Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HIV-1 fusion inhibitors targeting the membrane-proximal external region of Env spikes

Abstract

Combination antiretroviral therapy has transformed HIV-1 infection, once a fatal illness, into a manageable chronic condition. Drug resistance, severe side effects and treatment noncompliance bring challenges to combination antiretroviral therapy implementation in clinical settings and indicate the need for additional molecular targets. Here, we have identified several small-molecule fusion inhibitors, guided by a neutralizing antibody, against an extensively studied vaccine target—the membrane proximal external region (MPER) of the HIV-1 envelope spike. These compounds specifically inhibit the HIV-1 envelope-mediated membrane fusion by blocking CD4-induced conformational changes. An NMR structure of one compound complexed with a trimeric MPER construct reveals that the compound partially inserts into a hydrophobic pocket formed exclusively by the MPER residues, thereby stabilizing its prefusion conformation. These results suggest that the MPER is a potential therapeutic target for developing fusion inhibitors and that strategies employing an antibody-guided search for novel therapeutics may be applied to other human diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of dequalinium as a small-molecule fusion inhibitor targeting the MPER of HIV-1 Env.
Fig. 2: SAR study using synthesized dequalinium analogs.
Fig. 3: Characterization of the most potent compound S2C3.
Fig. 4: Structure of S2C3 in complex with the MPER-TMD.

Similar content being viewed by others

Data availability

The atomic structure coordinates and NMR data are deposited in the Protein Data Bank under the accession number 6V4T. All other related data generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Hammer, S. M. et al. A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. AIDS Clinical Trials Group 320 Study Team. N. Engl. J. Med. 337, 725–733 (1997).

    CAS  PubMed  Google Scholar 

  2. Gulick, R. M. et al. Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy. N. Engl. J. Med. 337, 734–739 (1997).

    CAS  PubMed  Google Scholar 

  3. Palella, F. J. Jr. et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N. Engl. J. Med. 338, 853–860 (1998).

    PubMed  Google Scholar 

  4. Grant, M., Samuel, R., Bettiker, R. L. & Suh, B. Antiretroviral therapy 2010 update: current practices and controversies. Arch. Pharm. Res. 34, 1045–1053 (2011).

    CAS  PubMed  Google Scholar 

  5. Thompson, M. A. et al. Antiretroviral treatment of adult HIV infection: 2012 recommendations of the International Antiviral Society-USA panel. JAMA 308, 387–402 (2012).

    CAS  PubMed  Google Scholar 

  6. Kilby, J. M. & Eron, J. J. Novel therapies based on mechanisms of HIV-1 cell entry. N. Engl. J. Med. 348, 2228–2238 (2003).

    CAS  PubMed  Google Scholar 

  7. Robertson, D. U. S. FDA approves new class of HIV therapeutics. Nat. Biotechnol. 21, 470–471 (2003).

    CAS  PubMed  Google Scholar 

  8. Poveda, E. et al. Dynamics of enfuvirtide resistance in HIV-infected patients during and after long-term enfuvirtide salvage therapy. J. Clin. Virol. 34, 295–301 (2005).

    CAS  PubMed  Google Scholar 

  9. Poveda, E. et al. Evolution of genotypic and phenotypic resistance to enfuvirtide in HIV-infected patients experiencing prolonged virologic failure. J. Med. Virol. 74, 21–28 (2004).

    CAS  PubMed  Google Scholar 

  10. Sista, P. R. et al. Characterization of determinants of genotypic and phenotypic resistance to enfuvirtide in baseline and on-treatment HIV-1 isolates. AIDS 18, 1787–1794 (2004).

    CAS  PubMed  Google Scholar 

  11. He, Y. et al. Design and evaluation of sifuvirtide, a novel HIV-1 fusion inhibitor. J. Biol. Chem. 283, 11126–11134 (2008).

    CAS  PubMed  Google Scholar 

  12. Pan, C., Cai, L., Lu, H., Qi, Z. & Jiang, S. Combinations of the first and next generations of human immunodeficiency virus (HIV) fusion inhibitors exhibit a highly potent synergistic effect against enfuvirtide-sensitive and -resistant HIV type 1 strains. J. Virol. 83, 7862–7872 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Xie, D. et al. An albumin-conjugated peptide exhibits potent anti-HIV activity and long in vivo half-life. Antimicrob. Agents Chemother. 54, 191–196 (2010).

    CAS  PubMed  Google Scholar 

  14. Santos, J. R. et al. Efficacy and safety of switching from enfuvirtide to raltegravir in patients with virological suppression. HIV Clin. Trials 10, 432–438 (2009).

    PubMed  Google Scholar 

  15. Chen, B. Molecular mechanism of HIV-1 entry. Trends Microbiol. 27, 878–891 (2019).

    CAS  PubMed  Google Scholar 

  16. Weissenhorn, W., Dessen, A., Harrison, S. C., Skehel, J. J. & Wiley, D. C. Atomic structure of the ectodomain from HIV-1 gp41. Nature 387, 426–430 (1997).

    CAS  PubMed  Google Scholar 

  17. Chan, D. C., Fass, D., Berger, J. M. & Kim, P. S. Core structure of gp41 from the HIV envelope glycoprotein. Cell 89, 263–273 (1997).

    CAS  PubMed  Google Scholar 

  18. Julien, J. P. et al. Crystal structure of a soluble cleaved HIV-1 envelope trimer. Science 342, 1477–1483 (2013).

    CAS  PubMed  Google Scholar 

  19. Lyumkis, D. et al. Cryo-EM structure of a fully glycosylated soluble cleaved HIV-1 envelope trimer. Science 342, 1484–1490 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Pancera, M. et al. Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature 514, 455–461 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chan, D. C. & Kim, P. S. HIV entry and its inhibition. Cell 93, 681–684 (1998).

    CAS  PubMed  Google Scholar 

  22. Frey, G. et al. A fusion-intermediate state of HIV-1 gp41 targeted by broadly neutralizing antibodies. Proc. Natl Acad. Sci. USA 105, 3739–3744 (2008).

    CAS  PubMed  Google Scholar 

  23. Chen, J. et al. Mechanism of HIV-1 neutralization by antibodies targeting a membrane-proximal region of gp41. J. Virol. 88, 1249–1258 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. Montero, M., van Houten, N. E., Wang, X. & Scott, J. K. The membrane-proximal external region of the human immunodeficiency virus type 1 envelope: dominant site of antibody neutralization and target for vaccine design. Microbiol. Mol. Biol. Rev. 72, 54–84 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Muster, T. et al. A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J. Virol. 67, 6642–6647 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Stiegler, G. et al. A potent cross-clade neutralizing human monoclonal antibody against a novel epitope on gp41 of human immunodeficiency virus type 1. AIDS Res. Hum. Retroviruses 17, 1757–1765 (2001).

    CAS  PubMed  Google Scholar 

  27. Huang, J. et al. Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature 491, 406–412 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Frey, G. et al. Distinct conformational states of HIV-1 gp41 are recognized by neutralizing and non-neutralizing antibodies. Nat. Struct. Mol. Biol. 17, 1486–1491 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, J. H., Chung, T. D. & Oldenburg, K. R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4, 67–73 (1999).

    CAS  PubMed  Google Scholar 

  30. Weissenbacher, E. R. et al. A comparison of dequalinium chloride vaginal tablets (Fluomizin(R)) and clindamycin vaginal cream in the treatment of bacterial vaginosis: a single-blind, randomized clinical trial of efficacy and safety. Gynecol. Obstet. Invest. 73, 8–15 (2012).

    PubMed  Google Scholar 

  31. Montefiori, D. C. Measuring HIV neutralization in a luciferase reporter gene assay. Methods Mol. Biol. 485, 395–405 (2009).

    CAS  PubMed  Google Scholar 

  32. Sarzotti-Kelsoe, M. et al. Optimization and validation of the TZM-bl assay for standardized assessments of neutralizing antibodies against HIV-1. J. Immunol. Methods 409, 131–146 (2014).

    CAS  PubMed  Google Scholar 

  33. Robinson, W. E. Jr. et al. Antibodies to the primary immunodominant domain of human immunodeficiency virus type 1 (HIV-1) glycoprotein gp41 enhance HIV-1 infection in vitro. J. Virol. 64, 5301–5305 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu, X. et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329, 856–861 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Walker, L. M. et al. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 326, 285–289 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Fu, Q. et al. Structure of the membrane proximal external region of HIV-1 envelope glycoprotein. Proc. Natl Acad. Sci. USA 115, E8892–E8899 (2018).

    CAS  PubMed  Google Scholar 

  37. Fu, Q., Piai, A., Chen, W., Xia, K. & Chou, J. J. Structure determination protocol for transmembrane domain oligomers. Nat. Protoc. 14, 2483–2520 (2019).

    CAS  PubMed  Google Scholar 

  38. Chen, J. et al. Effect of the cytoplasmic domain on antigenic characteristics of HIV-1 envelope glycoprotein. Science 349, 191–195 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Imming, P., Sinning, C. & Meyer, A. Drugs, their targets and the nature and number of drug targets. Nat. Rev. Drug Disco. 5, 821–834 (2006).

    CAS  Google Scholar 

  40. Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there? Nat. Rev. Drug Disco. 5, 993–996 (2006).

    CAS  Google Scholar 

  41. Kufareva, I., Ilatovskiy, A. V. & Abagyan, R. Pocketome: an encyclopedia of small-molecule binding sites in 4D. Nucleic Acids Res. 40, D535–D540 (2012).

    CAS  PubMed  Google Scholar 

  42. Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Disco. 16, 19–34 (2017).

    CAS  Google Scholar 

  43. Bojadzic, D. & Buchwald, P. Toward small-molecule inhibition of protein-protein interactions: general aspects and recent progress in targeting costimulatory and coinhibitory (immune checkpoint) interactions. Curr. Top. Med. Chem. 18, 674–699 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Weiner, G. J. Building better monoclonal antibody-based therapeutics. Nat. Rev. Cancer 15, 361–370 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Singh, S. et al. Monoclonal antibodies: a review. Curr. Clin. Pharm. 13, 85–99 (2018).

    Google Scholar 

  46. Clackson, T. & Wells, J. A. A hot spot of binding energy in a hormone-receptor interface. Science 267, 383–386 (1995).

    CAS  PubMed  Google Scholar 

  47. Sun, Z. Y. et al. HIV-1 broadly neutralizing antibody extracts its epitope from a kinked gp41 ectodomain region on the viral membrane. Immunity 28, 52–63 (2008).

    PubMed  Google Scholar 

  48. Tischer, M., Pradel, G., Ohlsen, K. & Holzgrabe, U. Quaternary ammonium salts and their antimicrobial potential: targets or nonspecific interactions? ChemMedChem 7, 22–31 (2012).

    CAS  PubMed  Google Scholar 

  49. Abeywickrama, C., Rotenberg, S. A. & Baker, A. D. Inhibition of protein kinase C by dequalinium analogues: structure-activity studies on head group variations. Bioorg. Med. Chem. 14, 7796–7803 (2006).

    CAS  PubMed  Google Scholar 

  50. Berger, O. et al. Reverse-benzamidine antimalarial agents: design, synthesis, and biological evaluation. Bioorg. Med. Chem. Lett. 20, 5815–5817 (2010).

    CAS  PubMed  Google Scholar 

  51. Schwieters, C. D., Kuszewski, J. J., Tjandra, N. & Clore, G. M. The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 160, 65–73 (2003).

    CAS  PubMed  Google Scholar 

  52. Frey, G. et al. Small molecules that bind the inner core of gp41 and inhibit HIV envelope-mediated fusion. Proc. Natl Acad. Sci. USA 103, 13938–13943 (2006).

    CAS  PubMed  Google Scholar 

  53. Kovacs, J. M. et al. HIV-1 envelope trimer elicits more potent neutralizing antibody responses than monomeric gp120. Proc. Natl Acad. Sci. USA 109, 12111–12116 (2012).

    CAS  PubMed  Google Scholar 

  54. Dev, J. et al. Structural basis for membrane anchoring of HIV-1 envelope spike. Science 353, 172–175 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    CAS  PubMed  Google Scholar 

  56. Bartels, C., Xia, T. H., Billeter, M., Guntert, P. & Wuthrich, K. The program XEASY for computer-supported NMR spectral analysis of biological macromolecules. J. Biomol. NMR 6, 1–10 (1995).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H.J. Ha, D. O’Neil Danis III, S. Rits-Volloch, H. Peng, Z. Liu, and the staff at ICCB-Longwood for technical assistance. This work was supported by NIH grant nos AI129721 (to B.C.), AI112489 (to B.C.), AI127193 (to B.C. and J.J.C.), GM116898 (to J.J.C.), AI141002 (to B.C.) and AI106488 (to B.C.). The NMR data were collected on a 800 MHz NMR spectrometer at MIT-Harvard CMR (supported by NIH grant no. P41 EB-002026) and on a 900 MHz NMR spectrometer at the National Facility for Protein Science in Shanghai, ZhangJiang Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

B.C., G.F. and T.X. conceived the project. G.F. developed the fluorescence polarization assay and performed the HTS. T.X. and G.F. performed biochemical and functional studies on the hit compounds. G.F. and D.A.S. designed dequalinium analogs. T.X., Q.F. and J.J.C. carried out the NMR studies. C.L.L. and M.S.S. performed the pseudovirus assays. All authors analyzed the data. B.C., T.X., J.J.C. and G.F. wrote the manuscript with input from all other authors.

Corresponding author

Correspondence to Bing Chen.

Ethics declarations

Competing Interests

Boston Children’s Hospital has filed a patent application based on this work with B.C., G.F. and T.X. listed as co-inventors. All other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Tables 1–3 and Note.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, T., Frey, G., Fu, Q. et al. HIV-1 fusion inhibitors targeting the membrane-proximal external region of Env spikes. Nat Chem Biol 16, 529–537 (2020). https://doi.org/10.1038/s41589-020-0496-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-020-0496-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research