Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Covalent targeting of the vacuolar H+-ATPase activates autophagy via mTORC1 inhibition

Abstract

Autophagy is a lysosomal degradation pathway that eliminates aggregated proteins and damaged organelles to maintain cellular homeostasis. A major route for activating autophagy involves inhibition of the mTORC1 kinase, but current mTORC1-targeting compounds do not allow complete and selective mTORC1 blockade. Here, we have coupled screening of a covalent ligand library with activity-based protein profiling to discover EN6, a small-molecule in vivo activator of autophagy that covalently targets cysteine 277 in the ATP6V1A subunit of the lysosomal v-ATPase, which activates mTORC1 via the Rag guanosine triphosphatases. EN6-mediated ATP6V1A modification decouples the v-ATPase from the Rags, leading to inhibition of mTORC1 signaling, increased lysosomal acidification and activation of autophagy. Consistently, EN6 clears TDP-43 aggregates, a causative agent in frontotemporal dementia, in a lysosome-dependent manner. Our results provide insight into how the v-ATPase regulates mTORC1, and reveal a unique approach for enhancing cellular clearance based on covalent inhibition of lysosomal mTORC1 signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Covalent ligand screen for autophagy activators.
Fig. 2: Target identification and validation of EN6.
Fig. 3: EN6 inhibits mTORC1 recruitment to the lysosome.
Fig. 4: EN6 effects on TFEB, lysosomal acidification and clearance of TDP-43 aggregates.
Fig. 5: EN6 inhibits mTORC1 signaling in mice.
Fig. 6: Scheme of v-ATPase-mTORC1 regulation of autophagy and mechanism of EN6 action.

Similar content being viewed by others

Data availability

The data sets generated during and/or analyzed during the current study are available from the corresponding authors on reasonable request.

References

  1. Khaminets, A., Behl, C. & Dikic, I. Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol. 26, 6–16 (2016).

    Article  CAS  Google Scholar 

  2. Rubinsztein, D. C., Codogno, P. & Levine, B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov. 11, 709–730 (2012).

    Article  CAS  Google Scholar 

  3. Galluzzi, L., Bravo-San Pedro, J. M., Levine, B., Green, D. R. & Kroemer, G. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat. Rev. Drug Discov. 16, 487–511 (2017).

    Article  CAS  Google Scholar 

  4. Dikic, I. & Elazar, Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 19, 349–364 (2018).

    Article  CAS  Google Scholar 

  5. Perera, R. M. & Zoncu, R. The lysosome as a regulatory hub. Annu. Rev. Cell Dev. Biol. 32, 223–253 (2016).

    Article  CAS  Google Scholar 

  6. Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell 169, 361–371 (2017).

    Article  CAS  Google Scholar 

  7. Settembre, C. et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31, 1095–1108 (2012).

    Article  CAS  Google Scholar 

  8. Menzies, F. M., Fleming, A. & Rubinsztein, D. C. Compromised autophagy and neurodegenerative diseases. Nat. Rev. Neurosci. 16, 345–357 (2015).

    Article  CAS  Google Scholar 

  9. Barmada, S. J. et al. Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models. Nat. Chem. Biol. 10, 677–685 (2014).

    Article  CAS  Google Scholar 

  10. Tsvetkov, A. S. et al. A small-molecule scaffold induces autophagy in primary neurons and protects against toxicity in a Huntington disease model. Proc. Natl Acad. Sci. USA 107, 16982–16987 (2010).

    Article  CAS  Google Scholar 

  11. Fu, Y. et al. A toxic mutant huntingtin species is resistant to selective autophagy. Nat. Chem. Biol. 13, 1152–1154 (2017).

    Article  CAS  Google Scholar 

  12. Fox, J. H. et al. The mTOR kinase inhibitor Everolimus decreases S6 kinase phosphorylation but fails to reduce mutant huntingtin levels in brain and is not neuroprotective in the R6/2 mouse model of Huntington’s disease. Mol. Neurodegener. 5, 26 (2010).

    Article  Google Scholar 

  13. Duarte-Silva, S. et al. Combined therapy with m-TOR-dependent and -independent autophagy inducers causes neurotoxicity in a mouse model of Machado–Joseph disease. Neuroscience 313, 162–173 (2016).

    Article  CAS  Google Scholar 

  14. Ghosh, A. & Greenberg, M. E. Distinct roles for bFGF and NT-3 in the regulation of cortical neurogenesis. Neuron 15, 89–103 (1995).

    Article  CAS  Google Scholar 

  15. Kuruvilla, R., Ye, H. & Ginty, D. D. Spatially and functionally distinct roles of the PI3-K effector pathway during NGF signaling in sympathetic neurons. Neuron 27, 499–512 (2000).

    Article  CAS  Google Scholar 

  16. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    Article  CAS  Google Scholar 

  17. Sancak, Y. et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290–303 (2010).

    Article  CAS  Google Scholar 

  18. Zoncu, R. et al. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+-ATPase. Science 334, 678–683 (2011).

    Article  CAS  Google Scholar 

  19. Castellano, B. M. et al. Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex. Science 355, 1306–1311 (2017).

    Article  CAS  Google Scholar 

  20. Sancak, Y. et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496–1501 (2008).

    Article  CAS  Google Scholar 

  21. Kim, E., Goraksha-Hicks, P., Li, L., Neufeld, T. P. & Guan, K.-L. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 10, 935–945 (2008).

    Article  CAS  Google Scholar 

  22. Forgac, M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat. Rev. Mol. Cell Biol. 8, 917–929 (2007).

    Article  CAS  Google Scholar 

  23. Zhao, J., Benlekbir, S. & Rubinstein, J. L. Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. Nature 521, 241–245 (2015).

    Article  CAS  Google Scholar 

  24. Jewell, J. L. et al. Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science 347, 194–198 (2015).

    Article  CAS  Google Scholar 

  25. Dechant, R., Saad, S., Ibáñez, A. J. & Peter, M. Cytosolic pH regulates cell growth through distinct GTPases, Arf1 and Gtr1, to promote Ras/PKA and TORC1 activity. Mol. Cell 55, 409–421 (2014).

    Article  CAS  Google Scholar 

  26. Bar-Peled, L., Schweitzer, L. D., Zoncu, R. & Sabatini, D. M. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150, 1196–1208 (2012).

    Article  CAS  Google Scholar 

  27. Kaizuka, T. et al. An autophagic flux probe that releases an internal control. Mol. Cell 64, 835–849 (2016).

    Article  CAS  Google Scholar 

  28. Spradlin, J. N. et al. Harnessing the anti-cancer natural product nimbolide for targeted protein degradation. bioRxiv Preprint at https://doi.org/10.1101/436998 (2018).

  29. Anderson, K. E., To, M., Olzmann, J. A. & Nomura, D. K. Chemoproteomics-enabled covalent ligand screening reveals a thioredoxin-caspase 3 interaction disruptor that impairs breast cancer pathogenicity. ACS Chem. Biol. 12, 2522–2528 (2017).

    Article  CAS  Google Scholar 

  30. Grossman, E. A. et al. Covalent ligand discovery against druggable hotspots targeted by anti-cancer natural products. Cell Chem. Biol. 24, 1368–1376.e4 (2017).

    Article  CAS  Google Scholar 

  31. Bateman, L. A. et al. Chemoproteomics-enabled covalent ligand screen reveals a cysteine hotspot in reticulon 4 that impairs ER morphology and cancer pathogenicity. Chem. Commun. 53, 7234–7237 (2017).

    Article  CAS  Google Scholar 

  32. Weerapana, E. et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468, 790–795 (2010).

    Article  CAS  Google Scholar 

  33. Backus, K. M. et al. Proteome-wide covalent ligand discovery in native biological systems. Nature 534, 570–574 (2016).

    Article  CAS  Google Scholar 

  34. Chen, Y.-C. et al. Covalent modulators of the vacuolar ATPase. J. Am. Chem. Soc. 139, 639–642 (2017).

    Article  CAS  Google Scholar 

  35. Steinberg, B. E. et al. A cation counterflux supports lysosomal acidification. J. Cell Biol. 189, 1171–1186 (2010).

    Article  CAS  Google Scholar 

  36. Bar-Peled, L. et al. A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340, 1100–1106 (2013).

    Article  CAS  Google Scholar 

  37. Roczniak-Ferguson, A. et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal. 5, ra42 (2012).

    Article  Google Scholar 

  38. Martina, J. A., Chen, Y., Gucek, M. & Puertollano, R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8, 903–914 (2012).

    Article  CAS  Google Scholar 

  39. Sreedharan, J. et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668–1672 (2008).

    Article  CAS  Google Scholar 

  40. Joseph, G.A. et al. Inhibition of mTORC1 signaling in aged rats counteracts the decline in muscle mass and reverses multiple parameters of muscle signaling associated with sarcopenia. bioRxiv Preprint at https://www.biorxiv.org/content/10.1101/591891v1 (2019)

  41. Ramos, F. J. et al. Rapamycin reverses elevated mtorc1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function, and extends survival. Sci. Transl. Med. 4, 144ra103 (2012).

    Article  Google Scholar 

  42. Masiero, E. et al. Autophagy is required to maintain muscle mass. Cell Metab. 10, 507–515 (2009).

    Article  CAS  Google Scholar 

  43. Yano, T. et al. Clinical impact of myocardial mTORC1 activation in nonischemic dilated cardiomyopathy. J. Mol. Cell. Cardiol. 91, 6–9 (2016).

    Article  CAS  Google Scholar 

  44. Thoreen, C. C. et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem. 284, 8023–8032 (2009).

    Article  CAS  Google Scholar 

  45. Rodrik-Outmezguine, V. S. et al. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature 534, 272–276 (2016).

    Article  CAS  Google Scholar 

  46. García-Martínez, J. M. et al. Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem. J. 421, 29–42 (2009).

    Article  Google Scholar 

  47. Sarbassov, D. D. et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 22, 159–168 (2006).

    Article  CAS  Google Scholar 

  48. Lamming, D. W. et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335, 1638–1643 (2012).

    Article  CAS  Google Scholar 

  49. Arai, S. et al. Rotation mechanism of Enterococcus hirae V1-ATPase based on asymmetric crystal structures. Nature 493, 703–707 (2013).

    Article  CAS  Google Scholar 

  50. Mazhab-Jafari, M. T. et al. Atomic model for the membrane-embedded VO motor of a eukaryotic V-ATPase. Nature 539, 118–122 (2016).

    Article  CAS  Google Scholar 

  51. Smith, P. K. et al. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85 (1985).

    Article  CAS  Google Scholar 

  52. Xu, T. et al. ProLuCID: an improved SEQUEST-like algorithm with enhanced sensitivity and specificity. J. Proteomics 129, 16–24 (2015).

    Article  CAS  Google Scholar 

  53. Benjamin, D. I. et al. Ether lipid generating enzyme AGPS alters the balance of structural and signaling lipids to fuel cancer pathogenicity. Proc. Natl Acad. Sci. USA 110, 14912–14917 (2013).

    Article  CAS  Google Scholar 

  54. Counihan, J. L., Wiggenhorn, A. L., Anderson, K. E. & Nomura, D. K. Chemoproteomics-enabled covalent ligand screening reveals aldh3a1 as a lung cancer therapy target. ACS Chem. Biol. 13, 1970–1977 (2018).

    Article  CAS  Google Scholar 

  55. Louie, S. M. et al. GSTP1 is a driver of triple-negative breast cancer cell metabolism and pathogenicity. Cell Chem. Biol. 23, 567–578 (2016).

    Article  CAS  Google Scholar 

  56. Medina-Cleghorn, D. et al. Mapping proteome-wide targets of environmental chemicals using reactivity-based chemoproteomic platforms. Chem. Biol. 22, 1394–1405 (2015).

    Article  CAS  Google Scholar 

  57. Roberts, A. M. et al. Chemoproteomic screening of covalent ligands reveals UBA5 as a novel pancreatic cancer target. ACS Chem. Biol. 12, 899–904 (2017).

    Article  CAS  Google Scholar 

  58. Ward, C. C. et al. Covalent ligand screening uncovers a RNF4 E3 ligase recruiter for targeted protein degradation applications. ACS Chem. Biol. https://doi.org/10.1021/acschembio.8b01083 (2018).

Download references

Acknowledgements

We thank the members of the Nomura Research Group, the Zoncu laboratory and Novartis Institutes for BioMedical Research for critical reading of the manuscript. This work was supported by Novartis Institutes for BioMedical Research and the Novartis-Berkeley Center for Proteomics and Chemistry Technologies (NB-CPACT) for C.Y.S.C., C.A.B., B.F., C.C.W. and D.K.N., National Institutes of Health (grant no. NIEHS R01ES028096 for D.K.N. and C.Y.S.C., no. NCI F31CA225173 for C.C.W., no. NCI DP2CA195761 for R.Z. and no. NIGMS R01GM112948 for J.A.O.), the Shurl & Kay Curci Foundation Faculty Scholars grant (R.Z.) and the National Research Foundation funded by the South Korean government for H.R.S. (grant no. 2017R1C1B2007409). This study was also supported by the Mark Foundation for Cancer Research ASPIRE award (D.K.N.). Confocal imaging experiments were conducted at the CRL Molecular Imaging Center, supported by the Helen Wills Neuroscience Institute and Gordon and Betty Moore Foundation (UC Berkeley). We would like to thank H. Aaron and F. Ives for their microscopy training and assistance. We also thank R. Zalpuri at the University of California Berkeley Electron Microscope Laboratory for advice and assistance in electron microscopy sample preparation and data collection.

Author information

Authors and Affiliations

Authors

Contributions

C.Y.S.C., H.R.S., R.Z. and D.K.N. conceived the project and wrote the paper. C.Y.S.C., H.R.S., C.A.B., B.F., R.Z. and D.K.N. designed and performed the experiments. C.Y.S.C., H.R.S., C.A.B., C.C.W., R.Z. and D.K.N. analyzed the data. J.A.O. provided reagents.

Corresponding authors

Correspondence to Roberto Zoncu or Daniel K. Nomura.

Ethics declarations

Competing interests

This study was funded by the Novartis Institutes for BioMedical Research and the Novartis-Berkeley Center for Proteomics and Chemistry Technologies. D.K.N. is the director of the Novartis-Berkeley Center for Proteomics and Chemistry Technologies. D.K.N. is a co-founder, share-holder and adviser for Artris Therapeutics and Frontier Medicines. R.Z. is a co-founder, share-holder and adviser for Frontier Medicines.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–2, Supplementary Figs. 1–16

Reporting Summary

Synthetic Procedures

Synthetic Procedures

Supplementary Dataset 1

Autophagy activation screening data in MEF and HEK293A cells.

Supplementary Dataset 2

isoTOP-ABPP analysis of EN6 in situ treatment in MEF cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, C.YS., Shin, H.R., Berdan, C.A. et al. Covalent targeting of the vacuolar H+-ATPase activates autophagy via mTORC1 inhibition. Nat Chem Biol 15, 776–785 (2019). https://doi.org/10.1038/s41589-019-0308-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0308-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing