Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Axonal iron transport in the brain modulates anxiety-related behaviors

Abstract

Iron is essential for a broad range of biochemical processes in the brain, but the mechanisms of iron metabolism in the brain remain elusive. Here we show that iron functionally translocates among brain regions along specific axonal projections. We identified two pathways for iron transport in the brain: a pathway from ventral hippocampus (vHip) to medial prefrontal cortex (mPFC) to substantia nigra; and a pathway from thalamus (Tha) to amygdala (AMG) to mPFC. While vHip–mPFC transport modulates anxiety-related behaviors, impairment of Tha–AMG–mPFC transport did not. Moreover, vHip–mPFC iron transport is necessary for the behavioral effects of diazepam, a well-known anxiolytic drug. By contrast, genetic or pharmacological promotion of vHip–mPFC transport produced anxiolytic-like effects and restored anxiety-like behaviors induced by repeated restraint stress. Taken together, these findings provide key insights into iron metabolism in the brain and identify the mechanisms underlying iron transport in the brain as a potential target for development of novel anxiety treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Iron transport from the ventral hippocampus to the mPFC.
Fig. 2: Mapping vHip–mPFC iron transport.
Fig. 3: vHip–mPFC iron transport depends on neuronal activity in the vHip.
Fig. 4: Increasing vHip–mPFC iron transport produces anxiolytic-like behaviors.
Fig. 5: Impaired vHip–mPFC iron transport induces anxiety-like behaviors.
Fig. 6: Anxiolytic treatments promote vHip–mPFC iron transport.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request. Source data for Figs. 16 are available online.

References

  1. Hentze, M. W., Muckenthaler, M. U., Galy, B. & Camaschella, C. Two to tango: regulation of mammalian iron metabolism. Cell 142, 24–38 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Crielaard, B. J., Lammers, T. & Rivella, S. Targeting iron metabolism in drug discovery and delivery. Nat. Rev. Drug Discov. 16, 400–423 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rouault, T. A. Iron metabolism in the CNS: implications for neurodegenerative diseases. Nat. Rev. Neurosci. 14, 551–564 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Ward, R. J., Zucca, F. A., Duyn, J. H., Crichton, R. R. & Zecca, L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 13, 1045–1060 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zecca, L., Youdim, M. B., Riederer, P., Connor, J. R. & Crichton, R. R. Iron, brain ageing and neurodegenerative disorders. Nat. Rev. Neurosci. 5, 863–873 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Hill, J. M. & Switzer III, R. C. The regional distribution and cellular localization of iron in the rat brain. Neuroscience 11, 595–603 (1984).

    Article  CAS  PubMed  Google Scholar 

  7. Allen, R. P., Barker, P. B., Wehrl, F. W., Song, H. K. & Earley, C. J. MRI measurement of brain iron in patients with restless legs syndrome. Neurology 56, 263–265 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Moos, T. & Morgan, E. H. Kinetics and distribution of [59Fe–125I]transferrin injected into the ventricular system of the rat. Brain Res. 790, 115–128 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Hill, J. M., Ruff, M. R., Weber, R. J. & Pert, C. B. Transferrin receptors in rat brain: neuropeptide-like pattern and relationship to iron distribution. Proc. Natl Acad. Sci. USA 82, 4553–4557 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moos, T. & Rosengren Nielsen, T. Ferroportin in the postnatal rat brain: implications for axonal transport and neuronal export of iron. Semin. Pediatr. Neurol. 13, 149–157 (2006).

    Article  PubMed  Google Scholar 

  11. Moos, T., Rosengren Nielsen, T., Skjorringe, T. & Morgan, E. H. Iron trafficking inside the brain. J. Neurochem. 103, 1730–1740 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Sohn, Y. S., Breuer, W., Munnich, A. & Cabantchik, Z. I. Redistribution of accumulated cell iron: a modality of chelation with therapeutic implications. Blood 111, 1690–1699 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Meyer-Lindenberg, A. From maps to mechanisms through neuroimaging of schizophrenia. Nature 468, 194–202 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Giedd, J. N. & Rapoport, J. L. Structural MRI of pediatric brain development: what have we learned and where are we going? Neuron 67, 728–734 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lipton, P. Ischemic cell death in brain neurons. Physiol. Rev. 79, 1431–1568 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Padilla-Coreano, N. et al. Direct ventral hippocampal-prefrontal input is required for anxiety-related neural activity and behavior. Neuron 89, 857–866 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lear, J. et al. High-resolution elemental bioimaging of Ca, Mn, Fe, Co, Cu, and Zn employing LA-ICP-MS and hydrogen reaction gas. Anal. Chem. 84, 6707–6714 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Mala, H. et al. Delayed intensive acquisition training alleviates the lesion-induced place learning deficits after fimbria-fornix transection in the rat. Brain Res. 1445, 40–51 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Naumann, T. et al. Altered neuronal responses and regulation of neurotrophic proteins in the medial septum following fimbria-fornix transection in CNTF- and leukaemia inhibitory factor-deficient mice. Eur. J. Neurosci. 24, 2223–2232 (2006).

    Article  PubMed  Google Scholar 

  20. Buch, T. et al. A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat. Methods 2, 419–426 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Capelli, P., Pivetta, C., Soledad Esposito, M. & Arber, S. Locomotor speed control circuits in the caudal brainstem. Nature 551, 373–377 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Chotiwat, C. & Harris, R. B. Increased anxiety-like behavior during the post-stress period in mice exposed to repeated restraint stress. Horm. Behav. 50, 489–495 (2006).

    Article  PubMed  Google Scholar 

  23. Carola, V., D’Olimpio, F., Brunamonti, E., Mangia, F. & Renzi, P. Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behav. Brain Res. 134, 49–57 (2002).

    Article  PubMed  Google Scholar 

  24. Low, K. et al. Molecular and neuronal substrate for the selective attenuation of anxiety. Science 290, 131–134 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Gray, J. D. & McEwen, B. S. Lithium’s role in neural plasticity and its implications for mood disorders. Acta Psychiatr. Scand. 128, 347–361 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Walia, V., Garg, C. & Garg, M. NO–sGC–cGMP signaling influence the anxiolytic like effect of lithium in mice in light and dark box and elevated plus maze. Brain Res. 1704, 114–126 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Haj-Mirzaian, A. et al. Lithium attenuated the depressant and anxiogenic effect of juvenile social stress through mitigating the negative impact of interlukin-1β and nitric oxide on hypothalamic–pituitary–adrenal axis function. Neuroscience 315, 271–285 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Lei, P. et al. Lithium suppression of tau induces brain iron accumulation and neurodegeneration. Mol. Psychiatry 22, 396–406 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Carlen, M. What constitutes the prefrontal cortex? Science 358, 478–482 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Oner, P., Oner, O., Azik, F. M., Cop, E. & Munir, K. M. Ferritin and hyperactivity ratings in attention deficit hyperactivity disorder. Pediatr. Int. 54, 688–692 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cortese, S., Angriman, M., Lecendreux, M. & Konofal, E. Iron and attention deficit/hyperactivity disorder: what is the empirical evidence so far? A systematic review of the literature. Expert Rev. Neurother. 12, 1227–1240 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Dexter, D. T. et al. Increased nigral iron content in postmortem Parkinsonian brain. Lancet 2, 1219–1220 (1987).

    Article  CAS  PubMed  Google Scholar 

  33. Texel, S. J. et al. Ceruloplasmin deficiency results in an anxiety phenotype involving deficits in hippocampal iron, serotonin, and BDNF. J. Neurochem. 120, 125–134 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Beard, J. L., Erikson, K. M. & Jones, B. C. Neurobehavioral analysis of developmental iron deficiency in rats. Behav. Brain Res. 134, 517–524 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Kim, J. & Wessling-Resnick, M. Iron and mechanisms of emotional behavior. J. Nutr. Biochem. 25, 1101–1107 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pellegrino, R. M. et al. Transferrin receptor 2 dependent alterations of brain iron metabolism affect anxiety circuits in the mouse. Sci. Rep. 6, 30725 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Maaroufi, K. et al. Impairment of emotional behavior and spatial learning in adult Wistar rats by ferrous sulfate. Physiol. Behav. 96, 343–349 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Stremmel, W., Lotz, G., Niederau, C., Teschke, R. & Strohmeyer, G. Iron uptake by rat duodenal microvillous membrane vesicles: evidence for a carrier mediated transport system. Eur. J. Clin. Invest. 17, 136–145 (1987).

    Article  CAS  PubMed  Google Scholar 

  39. Cao, X. et al. Astrocyte-derived ATP modulates depressive-like behaviors. Nat. Med. 19, 773–777 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Zhu, X. H. et al. Intermittent hypoxia promotes hippocampal neurogenesis and produces antidepressant-like effects in adult rats. J. Neurosci. 30, 12653–12663 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Moos, T., Bernth, N., Courtois, Y. & Morgan, E. H. Developmental iron uptake and axonal transport in the retina of the rat. Mol. Cell. Neurosci. 46, 607–613 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Guo, Y. Y. et al. Acute stress induces down-regulation of large-conductance Ca2+-activated potassium channels in the lateral amygdala. J. Physiol. 590, 875–886 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (NSFC) (81930034 and 81325008 to X.H.Z.), the Natural Science Foundation of Guangdong Province (2016A030308005 to X.H.Z.), the Guangzhou Science and Technology Project (201804020061 to X.H.Z.), the Program for Changjiang Scholars and Innovative Research Team in University (IRT_16R37 to X.H.Z.) and Science and Technology Program of Guangdong (2018B030334001 to X.H.Z.). The authors thank the laboratories of Y.-Y. Fang, S.-J. Li and X.-W. Li for their technical support.

Author information

Authors and Affiliations

Authors

Contributions

X.H.Z. designed the research. X.H.Z., Z.W., Y.N.Z. and W.C.X. analyzed the data and wrote the paper. Z.W. performed experiments for stereotaxic microinjections, FFT and immunostaining. Z.W., Y.N.Z., P.Y., M.Z.Z. and L.Q.J. conducted the behavioral tests. Y.N.Z. and P.Y. performed experiments for 56Fe detections, quantitative PCR with reverse transcription and immunoblots. Z.W., J.Z.Z. and X.H. performed experiments for 59Fe and 57Fe detections L.Q.J. performed Perl’s staining. M.Z.Z., P.Y. and L.Q.J. performed genotyping.

Corresponding author

Correspondence to Xin-Hong Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–5, Supplementary Figures 1–13

Reporting Summary

Supplementary Dataset

Statistical parameters

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zeng, YN., Yang, P. et al. Axonal iron transport in the brain modulates anxiety-related behaviors. Nat Chem Biol 15, 1214–1222 (2019). https://doi.org/10.1038/s41589-019-0371-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0371-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing