Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Autocrine–paracrine prostaglandin E2 signaling restricts TLR4 internalization and TRIF signaling

Abstract

The unique cell biology of Toll-like receptor 4 (TLR4) allows it to initiate two signal-transduction cascades: a signal dependent on the adaptors TIRAP (Mal) and MyD88 that begins at the cell surface and regulates proinflammatory cytokines, and a signal dependent on the adaptors TRAM and TRIF that begins in the endosomes and drives the production of type I interferons. Negative feedback circuits to limit TLR4 signals from both locations are necessary to balance the inflammatory response. We describe a negative feedback loop driven by autocrine–paracrine prostaglandin E2 (PGE2) and the PGE2 receptor EP4 that restricted TRIF-dependent signals and the induction of interferon-β through the regulation of TLR4 trafficking. Inhibition of PGE2 production or antagonism of EP4 increased the rate at which TLR4 translocated to endosomes and amplified TRIF-dependent activation of the transcription factor IRF3 and caspase-8. This PGE2-driven mechanism restricted TLR4–TRIF signaling in vitro after infection of macrophages by the Gram-negative pathogens Escherichia coli or Citrobacter rodentium and protected mice against mortality induced by Salmonella enteritidis serovar Typhimurium. Thus, PGE2 restricted TLR4–TRIF signaling specifically in response to lipopolysaccharide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Rapid LPS-dependent PGE2 limits TLR4-mediated production of IFN-β.
Fig. 2: PGE2 activation of EP4 receptor restricts IRF3 activation.
Fig. 3: The PGE2–EP4 axis regulates TLR4 signaling via TRIF.
Fig. 4: PGE2–EP4 restricts the LPS-induced, TRIF-dependent activation of caspase-8 and atypical processing of IL-1β.
Fig. 5: cAMP-dependent effector molecules are negative regulators of the TLR4–TRIF pathway.
Fig. 6: PGE2 restricts IRF3 activation and IFN-β production in response to Gram negative pathogens in vitro and in vivo.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request. Microarray data associated with Fig. 1 have been deposited win the GEO database with accession code GSE111826.

References

  1. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

    Article  CAS  Google Scholar 

  2. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  CAS  Google Scholar 

  3. Shimazu, R. et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med. 189, 1777–1782 (1999).

    Article  CAS  Google Scholar 

  4. Brubaker, S. W., Bonham, K. S., Zanoni, I. & Kagan, J. C. Innate immune pattern recognition: a cell biological perspective. Annu. Rev. Immunol. 33, 257–290 (2015).

    Article  CAS  Google Scholar 

  5. Bryant, C. E., Symmons, M. & Gay, N. J. Toll-like receptor signalling through macromolecular protein complexes. Mol. Immunol. 63, 162–165 (2015).

    Article  CAS  Google Scholar 

  6. Kagan, J. C. et al. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-β. Nat. Immunol. 9, 361–368 (2008).

    Article  CAS  Google Scholar 

  7. Zanoni, I. et al. CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell 147, 868–880 (2011).

    Article  CAS  Google Scholar 

  8. Jiang, Z. et al. CD14 is required for MyD88-independent LPS signaling. Nat. Immunol. 6, 565–570 (2005).

    Article  CAS  Google Scholar 

  9. Fitzgerald, K. A. et al. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4, 491–496 (2003).

    Article  CAS  Google Scholar 

  10. Fitzgerald, K. A. et al. LPS-TLR4 signaling to IRF-3/7 and NF-κB involves the toll adapters TRAM and TRIF. J. Exp. Med. 198, 1043–1055 (2003).

    Article  CAS  Google Scholar 

  11. Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301, 640–643 (2003).

    Article  CAS  Google Scholar 

  12. Yamamoto, M. et al. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat. Immunol. 4, 1144–1150 (2003).

    Article  CAS  Google Scholar 

  13. Maelfait, J. et al. Stimulation of Toll-like receptor 3 and 4 induces interleukin-1β maturation by caspase-8. J. Exp. Med. 205, 1967–1973 (2008).

    Article  CAS  Google Scholar 

  14. He, S., Liang, Y., Shao, F. & Wang, X. Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc. Natl Acad. Sci. USA 108, 20054–20059 (2011).

    Article  CAS  Google Scholar 

  15. Moriwaki, K., Bertin, J., Gough, P. J. & Chan, F. K. A. A RIPK3-caspase 8 complex mediates atypical pro-IL-1β processing. J. Immunol. 194, 1938–1944 (2015).

    Article  CAS  Google Scholar 

  16. Casanova, J. L., Abel, L. & Quintana-Murci, L. Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics. Annu. Rev. Immunol. 29, 447–491 (2011).

    Article  CAS  Google Scholar 

  17. Perkins, D. J. et al. Salmonella Typhimurium co-opts the host type I IFN system to restrict macrophage innate immune transcriptional responses selectively. J. Immunol. 195, 2461–2471 (2015).

    Article  CAS  Google Scholar 

  18. Deriu, E. et al. Influenza virus affects intestinal microbiota and secondary Salmonella infection in the gut through type I interferons. PLoS Pathog. 12, e1005572 (2016).

    Article  Google Scholar 

  19. Henry, T. et al. Type I IFN signaling constrains IL-17A/F secretion by γδ T cells during bacterial infections. J. Immunol. 184, 3755–3767 (2010).

    Article  CAS  Google Scholar 

  20. Mayer-Barber, K. D. et al. Innate and adaptive interferons suppress IL-1α and IL-1β production by distinct pulmonary myeloid subsets during Mycobacterium tuberculosis infection. Immunity 35, 1023–1034 (2011).

    Article  CAS  Google Scholar 

  21. Rayamajhi, M., Humann, J., Penheiter, K., Andreasen, K. & Lenz, L. L. Induction of IFN-αβ enables Listeria monocytogenes to suppress macrophage activation by IFN-γ. J. Exp. Med. 207, 327–337 (2010).

    Article  CAS  Google Scholar 

  22. Heyninck, K. & Beyaert, R. A20 inhibits NF-κB activation by dual ubiquitin-editing functions. Trends Biochem. Sci. 30, 1–4 (2005).

    Article  CAS  Google Scholar 

  23. Ma, A. & Malynn, B. A. A20: linking a complex regulator of ubiquitylation to immunity and human disease. Nat. Rev. Immunol. 12, 774–785 (2012).

    Article  CAS  Google Scholar 

  24. Turer, E. E. et al. Homeostatic MyD88-dependent signals cause lethal inflammation in the absence of A20. J. Exp. Med. 205, 451–464 (2008).

    Article  CAS  Google Scholar 

  25. Buczynski, M. W. et al. TLR-4 and sustained calcium agonists synergistically produce eicosanoids independent of protein synthesis in RAW264.7 cells. J. Biol. Chem. 282, 22834–22847 (2007).

    Article  CAS  Google Scholar 

  26. Hessle, C. C., Andersson, B. & Wold, A. E. Gram-negative, but not Gram-positive, bacteria elicit strong PGE2 production in human monocytes. Inflammation 27, 329–332 (2003).

    Article  CAS  Google Scholar 

  27. Moore, R. N., Urbaschek, R., Wahl, L. M. & Mergenhagen, S. E. Prostaglandin regulation of colony-stimulating factor production by lipopolysaccharide-stimulated murine leukocytes. Infect. Immun. 26, 408–414 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bowman, C. C. & Bost, K. L. Cyclooxygenase-2-mediated prostaglandin E2 production in mesenteric lymph nodes and in cultured macrophages and dendritic cells after infection with Salmonella. J. Immunol. 172, 2469–2475 (2004).

    Article  CAS  Google Scholar 

  29. Mayer-Barber, K. D. et al. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature 511, 99–103 (2014).

    Article  CAS  Google Scholar 

  30. Dennis, E. A. & Norris, P. C. Eicosanoid storm in infection and inflammation. Nat. Rev. Immunol. 15, 511–523 (2015).

    Article  CAS  Google Scholar 

  31. von Moltke, J. et al. Rapid induction of inflammatory lipid mediators by the inflammasome in vivo. Nature 490, 107–111 (2012).

    Article  Google Scholar 

  32. Boulet, L. et al. Deletion of microsomal prostaglandin E2 (PGE2) synthase-1 reduces inducible and basal PGE2 production and alters the gastric prostanoid profile. J. Biol. Chem. 279, 23229–23237 (2004).

    Article  CAS  Google Scholar 

  33. Sugimoto, Y. & Narumiya, S. Prostaglandin E receptors. J. Biol. Chem. 282, 11613–11617 (2007).

    Article  CAS  Google Scholar 

  34. Mortimer, L., Moreau, F., MacDonald, J. A. & Chadee, K. NLRP3 inflammasome inhibition is disrupted in a group of auto-inflammatory disease CAPS mutations. Nat. Immunol. 17, 1176–1186 (2016).

    Article  CAS  Google Scholar 

  35. Roberts, Z. J. et al. The chemotherapeutic agent DMXAA potently and specifically activates the TBK1-IRF-3 signaling axis. J. Exp. Med. 204, 1559–1569 (2007).

    Article  CAS  Google Scholar 

  36. Hoebe, K. et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424, 743–748 (2003).

    Article  CAS  Google Scholar 

  37. Konya, V., Marsche, G., Schuligoi, R. & Heinemann, A. E-type prostanoid receptor 4 (EP4) in disease and therapy. Pharmacol. Ther. 138, 485–502 (2013).

    Article  CAS  Google Scholar 

  38. Perkins, D. J., Gray, M. C., Hewlett, E. L. & Vogel, S. N. Bordetella pertussis adenylate cyclase toxin (ACT) induces cyclooxygenase-2 (COX-2) in murine macrophages and is facilitated by ACT interaction with CD11b/CD18 (Mac-1). Mol. Microbiol. 66, 1003–1015 (2007).

    Article  CAS  Google Scholar 

  39. Zasłona, Z. et al. The induction of pro-IL-1β by lipopolysaccharide requires endogenous prostaglandin E2 production. J. Immunol. 198, 3558–3564 (2017).

    Article  Google Scholar 

  40. Robinson, N. et al. Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium. Nat. Immunol. 13, 954–962 (2012).

    Article  CAS  Google Scholar 

  41. Stefan, K. L., Fink, A., Surana, N. K., Kasper, D. L. & Dasgupta, S. Type I interferon signaling restrains IL-10R+ colonic macrophages and dendritic cells and leads to more severe Salmonella colitis. PLoS One 12, e0188600 (2017).

    Article  Google Scholar 

  42. Kayagaki, N. et al. DUBA: a deubiquitinase that regulates type I interferon production. Science 318, 1628–1632 (2007).

    Article  CAS  Google Scholar 

  43. Jabir, M. S. et al. Caspase-1 cleavage of the TLR adaptor TRIF inhibits autophagy and β-interferon production during Pseudomonas aeruginosa infection. Cell Host Microbe 15, 214–227 (2014).

    Article  CAS  Google Scholar 

  44. Bothwell, W., Verburg, M., Wynalda, M., Daniels, E. G. & Fitzpatrick, F. A. A radioimmunoassay for the unstable pulmonary metabolites of prostaglandin E1 and E2: an indirect index of their in vivo disposition and pharmacokinetics. J. Pharmacol. Exp. Ther. 220, 229–235 (1982).

    CAS  PubMed  Google Scholar 

  45. Duffin, R. et al. Prostaglandin E2 constrains systemic inflammation through an innate lymphoid cell-IL-22 axis. Science 351, 1333–1338 (2016).

    Article  CAS  Google Scholar 

  46. Fujino, H., West, K. A. & Regan, J. W. Phosphorylation of glycogen synthase kinase-3 and stimulation of T-cell factor signaling following activation of EP2 and EP4 prostanoid receptors by prostaglandin E2. J. Biol. Chem. 277, 2614–2619 (2002).

    Article  CAS  Google Scholar 

  47. Jing, H., Vassiliou, E. & Ganea, D. Prostaglandin E2 inhibits production of the inflammatory chemokines CCL3 and CCL4 in dendritic cells. J. Leukoc. Biol. 74, 868–879 (2003).

    Article  CAS  Google Scholar 

  48. Kunkel, S. L. et al. Prostaglandin E2 regulates macrophage-derived tumor necrosis factor gene expression. J. Biol. Chem. 263, 5380–5384 (1988).

    CAS  PubMed  Google Scholar 

  49. Xu, X. J., Reichner, J. S., Mastrofrancesco, B., Henry, W. L. Jr. & Albina, J. E. Prostaglandin E2 suppresses lipopolysaccharide-stimulated IFN-β production. J. Immunol. 180, 2125–2131 (2008).

    Article  CAS  Google Scholar 

  50. Husebye, H. et al. The Rab11a GTPase controls Toll-like receptor 4-induced activation of interferon regulatory factor-3 on phagosomes. Immunity 33, 583–596 (2010).

    Article  CAS  Google Scholar 

  51. Van Acker, T. et al. The small GTPase Arf6 is essential for the Tram/Trif pathway in TLR4 signaling. J. Biol. Chem. 289, 1364–1376 (2014).

    Article  Google Scholar 

  52. Guichard, A. et al. Cholera toxin disrupts barrier function by inhibiting exocyst-mediated trafficking of host proteins to intestinal cell junctions. Cell Host Microbe 14, 294–305 (2013).

    Article  CAS  Google Scholar 

  53. Guichard, A. et al. Anthrax toxins cooperatively inhibit endocytic recycling by the Rab11/Sec15 exocyst. Nature 467, 854–858 (2010).

    Article  CAS  Google Scholar 

  54. Guichard, A., Nizet, V. & Bier, E. RAB11-mediated trafficking in host-pathogen interactions. Nat. Rev. Microbiol. 12, 624–634 (2014).

    Article  CAS  Google Scholar 

  55. Guichard, A. et al. Anthrax edema toxin disrupts distinct steps in Rab11-dependent junctional transport. PLoS Pathog. 13, e1006603 (2017).

    Article  Google Scholar 

  56. Castiglia, V. et al. Type I interferon signaling prevents IL-1β-driven lethal systemic hyperinflammation during invasive bacterial infection of soft tissue. Cell Host Microbe 19, 375–387 (2016).

    Article  CAS  Google Scholar 

  57. Auerbuch, V., Brockstedt, D. G., Meyer-Morse, N., O’Riordan, M. & Portnoy, D. A. Mice lacking the type I interferon receptor are resistant to Listeria monocytogenes. J. Exp. Med. 200, 527–533 (2004).

    Article  CAS  Google Scholar 

  58. Nagarajan, U. M. et al. Type I interferon signaling exacerbates Chlamydia muridarum genital infection in a murine model. Infect. Immun. 76, 4642–4648 (2008).

    Article  CAS  Google Scholar 

  59. Dobrovolskaia, M. A. et al. Induction of in vitro reprogramming by Toll-like receptor (TLR)2 and TLR4 agonists in murine macrophages: effects of TLR “homotolerance” versus “heterotolerance” on NF-κB signaling pathway components. J. Immunol. 170, 508–519 (2003).

    Article  CAS  Google Scholar 

  60. Shirey, K. A. et al. The anti-tumor agent, 5,6-dimethylxanthenone-4-acetic acid (DMXAA), induces IFN-β-mediated antiviral activity in vitro and in vivo. J. Leukoc. Biol. 89, 351–357 (2011).

    Article  CAS  Google Scholar 

  61. Facemire, C. S. et al. A major role for the EP4 receptor in regulation of renin. Am. J. Physiol. Renal Physiol. 301, F1035–F1041 (2011).

    Article  CAS  Google Scholar 

  62. Nguyen, M. et al. The prostaglandin receptor EP4 triggers remodelling of the cardiovascular system at birth. Nature 390, 78–81 (1997).

    Article  CAS  Google Scholar 

  63. Richard, K., Vogel, S. N. & Perkins, D. J. Type I interferon licenses enhanced innate recognition and transcriptional responses to Franciscella tularensis live vaccine strain. Innate Immun. 22, 363–372 (2016).

    Article  CAS  Google Scholar 

  64. McIntire, F. C., Sievert, H. W., Barlow, G. H., Finley, R. A. & Lee, A. Y. Chemical, physical, biological properties of a lipopolysaccharide from Escherichia coli K-235. Biochemistry 6, 2363–2372 (1967).

    Article  CAS  Google Scholar 

  65. Barthold, S. W., Coleman, G. L., Bhatt, P. N., Osbaldiston, G. W. & Jonas, A. M. The etiology of transmissible murine colonic hyperplasia. Lab. Anim. Sci. 26, 889–894 (1976).

    CAS  PubMed  Google Scholar 

  66. Donohue-Rolfe, A., Kondova, I., Oswald, S., Hutto, D. & Tzipori, S. Escherichia coli O157:H7 strains that express Shiga toxin (Stx) 2 alone are more neurotropic for gnotobiotic piglets than are isotypes producing only Stx1 or both Stx1 and Stx2. J. Infect. Dis. 181, 1825–1829 (2000).

    Article  CAS  Google Scholar 

  67. Levine, M. M. et al. Escherichia coli strains that cause diarrhoea but do not produce heat-labile or heat-stable enterotoxins and are non-invasive. Lancet 1, 1119–1122 (1978).

    Article  CAS  Google Scholar 

  68. Rajaiah, R., Perkins, D. J., Ireland, D. D. & Vogel, S. N. CD14 dependence of TLR4 endocytosis and TRIF signaling displays ligand specificity and is dissociable in endotoxin tolerance. Proc. Natl Acad. Sci. USA 112, 8391–8396 (2015).

    Article  CAS  Google Scholar 

  69. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(–∆∆CT) method. Methods 25, 402–408 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Hewlett (University of Virginia) for purified AC from B. pertussis; L. Wahl (National Institute of Dental and Craniofacial Research, US National Institutes of Health) for blood from healthy human volunteers at the Department of Transfusion Medicine of the US National Institutes of Health; R. Ernst (University of Maryland, Baltimore) for Salmonella Typhimurium strain SL1344; J.B. Kaper (University of Maryland, Baltimore) for enterohemorrhagic and enteropathogenic E. coli and C. rodentium; R. Rajaiah for technical assistance with the TLR4-internalization assay; and J.C. Blanco and D. Prantner for critique of this manuscript. Flow cytometry and microarray analyses were performed at the Center for Innovative Biomedical Resources at the University of Maryland, School of Medicine. Supported by the US National Institutes of Health (AI123371 and AI125215 to S.N.V.; and AR061491 to B.K.).

Author information

Authors and Affiliations

Authors

Contributions

D.J.P. performed the majority of the experiments; K.R. performed TLR4-translocation experiments; A.-M.H. performed infection with E. coli and C. rodentium; W.L. performed ELISA of IFN-β and analyzed the data; S.N. bred and genotyped all mice with targeted mutations; B.K. developed, bred, genotyped and isolated femurs from Ptger4–/– mice and their littermates; and D.J.P. and S.N.V. conceived of the study, designed the experiments and wrote the manuscript.

Corresponding authors

Correspondence to Darren J. Perkins or Stefanie N. Vogel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perkins, D.J., Richard, K., Hansen, AM. et al. Autocrine–paracrine prostaglandin E2 signaling restricts TLR4 internalization and TRIF signaling. Nat Immunol 19, 1309–1318 (2018). https://doi.org/10.1038/s41590-018-0243-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-018-0243-7

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology