Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Side chain determinants of biopolymer function during selection and replication

A Publisher Correction to this article was published on 11 March 2019

This article has been updated

Abstract

The chemical functionalities within biopolymers determine their physical properties and biological activities. The relationship between the side chains available to a biopolymer population and the potential functions of the resulting polymers, however, has proven difficult to study experimentally. Using seven sets of chemically diverse charged, polar, and nonpolar side chains, we performed cycles of artificial translation, in vitro selections for binding to either PCSK9 or IL-6 protein, and replication on libraries of random side chain-functionalized nucleic acid polymers. Polymer sequence convergence, bulk population target binding, affinity of individual polymers, and head-to-head competition among post-selection libraries collectively indicate that polymer libraries with nonpolar side chains outperformed libraries lacking these side chains. The presence of nonpolar groups, resembling functionality existing in proteins but missing from natural nucleic acids, thus may be strong determinants of binding activity. This factor may contribute to the apparent evolutionary advantage of proteins over their nucleic acid precursors for some molecular recognition tasks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HFNAP translation, selection, and library design.
Fig. 2: Protein target binding activity, sequence convergence, and sequence distribution of HFNAPs selected for PCSK9 or IL-6 affinity.
Fig. 3: Head-to-head competition of seven pools following iterated selections for binding to PCSK9 or IL-6.
Fig. 4: Target-binding activity of individual HFNAPs by SPR.

Similar content being viewed by others

Code availability

The scripts used to analyze data from the head-to-head competition experiments are described and included in Supplementary Notes 24.

Data availability

High-throughput sequencing data will be available from the NCBI Sequence Read Archive under accession code SRP153119.

Change history

  • 11 March 2019

    In the version of this article originally published, several data points in Fig. 4c were shifted out of place during production. The corrected version of Fig. 4c is shown below. This error has been corrected in the PDF and HTML versions of the article.

References

  1. Kamtekar, S., Schiffer, J. M., Xiong, H., Babik, J. M. & Hecht, M. H. Protein design by binary patterning of polar and nonpolar amino acids. Science 262, 1680–1685 (1993).

    Article  CAS  Google Scholar 

  2. Davidson, A. R. & Sauer, R. T. Folded proteins occur frequently in libraries of random amino acid sequences. Proc. Natl Acad. Sci. USA 91, 2146–2150 (1994).

    Article  CAS  Google Scholar 

  3. Heim, E. N. et al. Biologically active LIL proteins built with minimal chemical diversity. Proc. Natl Acad. Sci. USA 112, E4717–E4725 (2015).

    Article  CAS  Google Scholar 

  4. Taylor, S. V., Walter, K. U., Kast, P. & Hilvert, D. Searching sequence space for protein catalysts. Proc. Natl Acad. Sci. USA 98, 10596–10601 (2001).

    Article  CAS  Google Scholar 

  5. Beasley, J. R. & Hecht, M. H. Protein design: the choice of de novo sequences. J. Biol. Chem. 272, 2031–2034 (1997).

    Article  CAS  Google Scholar 

  6. Reader, J. S. & Joyce, G. F. A ribozyme composed of only two different nucleotides. Nature 420, 841–844 (2002).

    Article  CAS  Google Scholar 

  7. Ruff, K. M., Snyder, T. M. & Liu, D. R. Enhanced functional potential of nucleic acid aptamer libraries patterned to increase secondary structure. J. Am. Chem. Soc. 132, 9453–9464 (2010).

    Article  CAS  Google Scholar 

  8. Rogers, J. & Joyce, G. F. A ribozyme that lacks cytidine. Nature 402, 323–325 (1999).

    Article  CAS  Google Scholar 

  9. Schlosser, K. & Li, Y. DNAzyme-mediated catalysis with only guanosine and cytidine nucleotides. Nucleic Acids Res. 37, 413–420 (2009).

    Article  CAS  Google Scholar 

  10. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    Article  CAS  Google Scholar 

  11. Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    Article  CAS  Google Scholar 

  12. Robertson, D. L. & Joyce, G. F. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344, 467–468 (1990).

    Article  CAS  Google Scholar 

  13. Bock, L. C., Griffin, L. C., Latham, J. A., Vermaas, E. H. & Toole, J. J. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355, 564–566 (1992).

    Article  CAS  Google Scholar 

  14. Ellington, A. D. & Szostak, J. W. Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355, 850–852 (1992).

    Article  CAS  Google Scholar 

  15. Keefe, A. D., Pai, S. & Ellington, A. Aptamers as therapeutics. Nat. Rev. Drug. Discov. 9, 537–550 (2010).

    Article  CAS  Google Scholar 

  16. Breaker, R. R. & Joyce, G. F. A DNA enzyme that cleaves RNA. Chem. Biol. 1, 223–229 (1994).

    Article  CAS  Google Scholar 

  17. Li, Y., Liu, Y. & Breaker, R. R. Capping DNA with DNA. Biochemistry 39, 3106–3114 (2000).

    Article  CAS  Google Scholar 

  18. Silverman, S. K. In vitro selection, characterization, and application of deoxyribozymes that cleave RNA. Nucleic Acids Res. 33, 6151–6163 (2005).

    Article  CAS  Google Scholar 

  19. Schlosser, K. & Li, Y. Biologically inspired synthetic enzymes made from DNA. Chem. Biol. 16, 311–322 (2009).

    Article  CAS  Google Scholar 

  20. Walsh, S. M., Sachdeva, A. & Silverman, S. K. DNA catalysts with tyrosine kinase activity. J. Am. Chem. Soc. 135, 14928–14931 (2013).

    Article  CAS  Google Scholar 

  21. Silverman, S. K. Catalytic DNA: scope, applications, and biochemistry of deoxyribozymes. Trends. Biochem. Sci. 41, 595–609 (2016).

    Article  CAS  Google Scholar 

  22. Gold, L. et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One 5, e15004–e15017 (2010).

    Article  CAS  Google Scholar 

  23. Ren, X., Gelinas, A. D., von Carlowitz, I., Janjic, N. & Pyle, A. M. Structural basis for IL-1α recognition by a modified DNA aptamer that specifically inhibits IL-1α signaling. Nat. Commun. 8, 810 (2017).

    Article  Google Scholar 

  24. Ochsner, U. A., Katilius, E. & Janjic, N. Detection of Clostridium difficile toxins A, B and binary toxin with slow off-rate modified aptamers. Diagn. Microbiol. Infect. Dis. 76, 278–285 (2013).

    Article  CAS  Google Scholar 

  25. Zhou, C. et al. DNA-catalyzed amide hydrolysis. J. Am. Chem. Soc. 138, 2106–2109 (2016).

    Article  CAS  Google Scholar 

  26. Hollenstein, M., Hipolito, C. J., Lam, C. H. & Perrin, D. M. A DNAzyme with three protein-like functional groups: enhancing catalytic efficiency of M2+-independent RNA cleavage. Chembiochem 10, 1988–1992 (2009).

    Article  CAS  Google Scholar 

  27. Sidorov, A. V., Grasby, J. A. & Williams, D. M. Sequence-specific cleavage of RNA in the absence of divalent metal ions by a DNAzyme incorporating imidazolyl and amino functionalities. Nucleic Acids Res. 32, 1591–1601 (2004).

    Article  CAS  Google Scholar 

  28. Santoro, S. W., Joyce, G. F., Sakthivel, K., Gramatikova, S. & Barbas, C. F. III. RNA cleavage by a DNA enzyme with extended chemical functionality. J. Am. Chem. Soc. 122, 2433–2439 (2000).

    Article  CAS  Google Scholar 

  29. Thomas, J. M., Yoon, J.-K. & Perrin, D. M. Investigation of the catalytic mechanism of a synthetic DNAzyme with protein-like functionality: an RNaseA mimic? J. Am. Chem. Soc. 131, 5648–5658 (2009).

    Article  CAS  Google Scholar 

  30. Rohloff, J. C. et al. Nucleic acid ligands with protein-like side chains: modified aptamers and their use as diagnostic and therapeutic agents. Mol. Ther. Nucleic Acids 3, e201 (2014).

    Article  CAS  Google Scholar 

  31. Gawande, B. N. et al. Selection of DNA aptamers with two modified bases. Proc. Natl Acad. Sci. USA 114, 2898–2903 (2017).

    Article  CAS  Google Scholar 

  32. Davies, D. R. et al. Unique motifs and hydrophobic interactions shape the binding of modified DNA ligands to protein targets. Proc. Natl Acad. Sci. USA 109, 19971–19976 (2012).

    Article  CAS  Google Scholar 

  33. Hili, R., Niu, J. & Liu, D. R. DNA ligase-mediated translation of DNA into densely functionalized nucleic acid polymers. J. Am. Chem. Soc. 135, 98–101 (2013).

    Article  CAS  Google Scholar 

  34. Chen, Z., Lichtor, P. A., Berliner, A. P., Chen, J. C. & Liu, D. R. Evolution of sequence-defined highly functionalized nucleic acid polymers. Nat. Chem. 10, 420–427 (2018).

    Article  CAS  Google Scholar 

  35. Kong, D., Lei, Y., Yeung, W. & Hili, R. Enzymatic synthesis of sequence-defined synthetic nucleic acid polymers with diverse functional groups. Angew. Chem. Int. Ed. Engl. 55, 13164–13168 (2016).

    Article  CAS  Google Scholar 

  36. Kong, D., Yeung, W. & Hili, R. In vitro selection of diversely functionalized aptamers. J. Am. Chem. Soc. 139, 13977–13980 (2017).

    Article  CAS  Google Scholar 

  37. Lei, Y., Washington, J. & Hili, R. Efficiency and fidelity of T3 DNA ligase in ligase-catalysed oligonucleotide polymerisations. Org. Biomol. Chem. 1, 0076 (2018).

    Google Scholar 

  38. Rose, G. D., Geselowitz, A. R., Lesser, G. J., Lee, R. H. & Zehfus, M. H. Hydrophobicity of amino acid residues in globular proteins. Science 229, 834–838 (1985).

    Article  CAS  Google Scholar 

  39. Koide, S. & Sidhu, S. S. The importance of being tyrosine: lessons in molecular recognition from minimalist synthetic binding proteins. ACS. Chem. Biol. 4, 325–334 (2009).

    Article  CAS  Google Scholar 

  40. Ramaraj, T., Angel, T., Dratz, E. A., Jesaitis, A. J. & Mumey, B. Antigen-antibody interface properties: composition, residue interactions, and features of 53 non-redundant structures. Biochim. Biophys. Acta 1824, 520–532 (2012).

    Article  CAS  Google Scholar 

  41. Hunter, C. A. & Jones, S. A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol. 16, 448–457 (2015).

    Article  CAS  Google Scholar 

  42. Halford, B. Cholesterol-lowering PCSK9 inhibitors near market entry. Chem. Eng. News 93, 10–14 (2015).

    Google Scholar 

  43. Sabatine, M. S. et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med. 376, 1713–1722 (2017).

    Article  CAS  Google Scholar 

  44. Gupta, S. et al. Chemically modified DNA aptamers bind interleukin-6 with high affinity and inhibit signaling by blocking its interaction with interleukin-6 receptor. J. Biol. Chem. 289, 8706–8719 (2014).

    Article  CAS  Google Scholar 

  45. Gelinas, A. D. et al. Crystal structure of interleukin-6 in complex with a modified nucleic acid ligand. J. Biol. Chem. 289, 8720–8734 (2014).

    Article  CAS  Google Scholar 

  46. Zimmermann, B., Gesell, T., Chen, D., Lorenz, C. & Schroeder, R. Monitoring genomic sequences during SELEX using high-throughput sequencing: neutral SELEX. PLoS One 5, e9169 (2010).

    Article  Google Scholar 

  47. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25 (1997)..

  48. Hughes, J. D. et al. Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg. Med. Chem. Lett. 18, 4872–4875 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by DARPA N66001-14-2-4053, NIH R35 GM118062, and the Howard Hughes Medical Institute. Z.C. was partially supported by the Y. Kishi Graduate Prize in Chemistry and Chemical Biology sponsored by the Eisai Corporation. The authors thank A. Chan, J.P. Maianti, M. Packer, D.L. Usanov, B. Thuronyi, and C. Wilson for helpful comments and discussions. We also thank K. Arnett and R. Stoller for guidance with SPR experiments and analysis.

Author information

Authors and Affiliations

Authors

Contributions

P.A.L., Z.C., J.C.C. performed experiments; P.A.L. and N.H.E. developed the SPR methodology; P.A.L., Z.C., and D.R.L. designed the research and wrote the manuscript; all authors reviewed and edited the manuscript.

Corresponding author

Correspondence to David R. Liu.

Ethics declarations

Competing interests

Z.C., P.A.L., and D.R.L. have filed patent applications on DNA-templated polymerization.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–3, Supplementary Figures 1–12, and Supplementary Notes 1–4

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lichtor, P.A., Chen, Z., Elowe, N.H. et al. Side chain determinants of biopolymer function during selection and replication. Nat Chem Biol 15, 419–426 (2019). https://doi.org/10.1038/s41589-019-0229-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0229-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing