Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Natural fumigation as a mechanism for volatile transport between flower organs

Abstract

Plants synthesize volatile organic compounds (VOCs) to attract pollinators and beneficial microorganisms, to defend themselves against herbivores and pathogens, and for plant-plant communication. In general, VOCs accumulate in and are emitted from the tissue of their biosynthesis. However, using biochemical and reverse genetic approaches, we demonstrate a new physiological phenomenon: inter-organ aerial transport of VOCs via natural fumigation. Before petunia flowers open, a tube-specific terpene synthase produces sesquiterpenes, which are released inside the buds and then accumulate in the stigma, potentially defending the developing stigma from pathogens. These VOCs also affect reproductive organ development and seed yield, which are previously unknown functions of terpenoid compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of sesquiterpene synthases expressed in petunia flowers.
Fig. 2: Analysis of inter-organ transport of PhTPS1 products in petunia buds.
Fig. 3: Effect of sesquiterpene fumigation on pistil development and seed yield.
Fig. 4: Proposed fumigation model.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. Plant material generated in this study is available from the corresponding author upon request. For the microbiome, Fastaq files of samples containing the sequences of the OTUs associated with Petunia and Brassica are deposited at the European Nucleotide Archive (PRJEB29416 (ERP111715)). The sequences reported in this paper have been deposited in GenBank database with the following accession numbers MK159027 for PhTPS1, MK159028 for PhTPS2, MK159029 for PhTPS3, and MK159030 for PhTPS4.

References

  1. Dudareva, N., Negre, F., Nagegowda, D. A. & Orlova, I. Plant volatiles: recent advances and future perspectives. CRC. Crit. Rev. Plant Sci. 25, 417–440 (2006).

    Article  CAS  Google Scholar 

  2. Pichersky, E. & Gershenzon, J. The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr. Opin. Plant Biol. 5, 237–243 (2002).

    Article  CAS  Google Scholar 

  3. Glas, J. J. et al. Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. Int. J. Mol. Sci. 13, 17077–17103 (2012).

    Article  CAS  Google Scholar 

  4. Yazaki, K., Arimura, G. I. & Ohnishi, T. ‘Hidden’ terpenoids in plants: their biosynthesis, localization and ecological roles. Plant Cell Physiol. 58, 1615–1621 (2017).

    Article  CAS  Google Scholar 

  5. Boachon, B. et al. CYP76C1 (Cytochrome P450)-mediated linalool metabolism and the formation of volatile and soluble linalool oxides in arabidopsis flowers: a strategy for defense against floral antagonists. Plant Cell 27, 2972–2990 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Heil, M. & Silva Bueno, J. C. Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc. Natl Acad. Sci. USA 104, 5467–5472 (2007).

    Article  CAS  Google Scholar 

  7. Muhlemann, J. K., Klempien, A. & Dudareva, N. Floral volatiles: from biosynthesis to function. Plant. Cell Environ. 37, 1936–1949 (2014).

    Article  Google Scholar 

  8. Borghi, M., Fernie, A. R., Schiestl, F. P. & Bouwmeester, H. J. The sexual advantage of looking, smelling, and tasting good: the metabolic network that produces signals for pollinators. Trends Plant Sci. 22, 338–350 (2017).

    Article  CAS  Google Scholar 

  9. Junker, R. R. & Blüthgen, N. Floral scents repel facultative flower visitors, but attract obligate ones. Ann. Bot 105, 777–782 (2010).

    Article  Google Scholar 

  10. Ngugi, H. K. & Scherm, H. Biology of flower-infecting fungi. Annu. Rev. Phytopathol. 44, 261–282 (2006).

    Article  CAS  Google Scholar 

  11. Verdonk, J. C. et al. Regulation of floral scent production in petunia revealed by targeted metabolomics. Phytochemistry 62, 997–1008 (2003).

    Article  CAS  Google Scholar 

  12. Widhalm, J. R. et al. Identification of a plastidial phenylalanine exporter that influences flux distribution through the phenylalanine biosynthetic network. Nat. Commun. 6, 8142 (2015).

    Article  Google Scholar 

  13. Chen, F., Tholl, D., Bohlmann, J. & Pichersky, E. The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J. 66, 212–229 (2011).

    Article  CAS  Google Scholar 

  14. Dudareva, N., Pichersky, E. & Gershenzon, J. Biochemistry of plant volatiles. Plant Physiol. 135, 1893–1902 (2004).

    Article  CAS  Google Scholar 

  15. Kfoury, N., Scott, E., Orians, C. & Robbat, A. Direct contact sorptive extraction: a robust method for sampling plant volatiles in the field. J. Agric. Food Chem. 65, 8501–8509 (2017).

    Article  CAS  Google Scholar 

  16. Junker, R. R. & Tholl, D. Volatile organic compound mediated interactions at the plant-microbe interface. J. Chem. Ecol. 39, 810–825 (2013).

    Article  CAS  Google Scholar 

  17. Huang, M. et al. The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytol. 193, 997–1008 (2012).

    Article  CAS  Google Scholar 

  18. Welke, B., Ettlinger, K. & Riederer, M. Sorption of volatile organic chemicals in plant surfaces. Environ. Sci. Technol. 32, 1099–1104 (1998).

    Article  CAS  Google Scholar 

  19. Holopainen, J. K. & Blande, J. D. in Sensing in Nature (ed. López-Larrea, C.) 17–31 (Springer, 2012).

  20. Ton, J. et al. Priming by airborne signals boosts direct and indirect resistance in maize. Plant J. 49, 16–26 (2007).

    Article  CAS  Google Scholar 

  21. Junker, R. R. in Deciphering Chemical Language of Plant Communication (eds Blande, J. D. & Glinwood, R.) 257–282 (Springer International Publishing, 2016).

  22. Russell, A. L. & Ashman, T. Associative learning of flowers by generalist bumble bees can be mediated by microbes on the petals. Behav. Ecol. https://doi.org/10.1093/beheco/arz011 (2019).

    Article  Google Scholar 

  23. Helletsgruber, C., Dötterl, S., Ruprecht, U. & Junker, R. R. Epiphytic bacteria alter floral scent emissions. J. Chem. Ecol. 43, 1073–1077 (2017).

    Article  CAS  Google Scholar 

  24. Ma, N. et al. Petal senescence: a hormone view. J. Exp. Bot. 69, 719–732 (2018).

    Article  CAS  Google Scholar 

  25. Jones, M. L., Stead, A. D. & Clark, D. G. in Petunia: Evolutionary, Developmental and Physiological Genetics (eds. Gerats, T. & Strommer, J.) 301–324 (Springer, New York, 2009).

  26. Iqbal, N. et al. Ethylene role in plant growth, development and senescence: Interaction with other phytohormones. Front. Plant Sci. 8, 475 (2017).

    PubMed  PubMed Central  Google Scholar 

  27. Cheong, J.-J. & Choi, Y. Do Methyl jasmonate as a vital substance in plants. Trends Genet. 19, 409–413 (2003).

    Article  CAS  Google Scholar 

  28. Avanci, N. C., Luche, D. D., Goldman, G. H. & Goldman, M. H. S. Jasmonates are phytohormones with multiple functions, including plant defense and reproduction. Genet. Mol. Res. 9, 484–505 (2010).

    Article  CAS  Google Scholar 

  29. Park, S., Kaimoyo, E., Kumar, D., Mosher, S. & Klessig, D. F. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318, 113–116 (2007).

    Article  CAS  Google Scholar 

  30. Pickett, J. A. & Khan, Z. R. Plant volatile-mediated signalling and its application in agriculture: successes and challenges. New Phytol. 212, 856–870 (2016).

    Article  CAS  Google Scholar 

  31. Minerdi, D., Bossi, S., Maffei, M. E., Gullino, M. L. & Garibaldi, A. Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansin A5 gene expression through microbial volatile organic compound (MVOC) emission. FEMS Microbiol. Ecol 76, 342–351 (2011).

    Article  CAS  Google Scholar 

  32. Ditengou, F. A. et al. Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nat. Commun. 6, 6279 (2015).

    Article  CAS  Google Scholar 

  33. Krizek, B. A. & Fletcher, J. C. Molecular mechanisms of flower development: an armchair guide. Nat. Rev. Genet. 6, 688–698 (2005).

    Article  CAS  Google Scholar 

  34. Ó’Maoiléidigh, D. S., Graciet, E. & Wellmer, F. Gene networks controlling Arabidopsis thaliana flower development. New Phytol. 201, 16–30 (2014).

    Article  Google Scholar 

  35. Adebesin, F. et al. Emission of volatile organic compounds from petunia flowers is facilitated by an ABC transporter. Science 356, 1386–1388 (2017).

    Article  CAS  Google Scholar 

  36. Fernandez-Pozo, N., Rosli, H. G., Martin, G. B. & Mueller, L. A. The SGN VIGS tool: user-friendly software to design virus-induced gene silencing (VIGS) constructs for functional genomics. Mol. Plant 8, 486–488 (2015).

    Article  CAS  Google Scholar 

  37. Horsch, R. B. et al. A simple and general method for transferring genes into plants. Science 227, 1229–1231 (1985).

    Article  CAS  Google Scholar 

  38. Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001).

    Article  CAS  Google Scholar 

  39. Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K. & Scheible, W.-R. Genome-wide identification and testing of superior reference genes for transcript normalization in arabidopsis. Plant Physiol. 139, 5–17 (2005).

    Article  CAS  Google Scholar 

  40. Xie, F., Xiao, P., Chen, D., Xu, L. & Zhang, B. miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol. Biol. 80, 75–84 (2012).

    Article  CAS  Google Scholar 

  41. Nour-Eldin, H. H., Hansen, B. G., Nørholm, M. H. H., Jensen, J. K. & Halkier, B. A. Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments. Nucleic Acids Res. 34, e122 (2006).

    Article  Google Scholar 

  42. Pompon, D., Louerat, B., Bronine, A. & Urban, P. Yeast expression of animal and plant P450s in optimized redox environments. Methods Enzymol. 272, 51–64 (1996).

    Article  CAS  Google Scholar 

  43. Fischer, M. J. C., Meyer, S., Claudel, P., Bergdoll, M. & Karst, F. Metabolic engineering of monoterpene synthesis in yeast. Biotechnol. Bioeng. 108, 1883–1892 (2011).

    Article  CAS  Google Scholar 

  44. Dudareva, N. et al. (E)-β-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant Cell 15, 1227–1241 (2003).

    Article  CAS  Google Scholar 

  45. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

  46. Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).

    Article  CAS  Google Scholar 

  47. Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. Peer J. 4, e2584 (2016).

    Article  Google Scholar 

  48. Eren, A. M. et al. Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data. Meth. Ecol. Evol. 4, 1111–1119 (2013).

    Article  Google Scholar 

  49. Eren, A. M. et al. Minimum entropy decomposition: unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences. ISME J. 9, 968–979 (2015).

    Article  CAS  Google Scholar 

  50. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    Article  CAS  Google Scholar 

  51. Angly, F. E. et al. CopyRighter: a rapid tool for improving the accuracy of microbial community profiles through lineage-specific gene copy number correction. Microbiome 2, 11 (2014).

    Article  Google Scholar 

  52. Martin, F. W. Staining and observing pollen tubes in the style by means of fluorescence. Stain Technol. 34, 125–128 (1959).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant IOS-1655438 from the National Science Foundation to J.A.M. and N.D. and by the United States Department of Agriculture (USDA) National Institute of Food and Agriculture Hatch project 177845 to N.D.

Author information

Authors and Affiliations

Authors

Contributions

B.B. and N.D. conceived the study. B.B., S.R., J.Y., J.H.L., R.R.J., S.A.K., J.A.M., and N.D. planned experiments. B.B. performed metabolic profiling, identification, and characterization of TPSs, analysis of TPS activities in plants, stable isotope labeling, expression analysis, generation of transgenic plants and their analysis, and complementation experiments. S.R. performed wax analysis. J.Y. performed microscopy analysis. K.M.P.C. analyzed seed yield. J.H.L. performed complementation experiments, expression analysis of TPSs in transgenic plants, and metabolic profiling. R.R.J. performed microbiome analysis. B.B., S.R., J.Y., K.M.P.C., J.H.L., R.R.J., S.A.K., J.A.M., and N.D. analyzed and interpreted data. S.A.K., J.A.M., and N.D. supervised the study. B.B., J.H.L., and N.D. wrote the paper. All authors read and edited the manuscript.

Corresponding author

Correspondence to Natalia Dudareva.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–16, Supplementary Table 1

Reporting Summary

Supplementary Dataset 1

Microbiome analysis of flowers of Brassica rapa plants cultivated under sterile conditions from surface sterilized seeds (sample_33) or grown in soil in the laboratory after treatment with different bacteria. Microbiome analysis of pistils of wild-type and PhTPS1 RNAi-11 Petunia x hybrida flowers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boachon, B., Lynch, J.H., Ray, S. et al. Natural fumigation as a mechanism for volatile transport between flower organs. Nat Chem Biol 15, 583–588 (2019). https://doi.org/10.1038/s41589-019-0287-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0287-5

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology