Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Endogenous glucocorticoids control host resistance to viral infection through the tissue-specific regulation of PD-1 expression on NK cells

Abstract

Controlling the balance between immunity and immunopathology is crucial for host resistance to pathogens. After infection, activation of the hypothalamic–pituitary–adrenal (HPA) axis leads to the production of glucocorticoids. However, the pleiotropic effects of these steroid hormones make it difficult to delineate their precise role(s) in vivo. Here we found that the regulation of natural killer (NK) cell function by the glucocorticoid receptor (GR) was required for host survival after infection with mouse cytomegalovirus (MCMV). Mechanistically, endogenous glucocorticoids produced shortly after infection induced selective and tissue-specific expression of the checkpoint receptor PD-1 on NK cells. This glucocorticoid–PD-1 pathway limited production of the cytokine IFN-γ by spleen NK cells, which prevented immunopathology. Notably, this regulation did not compromise viral clearance. Thus, the fine tuning of NK cell functions by the HPA axis preserved tissue integrity without impairing pathogen elimination, which reveals a novel aspect of neuroimmune regulation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Organ-specific glucocorticoid regulation of the production of IFN-γ by NCR1+ ILCs in the spleen and liver after infection with MCMV.
Fig. 2: GRNcr1-iCre mice display greater inflammation in the spleen than that of WTNcr1-iCre mice, but their viral titers are unaffected.
Fig. 3: Infection with MCMV induces glucocorticoid-dependent PD-1 expression in spleen NK cells.
Fig. 4: Specific combinations of cytokines and corticosterone act together to induce PD-1 expression on NK cells.
Fig. 5: MCMV-induced IFN-γ production by spleen NK cells is regulated by a glucocorticoid–PD-1 axis.
Fig. 6: The glucocorticoid–PD-1 regulatory pathway is required for protection against infection with MCMV.
Fig. 7: IFN-γ neutralization prevents spleen immunopathology in GRNcr1-iCre mice.

Similar content being viewed by others

References

  1. Medzhitov, R., Schneider, D. S. & Soares, M. P. Disease tolerance as a defense strategy. Science 335, 936–941 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Webster, J. I., Tonelli, L. & Sternberg, E. M. Neuroendocrine regulation of immunity. Annu. Rev. Immunol. 20, 125–163 (2002).

    Article  PubMed  CAS  Google Scholar 

  3. Irwin, M. R. & Cole, S. W. Reciprocal regulation of the neural and innate immune systems. Nat. Rev. Immunol. 11, 625–632 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Cain, D. W. & Cidlowski, J. A. Immune regulation by glucocorticoids. Nat. Rev. Immunol. 17, 233–247 (2017).

    Article  PubMed  CAS  Google Scholar 

  5. Weikum, E. R., Knuesel, M. T., Ortlund, E. A. & Yamamoto, K. R. Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nat. Rev. Mol. Cell Biol. 18, 159–174 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Quatrini, L. et al. Host resistance to endotoxic shock requires the neuroendocrine regulation of group 1 innate lymphoid cells. J. Exp. Med. 214, 3531–3541 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bhattacharyya, S., Brown, D. E., Brewer, J. A., Vogt, S. K. & Muglia, L. J. Macrophage glucocorticoid receptors regulate Toll-like receptor 4-mediated inflammatory responses by selective inhibition of p38 MAP kinase. Blood 109, 4313–4319 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Li, C. C., Munitic, I., Mittelstadt, P. R., Castro, E. & Ashwell, J. D. Suppression of dendritic cell-derived IL-12 by endogenous glucocorticoids is protective in LPS-induced sepsis. PLoS Biol. 13, e1002269 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kleiman, A. et al. Glucocorticoid receptor dimerization is required for survival in septic shock via suppression of interleukin-1 in macrophages. FASEB J. 26, 722–729 (2012).

    Article  PubMed  CAS  Google Scholar 

  10. Jamieson, A. M., Yu, S., Annicelli, C. H. & Medzhitov, R. Influenza virus-induced glucocorticoids compromise innate host defense against a secondary bacterial infection. Cell Host Microbe 7, 103–114 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Ruzek, M. C., Miller, A. H., Opal, S. M., Pearce, B. D. & Biron, C. A. Characterization of early cytokine responses and an interleukin (IL)-6-dependent pathway of endogenous glucocorticoid induction during murine cytomegalovirus infection. J. Exp. Med. 185, 1185–1192 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ruzek, M. C., Pearce, B. D., Miller, A. H. & Biron, C. A. Endogenous glucocorticoids protect against cytokine-mediated lethality during viral infection. J. Immunol. 162, 3527–3533 (1999).

    PubMed  CAS  Google Scholar 

  13. Rhen, T. & Cidlowski, J. A. Antiinflammatory action of glucocorticoids--new mechanisms for old drugs. N. Engl. J. Med. 353, 1711–1723 (2005).

    Article  PubMed  CAS  Google Scholar 

  14. Orange, J. S. & Biron, C. A. Characterization of early IL-12, IFN-αβ, and TNF effects on antiviral state and NK cell responses during murine cytomegalovirus infection. J. Immunol. 156, 4746–4756 (1996).

    PubMed  CAS  Google Scholar 

  15. Orange, J. S. & Biron, C. A. An absolute and restricted requirement for IL-12 in natural killer cell IFN-? production and antiviral defense. Studies of natural killer and T cell responses in contrasting viral infections. J. Immunol. 156, 1138–1142 (1996).

    PubMed  CAS  Google Scholar 

  16. Weizman, O. E. et al. ILC1 confer early host protection at initial sites of viral infection. Cell 171, 795–808 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Krmpotic, A., Bubic, I., Polic, B., Lucin, P. & Jonjic, S. Pathogenesis of murine cytomegalovirus infection. Microbes Infect. 5, 1263–1277 (2003).

    Article  PubMed  CAS  Google Scholar 

  18. Loh, J., Chu, D. T., O'Guin, A. K., Yokoyama, W. M. & Virgin, H. W. Natural killer cells utilize both perforin and ? interferon to regulate murine cytomegalovirus infection in the spleen and liver. J. Virol. 79, 661–667 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Biron, C. A. & Tarrio, M. L. Immunoregulatory cytokine networks: 60 years of learning from murine cytomegalovirus. Med. Microbiol. Immunol. (Berl.) 204, 345–354 (2015).

    Article  CAS  Google Scholar 

  20. Tronche, F. et al. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat. Genet. 23, 99–103 (1999).

    Article  PubMed  CAS  Google Scholar 

  21. Narni-Mancinelli, E. et al. Fate mapping analysis of lymphoid cells expressing the NKp46 cell surface receptor. Proc. Natl. Acad. Sci. USA 108, 18324–18329 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Spits, H. et al. Innate lymphoid cells--a proposal for uniform nomenclature. Nat. Rev. Immunol. 13, 145–149 (2013).

    Article  PubMed  CAS  Google Scholar 

  23. Ayroldi, E. & Riccardi, C. Glucocorticoid-induced leucine zipper (GILZ): a new important mediator of glucocorticoid action. FASEB J. 23, 3649–3658 (2009).

    Article  PubMed  CAS  Google Scholar 

  24. Delfino, D. V., Agostini, M., Spinicelli, S., Vito, P. & Riccardi, C. Decrease of Bcl-xL and augmentation of thymocyte apoptosis in GILZ overexpressing transgenic mice. Blood 104, 4134–4141 (2004).

    Article  PubMed  CAS  Google Scholar 

  25. Schmidt, S. et al. Glucocorticoid-induced apoptosis and glucocorticoid resistance: molecular mechanisms and clinical relevance. Cell Death Differ. 11, S45–S55 (2004).

    Article  PubMed  CAS  Google Scholar 

  26. Sharpe, A. H. & Pauken, K. E. The diverse functions of the PD1 inhibitory pathway. Nat. Rev. Immunol. 18, 153–167 (2017).

    Article  PubMed  CAS  Google Scholar 

  27. Arase, H., Mocarski, E. S., Campbell, A. E., Hill, A. B. & Lanier, L. L. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296, 1323–1326 (2002).

    Article  PubMed  CAS  Google Scholar 

  28. Chen, Y. et al. Programmed death (PD)-1-deficient mice are extremely sensitive to murine hepatitis virus strain-3 (MHV-3) infection. PLoS Pathog. 7, e1001347 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Okamura, H., Tsutsui, H., Kashiwamura, S., Yoshimoto, T. & Nakanishi, K. Interleukin-18: a novel cytokine that augments both innate and acquired immunity. Adv. Immunol. 70, 281–312 (1998).

    Article  PubMed  CAS  Google Scholar 

  30. Pien, G. C., Satoskar, A. R., Takeda, K., Akira, S. & Biron, C. A. Cutting edge: selective IL-18 requirements for induction of compartmental IFN-γ responses during viral infection. J. Immunol. 165, 4787–4791 (2000).

    Article  PubMed  CAS  Google Scholar 

  31. Frebel, H. et al. Programmed death 1 protects from fatal circulatory failure during systemic virus infection of mice. J. Exp. Med. 209, 2485–2499 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Erickson, J. J. et al. Viral acute lower respiratory infections impair CD8+ T cells through PD-1. J. Clin. Invest. 122, 2967–2982 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Tay, C. H. & Welsh, R. M. Distinct organ-dependent mechanisms for the control of murine cytomegalovirus infection by natural killer cells. J. Virol. 71, 267–275 (1997).

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Orange, J. S., Wang, B., Terhorst, C. & Biron, C. A. Requirement for natural killer cell-produced interferon γ in defense against murine cytomegalovirus infection and enhancement of this defense pathway by interleukin 12 administration. J. Exp. Med. 182, 1045–1056 (1995).

    Article  PubMed  CAS  Google Scholar 

  35. Della Chiesa, M. et al. Features of memory-like and PD-1+ human NK cell subsets. Front. Immunol. 7, 351 (2016).

    PubMed  PubMed Central  Google Scholar 

  36. Norris, S. et al. PD-1 expression on natural killer cells and CD8+ T cells during chronic HIV-1 infection. Viral Immunol. 25, 329–332 (2012).

    Article  PubMed  CAS  Google Scholar 

  37. Beldi-Ferchiou, A. et al. PD-1 mediates functional exhaustion of activated NK cells in patients with Kaposi sarcoma. Oncotarget 7, 72961–72977 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Glaser, R. & Kiecolt-Glaser, J. K. Stress-induced immune dysfunction: implications for health. Nat. Rev. Immunol. 5, 243–251 (2005).

    Article  PubMed  CAS  Google Scholar 

  39. Sharma, P. & Allison, J. P. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161, 205–214 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Tronche (Sorbonne Universités, Université Pierre et Marie Curie, UMR_CR18, Neuroscience, Paris-Seine) for Nr3c1loxP/loxP mice; J. Galluso and P. Morganti for mouse breeding and genotyping; G. Bessou (Centre d’Immunologie de Marseille-Luminy) for the plasmid containing the Ie1 gene; and the Centre d’Immunologie de Marseille-Luminy mouse house and core cytometry facilities. This project received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program, under grant agreement 648768; from the Agence Nationnale de la Recherche (ANR-14-CE14-0009-01) and from the ARC foundation (PGA120140200817). This work was also supported by institutional grants from INSERM, CNRS, Aix-Marseille University and Marseille-Immunopole to the Centre d’Immunologie de Marseille-Luminy.

Author information

Authors and Affiliations

Authors

Contributions

L.Q. designed and performed experiments and analyzed data; E.W. and J.F. performed experiments; B.E. performed RNA-based next-generation sequencing; L.C. processed the histology samples and C.L. performed pathological analysis of those samples; E.V. provided the Ncr1Cre mouse model and advice during the manuscript preparation; S.U. conceived of, designed and directed the study; L.Q. and S.U. wrote the manuscript; and all authors reviewed and provided input on the manuscript.

Corresponding author

Correspondence to Sophie Ugolini.

Ethics declarations

Competing interests

E.V. is a cofounder and employee of Innate Pharma.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Integrated supplementary information

Supplementary Figure 1 GR expression does not affect NK cell cytotoxic function.

a, FACS analysis of CD107a surface expression on NK cells from WTNcr1-iCre and GRNcr1-iCre mice: splenocytes were stimulated in vitro 4 h at 37 °C with plate-bound anti-NK1.1 or isotype control Abs, or with PMA and ionomycin, in the presence of 500 nM corticosterone or vehicle alone. Means ± s.d. n = 7 mice, pool of 2 experiments. b, ELISA showing corticosterone concentration in the serum 44 h PI as means ± s.e.m. n = 6 (WTNcr1-iCre NI), n = 5 (GRNcr1-iCre) and n = 7 (WTNcr1-iCre MCMV) mice, pool of 2 experiments. ns = not significant, two-tailed Mann-Whitney test. c, FACS analysis of intracellular granzyme B (GrzB) expression by NK cells in the spleen and liver 44 h PI. The data are shown as FACS histograms with the percentage of GrzB+ cells in each panel, and are representative of 2 experiments with n = 4 mice. d, FACS analysis of intracellular IFN-γ, assessed directly ex vivo without in vitro re-stimulation 44 PI. IFN-γ MFI calculated on IFN-γ+ NK cells is shown as mean ± s.e.m. n = 7 (WTNcr1-iCre) and n = 6 (GRNcr1-iCre) mice, pool of 2 experiments. *P < 0.05, two-tailed Student’s t-test. Each symbol in a and c represents a single mouse.

Supplementary Figure 2 Upon MCMV infection NCR1+ ILC3s in the small intestine are not activated.

a, NCR1+ ILC3s were gated as: single, live, CD45+, CD3-CD19-, NKp46+Rorγt+. b-d, FACS analysis of intracellular IL-17 and IL-22 in NCR1+ ILC3s in the small intestine 44 h PI. Representative FACS plots (b) and means ± s.d. (c and d). n = 4 (WTNcr1-iCre) and n = 6 (GRNcr1-iCre) mice from 1 experiment. e, frequency of NCR1+ ILC3s among CD45+ cells is shown as mean ± s.e.m., n = 2 (NI), n = 4 (WTNcr1-iCre) and n = 6 (GRNcr1-iCre) mice from one experiment.

Supplementary Figure 3 Gating strategy for the sorting of NCR1+ cells from the spleen and liver.

FACS plots showing the gating strategy used to sort (a) single, live, CD45+CD3-CD19-NK1.1+NKp46+DX5+ NK cells from splenocytes (after NK cell enrichment), (b) single, live, CD45+CD3-CD19-NK1.1+NKp46+DX5+CD49a- NK cells and single, live, CD45+CD3-CD19-NK1.1+NKp46+DX5-CD49a+ ILC1s from liver lymphocytes 44 h PI.

Supplementary Figure 4 NK cell and ILC1 proliferation and apoptosis are unchanged in MCMV-infected GRNcr1-iCre mice.

FACS analysis of Ki67 expression (histograms) and PI/Annexin V staining (dot plot) for spleen NK cells (a), liver NK cells (b) and liver ILC1s (c) 44 h PI. Data are also shown as means. For Ki67 data n = 2 (NI), n = 5 (WTNcr1-iCre MCMV) and n = 4 (GRNcr1-iCre MCMV) mice, pool of 2 experiments. For AnnexinV/PI data n = 5 (WTNcr1-iCre) and n = 3 (GRNcr1-iCre) mice, pool of 2 experiments. Each dot represents a single mouse.

Supplementary Figure 5 Endogenous glucocorticoids do not induce PD-1 expression on spleen myeloid cells upon MCMV infection.

a, gating strategy for DCs (CD11c+MHCIIhi), neutrophils (CD11c-CD11b+Ly6G+) and macrophages (CD11c-CD11b+F4/80+) among lymphocytes of the spleen. b, FACS histograms showing PD-1 staining on spleen macrophages, neutrophils and DCs. MFI (mean fluorescence intensity) is shown on each plot. Data are representative of 2 experiments.

Supplementary Figure 6 GR expression and IL-18 induction in spleen and liver.

a, FACS histograms showing GR and isotype control intracellular staining in spleen and liver NK cells 44 h PI. The MFI ratio to isotype control is shown in each panel. Data are representative of one experiment. b, qRT-PCR of Il18 from RNA extracted from spleen and liver homogenates 44 h PI. n = 9 (spleen NI), n = 12 (spleen and liver MCMV) and n = 8 (liver NI) mice, pool of 3 experiments. Mean value is shown. Each symbol represents a mouse.

Supplementary Figure 7 There is no correlation between PD-1 and Ly49H expression on NK cells.

a, FACS analysis of PD-1 expression on NK cells in the spleen 44 h PI. Dot plots showing the proportion of Ly49H+ NK cells (upper panel) and histograms showing PD-1 expression on each subset (lower panel) are representative of 2 experiments. b, percentage of Ly49H+ NK cells in the spleen 5 days PI. Data are shown as mean + /- s.e.m. n = 2 (NI) and n = 6 (MCMV) mice, pool of 2 experiments. Each dot represents a single mouse.

Supplementary Figure 8 Cytokine concentration in serum and organs of MCMV-infected mice.

Cytometric bead array measurement of (a) IL-6, (b) TNF and (c) IL-10 concentration 3 days PI in the serum, spleen and liver. n = 7 (WTNcr1-iCre and Ig serum), n = 8 (GRNcr1-iCre and PD-1 Ab serum, and WTNcr1-iCre spleen and liver IL-6 and TNF), n = 6 (WTNcr1-iCre spleen and liver IL-10), n = 9 (GRNcr1-iCre spleen and liver IL-10, and Ig and PD-1 Ab spleen and liver) and n = 3 (WTNcr1-iCre and GRNcr1-iCre serum IL-10) mice. Data are shown as mean + /- s.e.m., pool of 2 experiments (with the exception of serum IL-10 data from WTNcr1-iCre and GRNcr1-iCre mice that are representative of one experiment). Two-tailed Mann-Whitney test was performed for a serum WTNcr1-iCre and GRNcr1-iCre, b serum, b liver WTNcr1-iCre and GRNcr1-iCre, and c serum Ig and PD1-Ab samples. Student’s t-test was performed for all the other pairs of data. For all comparisons P > 0.05. Each dot represents a single mouse.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1-8 and Supplementary Table 1

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quatrini, L., Wieduwild, E., Escaliere, B. et al. Endogenous glucocorticoids control host resistance to viral infection through the tissue-specific regulation of PD-1 expression on NK cells. Nat Immunol 19, 954–962 (2018). https://doi.org/10.1038/s41590-018-0185-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-018-0185-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing