Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Peptide exchange on MHC-I by TAPBPR is driven by a negative allostery release cycle

Abstract

Chaperones TAPBPR and tapasin associate with class I major histocompatibility complexes (MHC-I) to promote optimization (editing) of peptide cargo. Here, we use solution NMR to investigate the mechanism of peptide exchange. We identify TAPBPR-induced conformational changes on conserved MHC-I molecular surfaces, consistent with our independently determined X-ray structure of the complex. Dynamics present in the empty MHC-I are stabilized by TAPBPR and become progressively dampened with increasing peptide occupancy. Incoming peptides are recognized according to the global stability of the final pMHC-I product and anneal in a native-like conformation to be edited by TAPBPR. Our results demonstrate an inverse relationship between MHC-I peptide occupancy and TAPBPR binding affinity, wherein the lifetime and structural features of transiently bound peptides control the regulation of a conformational switch located near the TAPBPR binding site, which triggers TAPBPR release. These results suggest a similar mechanism for the function of tapasin in the peptide-loading complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Heavy and light chain dynamics of free pMHC-I.
Fig. 2: NMR characterization of the 87 kDa pMHC-I–TAPBPR complex.
Fig. 3: Modulation of dynamics in MHC-I–TAPBPR complexes.
Fig. 4: Recognition of different peptide probes by the MHC-I–TAPBPR complex.
Fig. 5: TAPBPR-mediated loading of isotopically labeled peptides.
Fig. 6: Molecular mechanism of chaperone-assisted peptide exchange.

Similar content being viewed by others

References

  1. Neefjes, J., Jongsma, M. L. M., Paul, P. & Bakke, O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol. 11, 823–836 (2011).

    CAS  PubMed  Google Scholar 

  2. Rock, K. L., Reits, E. & Neefjes, J. Present Yourself! By MHC Class I and MHC Class II Molecules. Trends Immunol. 37, 724–737 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wearsch, P. A. & Cresswell, P. Selective loading of high-affinity peptides onto major histocompatibility complex class I molecules by the tapasin-ERp57 heterodimer. Nat. Immunol. 8, 873–881 (2007).

    CAS  PubMed  Google Scholar 

  4. Barnden, M. J., Purcell, A. W., Gorman, J. J. & McCluskey, J. Tapasin-mediated retention and optimization of peptide ligands during the assembly of class I molecules. J. Immunol. 165, 322–330 (2000).

    CAS  PubMed  Google Scholar 

  5. Hermann, C. et al. TAPBPR alters MHC class I peptide presentation by functioning as a peptide exchange catalyst. eLife 4, e09617 (2015).

    PubMed  PubMed Central  Google Scholar 

  6. Morozov, G. I. et al. Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing. Proc. Natl. Acad. Sci. USA 113, E1006–E1015 (2016).

    CAS  PubMed  Google Scholar 

  7. Paul, S. et al. HLA class I alleles are associated with peptide-binding repertoires of different size, affinity, and immunogenicity. J. Immunol. 191, 5831–5839 (2013).

    CAS  Google Scholar 

  8. Shionoya, Y. et al. Loss of tapasin in human lung and colon cancer cells and escape from tumor-associated antigen-specific CTL recognition. OncoImmunology 6, e1274476 (2017).

    PubMed  PubMed Central  Google Scholar 

  9. Chen, Q.-R., Hu, Y., Yan, C., Buetow, K. & Meerzaman, D. Systematic genetic analysis identifies Cis-eQTL target genes associated with glioblastoma patient survival. PLoS One 9, e105393 (2014).

    PubMed  PubMed Central  Google Scholar 

  10. Park, B. et al. Human cytomegalovirus inhibits tapasin-dependent peptide loading and optimization of the MHC class I peptide cargo for immune evasion. Immunity 20, 71–85 (2004).

    CAS  PubMed  Google Scholar 

  11. Montserrat, V., Galocha, B., Marcilla, M., Vázquez, M. & López de Castro, J. A. HLA-B*2704, an allotype associated with ankylosing spondylitis, is critically dependent on transporter associated with antigen processing and relatively independent of tapasin and immunoproteasome for maturation, surface expression, and T cell recognition: relationship to B*2705 and B*2706. J. Immunol. 177, 7015–7023 (2006).

    CAS  PubMed  Google Scholar 

  12. Lee, J. H. et al. Further examination of the candidate genes in chromosome 12p13 locus for late-onset Alzheimer disease. Neurogenetics 9, 127–138 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Thomas, C. & Tampé, R. Proofreading of peptide-MHC complexes through dynamic multivalent interactions. Front. Immunol. 8, 65 (2017).

    PubMed  PubMed Central  Google Scholar 

  14. van Hateren, A., Bailey, A. & Elliott, T. Recent advances in major histocompatibility complex (MHC) class I antigen presentation: plastic MHC molecules and TAPBPR-mediated quality control. F1000Res. 6, 158 (2017).

    PubMed  PubMed Central  Google Scholar 

  15. Neerincx, A. & Boyle, L. H. Properties of the tapasin homologue TAPBPR. Curr. Opin. Immunol. 46, 97–102 (2017).

    CAS  PubMed  Google Scholar 

  16. Boyle, L. H. et al. Tapasin-related protein TAPBPR is an additional component of the MHC class I presentation pathway. Proc. Natl. Acad. Sci. USA 110, 3465–3470 (2013).

    CAS  PubMed  Google Scholar 

  17. Hermann, C., Strittmatter, L. M., Deane, J. E. & Boyle, L. H. The binding of TAPBPR and Tapasin to MHC class I is mutually exclusive. J. Immunol. 191, 5743–5750 (2013).

    CAS  PubMed  Google Scholar 

  18. Neerincx, A. et al. TAPBPR bridges UDP-glucose:glycoprotein glucosyltransferase 1 onto MHC class I to provide quality control in the antigen presentation pathway. eLife 6, e23049 (2017).

    PubMed  PubMed Central  Google Scholar 

  19. Thomas, C. & Tampé, R. Structure of the TAPBPR–MHC I complex defines the mechanism of peptide loading and editing. Science 358, 1060–1064 (2017).

    CAS  PubMed  Google Scholar 

  20. Jiang, J. et al. Crystal structure of a TAPBPR–MHC-I complex reveals the mechanism of peptide editing in antigen presentation. Science 358, 1064–1068 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wieczorek, M. et al. Major histocompatibility complex (MHC) class I and MHC class II proteins: conformational plasticity in antigen presentation. Front. Immunol. 8, 292 (2017).

    PubMed  PubMed Central  Google Scholar 

  22. Ayres, C. M., Corcelli, S. A. & Baker, B. M. Peptide and peptide-dependent motions in MHC proteins: immunological implications and biophysical underpinnings. Front. Immunol. 8, 935 (2017).

    PubMed  PubMed Central  Google Scholar 

  23. Blees, A. et al. Structure of the human MHC-I peptide-loading complex. Nature 551, 525–528 (2017).

    CAS  PubMed  Google Scholar 

  24. Tugarinov, V., Kanelis, V. & Kay, L. E. Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat. Protoc. 1, 749–754 (2006).

    CAS  PubMed  Google Scholar 

  25. Pedersen, L. O. et al. The interaction of β 2-microglobulin (β 2m) with mouse class I major histocompatibility antigens and its ability to support peptide binding. A comparison of human and mouse β 2m. Eur. J. Immunol. 25, 1609–1616 (1995).

    CAS  PubMed  Google Scholar 

  26. Lakomek, N.-A., Ying, J. & Bax, A. Measurement of 15N relaxation rates in perdeuterated proteins by TROSY-based methods. J. Biomol. NMR 53, 209–221 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Korzhnev, D. M., Kloiber, K. & Kay, L. E. Multiple-quantum relaxation dispersion NMR spectroscopy probing millisecond time-scale dynamics in proteins: theory and application. J. Am. Chem. Soc. 126, 7320–7329 (2004).

    CAS  PubMed  Google Scholar 

  28. Wearsch, P. A. et al. Major histocompatibility complex class I molecules expressed with monoglucosylated N-linked glycans bind calreticulin independently of their assembly status. J. Biol. Chem. 279, 25112–25121 (2004).

    CAS  PubMed  Google Scholar 

  29. Ryan, S. O. & Cobb, B. A. Roles for major histocompatibility complex glycosylation in immune function. Semin. Immunopathol. 34, 425–441 (2012).

    CAS  PubMed  Google Scholar 

  30. Kovrigin, E. L. NMR line shapes and multi-state binding equilibria. J. Biomol. NMR 53, 257–270 (2012).

    CAS  PubMed  Google Scholar 

  31. Rodenko, B. et al. Generation of peptide-MHC class I complexes through UV-mediated ligand exchange. Nat. Protoc. 1, 1120–1132 (2006).

    CAS  PubMed  Google Scholar 

  32. Chen, M. & Bouvier, M. Analysis of interactions in a tapasin/class I complex provides a mechanism for peptide selection. EMBO J. 26, 1681–1690 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. van Hateren, A. et al. A mechanistic basis for the co-evolution of chicken tapasin and major histocompatibility complex class I (MHC I) proteins. J. Biol. Chem. 288, 32797–32808 (2013).

    PubMed  PubMed Central  Google Scholar 

  34. Latham, M. P., Zimmermann, G. R. & Pardi, A. NMR chemical exchange as a probe for ligand-binding kinetics in a theophylline-binding RNA aptamer. J. Am. Chem. Soc. 131, 5052–5053 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hein, Z. et al. Peptide-independent stabilization of MHC class I molecules breaches cellular quality control. J. Cell Sci. 127, 2885–2897 (2014).

    CAS  PubMed  Google Scholar 

  36. Pos, W. et al. Crystal structure of the HLA-DM-HLA-DR1 complex defines mechanisms for rapid peptide selection. Cell 151, 1557–1568 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kurimoto, E. et al. Structural and functional mosaic nature of MHC class I molecules in their peptide-free form. Mol. Immunol. 55, 393–399 (2013).

    CAS  PubMed  Google Scholar 

  38. Beerbaum, M. et al. NMR spectroscopy reveals unexpected structural variation at the protein-protein interface in MHC class I molecules. J. Biomol. NMR 57, 167–178 (2013).

    CAS  PubMed  Google Scholar 

  39. Yanaka, S. et al. Peptide-dependent conformational fluctuation determines the stability of the human leukocyte antigen class I complex. J. Biol. Chem. 289, 24680–24690 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hateren, Avan et al. Direct evidence for conformational dynamics in major histocompatibility complex class I molecules. J. Biol. Chem. 292, 20255–20269 (2017).

    PubMed  PubMed Central  Google Scholar 

  41. Hee, C.-S. et al. Dynamics of free versus complexed β2-microglobulin and the evolution of interfaces in MHC class I molecules. Immunogenetics 65, 157–172 (2013).

    CAS  PubMed  Google Scholar 

  42. Bailey, A. et al. Selector function of MHC I molecules is determined by protein plasticity. Sci. Rep. 5, 14928 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sieker, F., Springer, S. & Zacharias, M. Comparative molecular dynamics analysis of tapasin-dependent and -independent MHC class I alleles. Protein Sci. 16, 299–308 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Fisette, O., Wingbermühle, S., Tampé, R. & Schäfer, L. V. Molecular mechanism of peptide editing in the tapasin-MHC I complex. Sci. Rep. 6, 19085 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Abualrous, E. T. et al. The carboxy terminus of the ligand peptide determines the stability of the MHC class I molecule H-2Kb: a combined molecular dynamics and experimental study. PLoS One 10, e0135421 (2015).

    PubMed  PubMed Central  Google Scholar 

  46. Li, H., Natarajan, K., Malchiodi, E. L., Margulies, D. H. & Mariuzza, R. A. Three-dimensional structure of H-2Dd complexed with an immunodominant peptide from human immunodeficiency virus envelope glycoprotein 120. J. Mol. Biol. 283, 179–191 (1998).

    CAS  PubMed  Google Scholar 

  47. Natarajan, K. et al. An allosteric site in the T-cell receptor Cβ domain plays a critical signalling role. Nat. Commun. 8, 15260 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rossi, P., Xia, Y., Khanra, N., Veglia, G. & Kalodimos, C. G. 15N and 13C- SOFAST-HMQC editing enhances 3D-NOESY sensitivity in highly deuterated, selectively [1H,13C]-labeled proteins. J. Biomol. NMR 66, 259–271 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    CAS  PubMed  Google Scholar 

  50. Lee, W., Tonelli, M. & Markley, J. L. NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31, 1325–1327 (2015).

    PubMed  Google Scholar 

  51. Kleckner, I. R. & Foster, M. P. GUARDD: user-friendly MATLAB software for rigorous analysis of CPMG RD NMR data. J. Biomol. NMR 52, 11–22 (2012).

    CAS  PubMed  Google Scholar 

  52. Waudby, C. A., Ramos, A., Cabrita, L. D. & Christodoulou, J. Two-dimensional NMR lineshape analysis. Sci. Rep. 6, 24826 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge G. Morozov and A. Bax for helpful discussions, J. Ying and V. Tugarinov for assistance with recording NMR relaxation data, and C. Waudby for help with NMR line shape fitting in TITAN. MHC-I constructs for protein expression were generously provided by D. Long of the NIH Tetramer Core Facility. E.L.K. was supported by the Regular Research Grant 2016 from Committee on Research (COR), Marquette University. This research was supported by the Intramural research program of the NIAID, NIH, a K-22 Career Development and an R35 Outstanding Investigator Award to N.G.S. through NIAID(AI2573-01) and NIGMS(1R35GM125034-01), and by the Office of the Director, NIH, under High End Instrumentation (HIE) Grant S10OD018455, which funded the 800 MHz NMR spectrometer at UCSC.

Author information

Authors and Affiliations

Authors

Contributions

A.C.M., K.N., D.H.M. and N.G.S. designed the research, interpreted data and wrote the manuscript. K.N. performed SPR experiments. A.C.M performed differential scanning fluorimetry experiments. J.S.T. performed fluorescence anisotropy experiments with analysis performed by C.R.B. A.C.M., K.N. and M.B. generated constructs, performed protein expression and purification. A.C.M. and D.F.-S. prepared and purified isotopically labeled peptides. A.C.M., V.K.K., D.F.-S. and N.G.S. acquired and analyzed NMR data. A.C.M. and E.L.K. performed NMR line shape analysis. A.C.M. and D.F.-S. performed and analyzed MD simulations. J.J. provided X-ray structures of the RGPGC–H2-Dd S73C–β2m and RGPGC–H2-Dd S73C–β2m–TAPBPR. K.N., J.J., and D.H.M. conceived and validated the disulfide-linked covalent constructs and their binding behavior.

Corresponding author

Correspondence to Nikolaos G. Sgourakis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1–4, Supplementary Figures 1–21

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McShan, A.C., Natarajan, K., Kumirov, V.K. et al. Peptide exchange on MHC-I by TAPBPR is driven by a negative allostery release cycle. Nat Chem Biol 14, 811–820 (2018). https://doi.org/10.1038/s41589-018-0096-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-018-0096-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing