Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Development of targeted protein degradation therapeutics

Abstract

Targeted protein degradation as a therapeutic modality has seen dramatic progress and massive investment in recent years because of the convergence of two key scientific breakthroughs: optimization of first-generation peptidic proteolysis-targeted chimeras (PROTACs) into more drug-like molecules able to support in vivo proof of concept and the discovery that clinical molecules function as degraders by binding and repurposing the proteins cereblon and DCAF15. This provided clinical validation for the general approach through the cereblon modulator class of drugs and provided highly drug-like and ligand-efficient E3 ligase binders upon which to tether target-binding moieties. Increasingly rational and systematic approaches including biophysical and structural studies on ternary complexes are being leveraged as the field advances. In this Perspective we summarize the discoveries that have laid the foundation for future degradation therapeutics, focusing on those classes of small molecules that redirect E3 ubiquitin ligases to non-native substrates.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of E3 ubiquitin ligases that have been repurposed with small molecules.
Fig. 2: Crystal structures of E3 ligase-ligand-substrate ternary complexes.
Fig. 3: Comparison of commonly employed ligase binding moieties (LBMs) for frequently used E3 ligases in heterobifunctional degraders.
Fig. 4

Similar content being viewed by others

References

  1. Zheng, N. & Shabek, N. Ubiquitin ligases: structure, function, and regulation. Annu. Rev. Biochem. 86, 129–157 (2017).

    Article  CAS  Google Scholar 

  2. Skaar, J. R., Pagan, J. K. & Pagano, M. Mechanisms and function of substrate recruitment by F-box proteins. Nat. Rev. Mol. Cell Biol. 14, 369–381 (2013).

    Article  CAS  Google Scholar 

  3. Sakamoto, K. M. et al. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl Acad. Sci. USA 98, 8554–8559 (2001). This is the first peer-reviewed report of the use of heterobifunctional molecules incorporating E3 ligase-binding moieties to drive targeted protein degradation.

    Article  CAS  Google Scholar 

  4. Min, J. H. et al. Structure of an HIF-1alpha -pVHL complex: hydroxyproline recognition in signaling. Science 296, 1886–1889 (2002).

    Article  CAS  Google Scholar 

  5. Rodriguez-Gonzalez, A. et al. Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer. Oncogene 27, 7201–7211 (2008).

    Article  CAS  Google Scholar 

  6. Hon, W. C. et al. Structural basis for the recognition of hydroxyproline in HIF-1 alpha by pVHL. Nature 417, 975–978 (2002).

    Article  CAS  Google Scholar 

  7. Schneekloth, A. R., Pucheault, M., Tae, H. S. & Crews, C. M. Targeted intracellular protein degradation induced by a small molecule: en route to chemical proteomics. Bioorg. Med. Chem. Lett. 18, 5904–5908 (2008).

    Article  CAS  Google Scholar 

  8. Itoh, Y., Ishikawa, M., Naito, M. & Hashimoto, Y. Protein knockdown using methyl bestatin-ligand hybrid molecules: design and synthesis of inducers of ubiquitination-mediated degradation of cellular retinoic acid-binding proteins. J. Am. Chem. Soc. 132, 5820–5826 (2010).

    Article  CAS  Google Scholar 

  9. Okuhira, K. et al. Specific degradation of CRABP-II via cIAP1-mediated ubiquitylation induced by hybrid molecules that crosslink cIAP1 and the target protein. FEBS Lett. 585, 1147–1152 (2011).

    Article  CAS  Google Scholar 

  10. Bondeson, D. P. et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 11, 611–617 (2015).

    Article  CAS  Google Scholar 

  11. Ohoka, N. et al. In vivo knockdown of pathogenic proteins via Specific and nongenetic inhibitor of apoptosis protein (IAP)-dependent protein erasers (SNIPERs). J. Biol. Chem. 292, 4556–4570 (2017).

    Article  CAS  Google Scholar 

  12. Lenz, W. P., Pfeiffer, R. A., Kosenow, W. & Hayman, D. J. Thalidomide and congenital abnormalities. Lancet 279, 45–46 (1962).

    Article  Google Scholar 

  13. Mcbride, W. G. Thalidomide and congenital abnormalities. Lancet 278, 1 (1961).

    Article  Google Scholar 

  14. Sheskin, J. & Sagher, F. Five years’ experience with thalidomide treatment in leprosy reaction. Int. J. Lepr. Other Mycobact. Dis. 39, 585–588 (1971).

    CAS  PubMed  Google Scholar 

  15. Krönke, J. et al. Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. Nature 523, 183–188 (2015).

    Article  Google Scholar 

  16. Matyskiela, M. E. et al. A Cereblon Modulator (CC-220) with Improved Degradation of Ikaros and Aiolos. J. Med. Chem. 61, 535–542 (2018).

    Article  CAS  Google Scholar 

  17. Schafer, P. H. et al. Cereblon modulator iberdomide induces degradation of the transcription factors Ikaros and Aiolos: immunomodulation in healthy volunteers and relevance to systemic lupus erythematosus. Ann. Rheum. Dis. 77, 1516–1523 (2018).

    Article  CAS  Google Scholar 

  18. Ito, T. et al. Identification of a primary target of thalidomide teratogenicity. Science 327, 1345–1350 (2010). This study highlights a seminal finding that cereblon is the cellular receptor for the thalidomide analogs.

    Article  CAS  Google Scholar 

  19. Angers, S. et al. Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature 443, 590–593 (2006).

    Article  CAS  Google Scholar 

  20. Chamberlain, P. P. et al. Structure of the human cereblon-DDB1-lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat. Struct. Mol. Biol. 21, 803–809 (2014).

    Article  CAS  Google Scholar 

  21. Fischer, E. S. et al. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature 512, 49–53 (2014).

    Article  CAS  Google Scholar 

  22. Gandhi, A. K. et al. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4(CRBN.). Br. J. Haematol. 164, 811–821 (2014).

    Article  CAS  Google Scholar 

  23. Krönke, J. et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343, 301–305 (2014).

    Article  Google Scholar 

  24. Lu, G. et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343, 305–309 (2014).

    Article  CAS  Google Scholar 

  25. Thiel, P., Kaiser, M. & Ottmann, C. Small-molecule stabilization of protein-protein interactions: an underestimated concept in drug discovery? Angew. Chem. Int. Edn Engl. 51, 2012–2018 (2012).

    Article  CAS  Google Scholar 

  26. Sheard, L. B. et al. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468, 400–405 (2010).

    Article  CAS  Google Scholar 

  27. Tan, X. et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640–645 (2007).

    Article  CAS  Google Scholar 

  28. Matyskiela, M. E. et al. A novel cereblon modulator recruits GSPT1 to the CRL4CRBN ubiquitin ligase. Nature 535, 252–257 (2016).This study demonstrates that novel ‘molecular glue’ chemical matter could redirect cereblon to drive degradation substrates unrelated to those reported for the approved clinical drugs. The structure of cereblon with GSPT1 enabled the identification of the neosubstrate structural degron (also observed for CK1α in ref. 29).

    Article  CAS  Google Scholar 

  29. Petzold, G., Fischer, E. S. & Thomä, N. H. Structural basis of lenalidomide-induced CK1α degradation by the CRL4CRBN ubiquitin ligase. Nature 532, 127–130 (2016).

    Article  CAS  Google Scholar 

  30. Sievers, Q. L. et al. Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN. Science 362, eaat0572 (2018). Proteomic and computation profiling show that many more members of the C2H2 zinc finger protein family may prove vulnerable to cereblon-mediated degradation. Crystal structures of cereblon with zinc finger substrates Ikaros and ZNF692 are included.

    Article  Google Scholar 

  31. An, J. et al. pSILAC mass spectrometry reveals ZFP91 as IMiD-dependent substrate of the CRL4CRBN ubiquitin ligase. Nat. Commun. 8, 15398 (2017).

    Article  CAS  Google Scholar 

  32. Donovan, K. A. et al. Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane Radial Ray syndrome. eLife 7, e38430 (2018). Along with Matyskiela et al. (ref. 33), this is one of two works revealing a plausible molecular basis for thalidomide-induced teratogenicity. The authors used proteomic profiling methods to also identify additional cereblon substrates.

    Article  Google Scholar 

  33. Matyskiela, M. E. et al. SALL4 mediates teratogenicity as a thalidomide-dependent cereblon substrate. Nat. Chem. Biol. 14, 981–987 (2018). Along with Donovan et al. (ref. 32), this is one of two works revealing a plausible molecular basis for thalidomide-induced teratogenicity. The authors show downregulation of SALL4 during development in vivo.

    Article  CAS  Google Scholar 

  34. Han, T. et al. Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. Science 356, eaal3755 (2017).

    Article  Google Scholar 

  35. Uehara, T. et al. Selective degradation of splicing factor CAPERα by anticancer sulfonamides. Nat. Chem. Biol. 13, 675–680 (2017).

    Article  CAS  Google Scholar 

  36. Winter, G. E. et al. DRUG DEVELOPMENT. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348, 1376–1381 (2015).

    Article  CAS  Google Scholar 

  37. Lu, J. et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem. Biol. 22, 755–763 (2015).This is one of the first reports that cereblon-binding moieties from CELMoD drugs could be used in heterobifunctional molecules to drive protein degradation.

    Article  CAS  Google Scholar 

  38. Brand, M. et al. Homolog-selective degradation as a strategy to probe the function of CDK6 in AML. Cell Chem. Biol. 26, 300–306.e9 (2019).

    Article  CAS  Google Scholar 

  39. Zoppi, V. et al. Iterative design and optimization of initially inactive proteolysis targeting chimeras (PROTACs) identify VZ185 as a potent, fast and selective von Hippel-Lindau (VHL)-based dual degrader probe of BRD9 and BRD7. J. Med. Chem. 62, 699–726 (2019).

    Article  CAS  Google Scholar 

  40. Zorba, A. et al. Delineating the role of cooperativity in the design of potent PROTACs for BTK. Proc. Natl Acad. Sci. USA 115, E7285–E7292 (2018).

    Article  Google Scholar 

  41. Lai, A. C. et al. Modular PROTAC design for the degradation of oncogenic BCR-ABL. Angew. Chem. Int. Edn Engl. 55, 807–810 (2016).

    Article  CAS  Google Scholar 

  42. Shi, J. et al. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat. Biotechnol. 33, 661–667 (2015).

    Article  CAS  Google Scholar 

  43. Fisher, S. L. & Phillips, A. J. Targeted protein degradation and the enzymology of degraders. Curr. Opin. Chem. Biol. 44, 47–55 (2018).

    Article  CAS  Google Scholar 

  44. Douglass, E. F. Jr., Miller, C. J., Sparer, G., Shapiro, H. & Spiegel, D. A. A comprehensive mathematical model for three-body binding equilibria. J. Am. Chem. Soc. 135, 6092–6099 (2013).

    Article  CAS  Google Scholar 

  45. Itoh, Y. et al. Development of target protein-selective degradation inducer for protein knockdown. Bioorg. Med. Chem. 19, 3229–3241 (2011).

    Article  CAS  Google Scholar 

  46. Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).

    Article  CAS  Google Scholar 

  47. Hines, J., Lartigue, S., Dong, H., Qian, Y. & Crews, C. M. MDM2-recruiting PROTAC offers superior, synergistic sntiproliferative activity via simultaneous degradation of BRD4 and stabilization of p53. Cancer Res. 79, 251–262 (2019).

    Article  CAS  Google Scholar 

  48. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    Article  CAS  Google Scholar 

  49. Kaelin, W. G. Jr. & Maher, E. R. The VHL tumour-suppressor gene paradigm. Trends Genet. 14, 423–426 (1998).

    Article  CAS  Google Scholar 

  50. Bavley, C. C. et al. Rescue of learning and memory deficits in the human nonsyndromic intellectual disability cereblon knock-out mouse model by targeting the AMP-activated protein kinase-mTORC1 translational pathway. J. Neurosci. 38, 2780–2795 (2018).

    Article  CAS  Google Scholar 

  51. Nguyen, T. V. et al. Glutamine triggers acetylation-dependent degradation of glutamine synthetase via the thalidomide receptor cereblon. Mol. Cell 61, 809–820 (2016).

    Article  CAS  Google Scholar 

  52. Ishoey, M. et al. Translation termination factor GSPT1 is a phenotypically relevant off-target of heterobifunctional phthalimide degraders. ACS Chem. Biol. 13, 553–560 (2018).

    Article  CAS  Google Scholar 

  53. Kim, J. H. & Scialli, A. R. Thalidomide: the tragedy of birth defects and the effective treatment of disease. Toxicol. Sci. 122, 1–6 (2011).

    Article  CAS  Google Scholar 

  54. Kohlhase, J. & Holmes, L. B. Mutations in SALL4 in malformed father and daughter postulated previously due to reflect mutagenesis by thalidomide. Birth Defects Res. A Clin. Mol. Teratol. 70, 550–551 (2004).

    Article  Google Scholar 

  55. Kohlhase, J. et al. Okihiro syndrome is caused by SALL4 mutations. Hum. Mol. Genet. 11, 2979–2987 (2002).

    Article  CAS  Google Scholar 

  56. Kohlhase, J. et al. Mutations at the SALL4 locus on chromosome 20 result in a range of clinically overlapping phenotypes, including Okihiro syndrome, Holt-Oram syndrome, acro-renal-ocular syndrome, and patients previously reported to represent thalidomide embryopathy. J. Med. Genet. 40, 473–478 (2003).

    Article  CAS  Google Scholar 

  57. Ottis, P. et al. Assessing different E3 ligases for small molecule induced protein ubiquitination and degradation. ACS Chem. Biol. 12, 2570–2578 (2017).

    Article  CAS  Google Scholar 

  58. Spradlin, J. N. et al. Harnessing the anti-cancer natural product nimbolide for targeted protein degradation. Nat. Chem. Biol. 15, 747–755 (2019).

    Article  CAS  Google Scholar 

  59. Zhang, X., Crowley, V. M., Wucherpfennig, T. G., Dix, M. M. & Cravatt, B. F. Electrophilic PROTACs that degrade nuclear proteins by engaging DCAF16. Nat. Chem. Biol. 15, 737–746 (2019).

    Article  CAS  Google Scholar 

  60. Sievers, Q. L., Gasser, J. A., Cowley, G. S., Fischer, E. S. & Ebert, B. L. Genome-wide screen identifies cullin-RING ligase machinery required for lenalidomide-dependent CRL4CRBN activity. Blood 132, 1293–1303 (2018).

    Article  CAS  Google Scholar 

  61. Lu, G. et al. UBE2G1 governs the destruction of cereblon neomorphic substrates. eLife 7, e40958 (2018).

    Article  Google Scholar 

  62. Nguyen, T. V. et al. p97/VCP promotes degradation of CRBN substrate glutamine synthetase and neosubstrates. Proc. Natl Acad. Sci. USA 114, 3565–3571 (2017).

    Article  Google Scholar 

  63. Bondeson, D. P. et al. Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem. Biol. 25, 78–87.e5 (2018).

    Article  CAS  Google Scholar 

  64. Huang, H. T. et al. A chemoproteomic approach to query the degradable kinome using a multi-kinase degrader. Cell Chem. Biol. 25, 88–99.e6 (2018).

    Article  CAS  Google Scholar 

  65. Jiang, B. et al. Development of dual and selective degraders of cyclin-dependent kinases 4 and 6. Angew. Chem. Int. Edn Engl. 58, 6321–6326 (2019).

    Article  CAS  Google Scholar 

  66. Smith, B. E. et al. Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nat. Commun. 10, 131 (2019).

    Article  Google Scholar 

  67. Gadd, M. S. et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat. Chem. Biol. 13, 514–521 (2017).

    Article  CAS  Google Scholar 

  68. Nowak, R. P. et al. Plasticity in binding confers selectivity in ligand-induced protein degradation. Nat. Chem. Biol. 14, 706–714 (2018).

    Article  CAS  Google Scholar 

  69. Shultz, M. D. Two decades under the influence of the rule of five and the changing properties of approved oral drugs. J. Med. Chem. 62, 1701–1714 (2019).

    Article  CAS  Google Scholar 

  70. Edmondson, S. D., Yang, B. & Fallan, C. Proteolysis targeting chimeras (PROTACs) in ‘beyond rule-of-five’ chemical space: recent progress and future challenges. Bioorg. Med. Chem. Lett. 29, 1555–1564 (2019).

    Article  CAS  Google Scholar 

  71. Oprea, T. I. et al. Unexplored therapeutic opportunities in the human genome. Nat. Rev. Drug Discov. 17, 317–332 (2018).

    Article  CAS  Google Scholar 

  72. Mullard, A. First targeted protein degrader hits the clinic. Nat. Rev. Drug Discov. https://doi.org/10.1038/d41573-019-00043-6 (2019).

  73. Silva, M. C. et al. Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models. eLife 8, 45457 (2019).

    Article  Google Scholar 

  74. Chamberlain, P. P. Linkers for protein degradation. Nat. Chem. Biol. 14, 639–640 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank V. Shanmugasundaram for computational analysis and M. Matyskiela for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip P. Chamberlain.

Ethics declarations

Competing interests

The authors are employees and shareholders of Celgene.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamberlain, P.P., Hamann, L.G. Development of targeted protein degradation therapeutics. Nat Chem Biol 15, 937–944 (2019). https://doi.org/10.1038/s41589-019-0362-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0362-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research