antibody to detect CD19-specific T cells in clinical trials. PLoS One 8, e57838 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cawthon, R. M. Telomere measurement by quantitative PCR. Nucleic Acids Res. 30, e47 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kim, N. W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Herbert, B. S., Hochreiter, A. E., Wright, W. E. & Shay, J. W. Nonradioactive detection of telomerase activity using the telomeric repeat amplification protocol. Nat. Protoc. 1, 1583–1590 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the patients for their participation in the clinical trials from which research samples were obtained. We also acknowledge A. Fesnak, A. Lamontagne, A. Malykhin, C. Corl, Y. Ohayon and other members of the Clinical Cell and Vaccine Production Facility for cell manufacturing and testing. In addition, we are grateful to V. Gonzalez, J. Finklestein, F. Nazimuddin, J.-M. Navenot, M. Bogush, Y. Tanner, N. Kengle, K. Marcucci, A. Chew, C. Pletcher, P. Hallberg and R. Schretzenmair for contributions to correlative studies and/or other research support. D. Campana, C. Imai and others at St. Jude Children’s Research Hospital designed, developed and provided, under material-transfer agreements, the CAR used in this study. B. Jena and L. Cooper (MD Anderson Cancer Center) are acknowledged for providing the CAR anti-idiotype detection reagent. The functional anti-idiotypic antibody that was used for in vitro CAR stimulation experiments was a kind gift from Novartis Pharmaceutical Corporation. This work was supported by funding from NCI T32CA009140 (J.A.F.) R01CA165206 (D.L.P. and C.H.J.), P01CA214278 (C.H.J), a Stand Up to Cancer Phillip A. Sharp Innovation in Collaboration Award (C.H.J) and Novartis.

Author information

Authors and Affiliations

Authors

Contributions

J.A.F., S.F.L., F.B.J., R.M.Y., N.V.F., B.L.L., D.L.S., E.J.W., J.L.B., D.L.P., C.H.J. and J.J.M. designed the experiments and/or performed analysis. J.A.F., M.Gohil, S.L., A.C.B., Y.W., R.S.O., D.E.A., C.Z., N.W., F.B., C.D., F.C., L.T., H.P., M. Gupta, I.K., L.L., J.X., S.H.K., M.M.D. and A.C.H. performed experiments. E.J.O. and H.B. analyzed RNA-seq. data. I.P.-M. carried out the computational analyses of flow cytometric data. W.-T.H. and E.P. performed statistical analyses. J.A.F., C.H.J. and J.J.M. wrote the paper, and all authors contributed to writing and providing feedback.

Corresponding author

Correspondence to J. Joseph Melenhorst.

Ethics declarations

Competing interests

J.A.F., S.F.L., F.B., R.M.Y., B.L.L., J.L.B., D.L.P., C.H.J. and J.J.M. hold patents related to CTL019 cell therapy. These authors declare no additional interests. The remaining authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Supplementary Tables 1, 7, 9, 10

Reporting Summary

Supplementary Table 2

Treatment and clinical characteristics of responding patients.

Supplementary Table 3

Genes differentially expressed in pre-infusion CAR T cells between CR/PRTD and PR/NR patients.

Supplementary Table 4

List of leading edge genes associated with the gene sets of Figure 2c.

Supplementary Table 5

Transcriptomic profiling of mock-stimulated (control) and CAR-stimulated CTL019 infusion products as well as ex vivo CD3+ T cells (leukapheresis).

Supplementary Table 6

Phenotypes of leukapheresed CD8+ and CD4+ T cells identified by the flowType analysis that segregate CR from NR patients.

Supplementary Table 8

Phenotypes of CD8+ T cells in the CAR T cell infusion product identified by the flowType analysis that segregate CR from NR patients.

Supplementary Table 11

Holm-Sidak adjusted P values and summary statistics for data sets involving multiple comparisons.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraietta, J.A., Lacey, S.F., Orlando, E.J. et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med 24, 563–571 (2018). https://doi.org/10.1038/s41591-018-0010-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-018-0010-1

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research