Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Acetylation of intrinsically disordered regions regulates phase separation

Abstract

Liquid–liquid phase separation (LLPS) of proteins containing intrinsically disordered regions (IDRs) has been proposed as a mechanism underlying the formation of membrane-less organelles. Tight regulation of IDR behavior is essential to ensure that LLPS only takes place when necessary. Here, we report that IDR acetylation/deacetylation regulates LLPS and assembly of stress granules (SGs), membrane-less organelles forming in response to stress. Acetylome analysis revealed that the RNA helicase DDX3X, an important component of SGs, is a novel substrate of the deacetylase HDAC6. The N-terminal IDR of DDX3X (IDR1) can undergo LLPS in vitro, and its acetylation at multiple lysine residues impairs the formation of liquid droplets. We also demonstrated that enhanced LLPS propensity through deacetylation of DDX3X-IDR1 by HDAC6 is necessary for SG maturation, but not initiation. Our analysis provides a mechanistic framework to understand how acetylation and deacetylation of IDRs regulate LLPS spatiotemporally, and impact membrane-less organelle formation in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DDX3X-IDR1 is specifically deacetylated by HDAC6.
Fig. 2: Stress induces acetylation of DDX3X and other proteins.
Fig. 3: Acetylation of DDX3X-IDR1 impairs its droplet formation by LLPS in vitro.
Fig. 4: Acetyl-mimic/dead mutations alter DDX3X SG dynamics.
Fig. 5: Deacetylation of DDX3X is required for normal SG size.
Fig. 6: SG maturation is promoted by deacetylation of DDX3X.

Similar content being viewed by others

Data availability

Published research reagents from the FMI are shared with the academic community under a Material Transfer Agreement (MTA) having terms and conditions corresponding to those of the UBMTA (Uniform Biological Material Transfer Agreement).

References

  1. Hyman, A. A., Weber, C. A. & Jülicher, F. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tompa, P. Intrinsically disordered proteins: a 10-year recap. Trends Biochem. Sci. 37, 509–516 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Protter, D. S. W. & Parker, R. Principles and properties of stress granules. Trends Cell Biol. 26, 668–679 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tyedmers, J., Mogk, A. & Bukau, B. Cellular strategies for controlling protein aggregation. Nat. Rev. Mol. Cell Biol. 11, 777–788 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Molliex, A. et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Patel, A. et al. A liquid-to-solid phase transition of the ALS Protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Brangwynne, C. P., Tompa, P. & Pappu, R. V. Polymer physics of intracellular phase transitions. Nat. Phys. 11, 899–904 (2015).

    Article  CAS  Google Scholar 

  9. Nott, T. J. et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57, 936–947 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hofweber, M. et al. Phase separation of FUS Is suppressed by its nuclear import receptor and arginine methylation. Cell 173, 706–719 e713 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Monahan, Z. et al. Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity. EMBO J. 36, 2951–2967 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kawaguchi, Y. et al. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115, 727–738 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Kwon, S., Zhang, Y. & Matthias, P. The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response. Genes Dev. 21, 3381–3394 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, Y. et al. HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J. 22, 1168–1179 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hubbert, C. et al. HDAC6 is a microtubule-associated deacetylase. Nature 417, 455–458 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Matthias, P., Yoshida, M. & Khochbin, S. HDAC6 a new cellular stress surveillance factor. Cell Cycle 7, 7–10 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Boyault, C., Sadoul, K., Pabion, M. & Khochbin, S. HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination. Oncogene 26, 5468–5476 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Tourrière, H. et al. The RasGAP-associated endoribonuclease G3BP assembles stress granules. J. Cell Biol. 160, 823–831 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Legros, S. et al. The HTLV-1 Tax protein inhibits formation of stress granules by interacting with histone deacetylase 6. Oncogene 30, 4050–4062 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Schölz, C. et al. Acetylation site specificities of lysine deacetylase inhibitors in human cells. Nat. Biotechnol. 33, 415–423 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Bannister, A. J., Miska, E. A., Görlich, D. & Kouzarides, T. Acetylation of importin-alpha nuclear import factors by CBP/p300. Curr. Biol. 10, 467–470 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, X. et al. HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol. Cell 27, 197–213 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, L. et al. Proteomic identification and functional characterization of MYH9, Hsc70, and DNAJA1 as novel substrates of HDAC6 deacetylase activity. Protein Cell 6, 42–54 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Shih, J. W. et al. Critical roles of RNA helicase DDX3 and its interactions with eIF4E/PABP1 in stress granule assembly and stress response. Biochem. J. 441, 119–129 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. North, B. J., Marshall, B. L., Borra, M. T., Denu, J. M. & Verdin, E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell 11, 437–444 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Hao, R. et al. Proteasomes activate aggresome disassembly and clearance by producing unanchored ubiquitin chains. Mol. Cell 51, 819–828 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Grozinger, C. M., Hassig, C. A. & Schreiber, S. L. Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc. Natl Acad. Sci. USA 96, 4868–4873 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hai, Y. & Christianson, D. W. Histone deacetylase 6 structure and molecular basis of catalysis and inhibition. Nat. Chem. Biol. 12, 741–747 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Miyake, Y. et al. Structural insights into HDAC6 tubulin deacetylation and its selective inhibition. Nat. Chem. Biol. 12, 748–754 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Thompson, P. R. et al. Regulation of the p300 HAT domain via a novel activation loop. Nat. Struct. Mol. Biol. 11, 308–315 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Floor, S. N., Condon, K. J., Sharma, D., Jankowsky, E. & Doudna, J. A. Autoinhibitory interdomain interactions and subfamily-specific extensions redefine the catalytic core of the human DEAD-box protein DDX3. J. Biol. Chem. 291, 2412–2421 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, A. et al. A single N-terminal phosphomimic disrupts TDP-43 polymerization, phase separation, and RNA splicing. EMBO J. 37, e97452 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, X. et al. The repeat region of cortactin is intrinsically disordered in solution. Sci. Rep. 7, 16696 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kato, M. et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Youn, J. Y. et al. High-density proximity mapping reveals the subcellular organization of mrna-associated granules and bodies. Molecular cell 69, 517–532 e511 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Jain, S. et al. ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164, 487–498 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Protter, D. S. W. et al. Intrinsically disordered regions can contribute promiscuous interactions to RNP granule assembly. Cell Rep. 22, 1401–1412 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wheeler, J. R., Matheny, T., Jain, S., Abrisch, R. & Parker, R. Distinct stages in stress granule assembly and disassembly. eLife 5, e18413 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Markmiller, S. et al. Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell 172, 590–604 e513 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Riback, J. A. et al. Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell 168, 1028–1040.e1019 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fanfoni, M. & Tomellini, M. The Johnson-Mehl-Avrami-Kohnogorov model: a brief review. IlNuovo Cimento D 20, 1171–1182 (1998).

    Article  Google Scholar 

  43. Valentin-Vega, Y. A. et al. Cancer-associated DDX3X mutations drive stress granule assembly and impair global translation. Sci. Rep. 6, 25996 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Elbaum-Garfinkle, S. et al. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc. Natl Acad. Sci. USA 112, 7189–7194 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ohn, T., Kedersha, N., Hickman, T., Tisdale, S. & Anderson, P. A functional RNAi screen links O-GlcNAc modification of ribosomal proteins to stress granule and processing body assembly. Nat. Cell Biol. 10, 1224–1231 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jedrusik-Bode, M. et al. The sirtuin SIRT6 regulates stress granule formation in C. elegans and mammals. J. Cell Sci. 126, 5166–5177 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Cohen, T. J. et al. An acetylation switch controls TDP-43 function and aggregation propensity. Nat. Commun. 6, 5845 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chong, S. et al. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science 361, eaar2555 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K. & Sharp, P. A. A phase separation model for transcriptional control. Cell 169, 13–23 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Banerjee, I. et al. Influenza A virus uses the aggresome processing machinery for host cell entry. Science 346, 473–477 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Ostapcuk, V. et al. Activity-dependent neuroprotective protein recruits HP1 and CHD4 to control lineage-specifying genes. Nature 557, 739–743 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics 13, 2513–2526 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hubner, N. C. et al. Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. J. Cell Biol. 189, 739–754 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Mittasch, M. et al. Non-invasive perturbations of intracellular flow reveal physical principles of cell organization. Nat. Cell Biol. 20, 344–351 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to T. Hyman for use of the microscope with thermal stage on short notice and for comments on the manuscript, and R. Voit (German Cancer Research Center, Heidelberg) for HAT expression vectors. We thank L. Gelman and S. Bourke for help with microscopic analysis, H. Kohler for FACS analysis, J. Seebacher and V. Iesmantavicius for interpretation of mass spectrometry data, H. Gut for help with structure predictions, M.B. Stadler for acetylome-wide IDR analysis, J. Wilbertz for help with live-cell imaging, L. Giorgetti and Y. Zhan for help with mathematical modeling, W. Filipowicz and J. Chao for critical comments on the manuscript. We thank C. Schölz for valuable suggestions. We also thank L. Wang for advice on protein purification, G. Matthias and C. Cao for their helpful technical assistance, Y. Miyake for providing us with biological materials for experiments, R. Clerc for critical comments on the manuscript, and all the Matthias laboratory members for fruitful discussions. M. Saito is supported in part by a fellowship from the Nakajima Foundation. A.W. Fritsch is supported by the ELBE postdoctoral fellows program. The Novo Nordisk Foundation Center for Protein Research is supported financially by the Novo Nordisk Foundation (Grant agreement NNF14CC0001). This work was supported by the Novartis Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

M.S. and P.M. designed the project; M.S. performed all experiments and interpreted the data for the manuscript under the supervision of P.M.; M.S. and D.H. performed mass spectrometry analysis; M.S. and J.E. performed microscopy and image analysis; M.S., A.W.F. and M.K. performed temperature-dependent microscopy measurements and their image analysis; M.S. and B.T.W. analyzed HDAC6 related acetylome data under the supervision of C.C.; M.S. and P.M. wrote the manuscript and all authors contributed to the final version.

Corresponding author

Correspondence to Patrick Matthias.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–27

Reporting Summary

Supplementary Dataset 1

Total DDX3X SG volume (related to Fig. 5)

Supplementary Dataset 2

DDX3X-interactome (related to Fig. 6)

Supplementary Dataset 3

Raw data used for mathematical modeling of SG growth (related to Fig. 6)

Supplementary Video 1

Fusion behavior of DDX3X-IDR1 droplet (related to Fig. 3)

Supplementary Video 2

DDX3X-IDR1 droplet disappearance by LLPS following a temperature increase (related to Fig. 3)

Supplementary Video 3

Liquid-like properties of mCherry-DDX3X SGs (related to Fig. 4)

Supplementary Video 4

SG formation of WT DDX3X and its mutants (related to Fig. 6)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saito, M., Hess, D., Eglinger, J. et al. Acetylation of intrinsically disordered regions regulates phase separation. Nat Chem Biol 15, 51–61 (2019). https://doi.org/10.1038/s41589-018-0180-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0180-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research